Using Modified Harmonic Analysis to Estimate the Trend of Sea-Level Rise around Taiwan
Abstract
:1. Introduction
2. Methods of Analysis
3. Results and Discussion
3.1. Examination of Temporal Function
3.2. Tidal Data Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Feenstra, J.F.; Burton, I.; Smtih, J.B.; Tol, R.S.J. Handbook on Methods for Climate Change Impact Assessment and Adaptation Strategies; United Nations Environment Program (UNEP): Nairobi, Kenya; University of Amsterdam: Amsterdam, The Netherland, 1998. [Google Scholar]
- Maaskant, B.; Jonkman, S.N.; Bouwer, L.M. Future risk of flooding: An analysis of changes in potential loss of life in South Holland (The Netherlands). Environ. Sci. Policy 2009, 12, 157–169. [Google Scholar] [CrossRef]
- Douglas, B.C. Chapter 3 Sea level change in the era of the recording tide gauge. Int. Geophys. 2001, 75, 37–64. [Google Scholar]
- Mitrovica, J.X.; Tsimplis, M.E.; Davis, J.L.; Milne, G.A. Recent mass balance of polar ice sheets inferred from patterns of global sea level change. Nature 2001, 409, 1026–1029. [Google Scholar] [CrossRef] [PubMed]
- Church, J.A.; White, N.J.; Coleman, R.; Lambeck, K.; Mitrovica, J.X. Estimates of regional distribution of SLR over the 1950–2000 period. J. Clim. 2004, 17, 2609–2625. [Google Scholar] [CrossRef]
- Church, J.; White, N.J. SLR from the late 19th to the Early 21st Century. Surv. Geophys. 2011, 32, 585–602. [Google Scholar] [CrossRef] [Green Version]
- Shum, C.K.; Kuo, C.Y. Observation and geophysical causes of present-day SLR. In Climate Change and Food Security in South Asia; Springer: Dordrecht, The Netherland, 2011; pp. 85–104. [Google Scholar]
- Merrifield, M.A.; Merrifield, S.T.; Mitchum, G.T. An Anomalous Recent Acceleration of Global SLR. J. Clim. 2009, 22, 5772–5781. [Google Scholar] [CrossRef] [Green Version]
- Intergovernmental Panel on Climate Change (IPCC). Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Summary for Policymakers; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; Available online: https://www.ipcc.ch/report/ar5/wg1/ (accessed on 14 April 2022).
- Intergovernmental Panel on Climate Change (IPCC). Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Summary for Policymakers; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021; Available online: https://www.ipcc.ch/report/ar6/wg1/ (accessed on 14 April 2022).
- Nerem, R.S.; Beckley, B.D.; Fasullo, J.T.; Hamlington, B.D.; Masters, D.; Mitchum, G.T. Climate-change–driven accelerated sea-level rise detected in the altimeter era. Proc. Natl. Acad. Sci. USA 2018, 115, 2022–2025. [Google Scholar] [CrossRef] [Green Version]
- Manabe, S.; Stouffer, R.J. Century-scale effects of increased atmospheric CO2 on the ocean–atmosphere system. Nature 1993, 364, 215–218. [Google Scholar] [CrossRef]
- Nicholls, R.J.; Cazenave, A. Sea-level rise and its impact on coastal zones. Science 2010, 328, 1517–1520. [Google Scholar] [CrossRef]
- Xu, S.S.; Zou, J.C.; Chen, M.X. North Pacific Sea level change and its impact factors during 1993–2006. Period. Ocean Univ. China 2010, 40, 24–32. (In Chinese) [Google Scholar]
- Ablain, M.; Cazenave, A.; Valladeau, G.; Guinehut, S. A new assessment of the error budget of global mean sea level rate estimated by satellite altimetry over 1993–2009. Ocean Sci. 2009, 5, 193–201. [Google Scholar] [CrossRef] [Green Version]
- Huang, N.E.; Shen, Z.; Long, S.R.; Wu, M.C.; Shih, H.H.; Zheng, Q.; Yen, N.C.; Tung, C.C.; Liu, H.H. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. Lond. Ser. A 1998, 454, 903–995. [Google Scholar] [CrossRef]
- Huang, N.E.; Shen, Z.; Long, S.R. A new view of nonlinear water waves: The Hilbert spectrum. Annu. Rev. Fluid Mech. 1999, 31, 417–457. [Google Scholar] [CrossRef] [Green Version]
- Wu, Z.; Huang, N.E. Ensemble Empirical Mode Decomposition: A Noise-Assisted Data Analysis Method; Technol Report No. 193; Center for Ocean-Land-Atmosphere Studies: Fairfax, VA, USA, 2005. [Google Scholar]
- Huang, Z.; Zong, Y.; Zhang, W. Coastal Inundation due to sea level rise in the Pearl River delta, China. Nat. Hazards 2004, 33, 247–264. [Google Scholar] [CrossRef] [Green Version]
- Ching, K.E.; Hsieh, M.L.; Johnson, K.M.; Chen, K.H.; Rau, R.J.; Ying, M. Modern vertical deformation rates and mountain building in Taiwan from precise leveling and continuous GPS observations, 2000–2008. J. Geophys. Res. 2011, 116, B08406. [Google Scholar] [CrossRef]
- Kulp, S.A.; Strauss, B.H. New elevation data triple estimates of global vulnerability to sea-level rise and coastal flooding. Nat. Commun. 2019, 10, 4844. [Google Scholar] [CrossRef] [Green Version]
- Hay, C.C.; Morrow, E.; Kopp, R.E.; Mitrovica, J.X. Probabilistic reanalysis of twentieth-century sea-level rise. Nature 2015, 517, 481–484. [Google Scholar] [CrossRef]
- Dangendorf, S.; Marcos, M.; Wöppelmann, G.; Conrad, C.P.; Frederikse, T.; Riva, R. Reassessment of 20th century global mean sea level rise. Proc. Natl. Acad. Sci. USA 2017, 114, 5946–5951. [Google Scholar] [CrossRef] [Green Version]
- Kopp, R.E.; Horton, R.M.; Little, C.M.; Mitrovica, J.X.; Oppenheimer, M.; Rasmussen, D.J.; Strauss, B.H.; Tebaldi, C. Probabilistic 21st and 22nd century sea-level projections at a global network of tide-gauge sites. Earth’s Future 2014, 2, 383–406. [Google Scholar] [CrossRef]
- Kopp, R.E.; DeConto, R.M.; Bader, D.A.; Hay, C.C.; Horton, R.M.; Kulp, S.; Oppenheimer, M.; Pollard, D.; Strauss, B.H. Evolving Understanding of Antarctic Ice-Sheet Physics and Ambiguity in Probabilistic Sea-Level Projections. Earth’s Future 2017, 5, 1217–1233. [Google Scholar] [CrossRef] [Green Version]
- Nauels, A.; Rogelj, J.; Schleussner, C.F.; Meinshausen, M.; Mengel, M. Linking sea level rise and socioeconomic indicators under the Shared Socioeconomic Pathways. Environ. Res. Lett. 2017, 12, 114002. [Google Scholar] [CrossRef] [Green Version]
- Wong, T.E.; Bakker, A.M.; Keller, K. Impacts of Antarctic fast dynamics on sea-level projections and coastal flood defense. Clim. Chang. 2017, 144, 347–364. [Google Scholar] [CrossRef]
- Le Bars, D.; Drijfhout, S.; de Vries, H. A high-end sea level rise probabilistic projection including rapid Antarctic ice sheet mass loss. Environ. Res. Lett. 2017, 12, 044013. [Google Scholar] [CrossRef]
- Bamber, J.L.; Oppenheimer, M.; Kopp, R.E.; Aspinall, W.P.; Cooke, R.M. Ice sheet contributions to future sea-level rise from structured expert judgment. Proc. Natl. Acad. Sci. USA 2019, 116, 11195–11200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Visser, H.; Dangendorf, S.; Petersen, A.C. A review of trend models applied to sea level data with reference to the “acceleration-deceleration debate”. J. Geophys. Res. Ocean. 2015, 120, 3873–3895. [Google Scholar] [CrossRef]
- Becker, M.; Karpytchev, M.; Lennartz-Sassinek, S. Long-term sea level trends: Natural or anthropogenic? Geophys. Res. Lett. 2014, 41, 5571–5580. [Google Scholar] [CrossRef] [Green Version]
- Dangendorf, S.; Rybski, D.; Mudersbach, C.; Müller, A.; Kaufmann, E.; Zorita, E.; Jensen, J. Evidence for long-term memory in sea level. Geophys. Res. Lett. 2014, 41, 5564–5571. [Google Scholar] [CrossRef] [Green Version]
- Llovel, W.; Guinehut, S.; Cazenave, A. Regional and interannual variability in sea level over 2002-2009 based on satellite altimetry, Argo float data and GRACE ocean mass. Ocean Dyn. 2010, 60, 1193–1204. [Google Scholar] [CrossRef]
- Kuo, C.Y.; Lin, L.C.; Lan, W.H.; Juang, W.J.; Lee, C.Y. Projection of Future Sea Level Changes around Taiwan; MOTC Technol Report No. 105-023-7863; Institute of Transportation: Taipei, Taiwan, 2016. (In Chinese)
Tidal Station | Time Period | Long-Term | Recent 20-Year | ||
---|---|---|---|---|---|
SLR (mm/yr) | R2 | SLR (mm/yr) | R2 | ||
Tamsui (1102) | 1950/01/04~2019/09/17 | 0.1 | 0.91 | −0.8 | 0.94 |
Zhuwei (1116) | 1976/08/02~2019/09/17 | 2.7 | 0.97 | 1.5 | 0.98 |
Hsinchu (112) | 1992/05/27~2019/09/17 | 2.0 | 0.98 | −0.9 | 0.98 |
Taichung Harbor (1436) | 1971/03/01~2019/09/17 | 7.8 | 0.94 | 18.1 | 0.99 |
Mailiao (1456) | 2005/10/01~2019/09/17 | X | X | 4.2 | 0.99 |
Wengang (1366) | 1963/02/02~2019/09/17 | 3.6 | 0.92 | 9.8 | 0.96 |
Dongshi (1166) | 1993/01/01~2019/09/17 | 8.0 | 0.95 | 13.2 | 0.95 |
Jiangjun (1176) | 2002/01/01~2019/09/17 | 6.2 | 0.95 | 6.2 | 0.95 |
Yongan (1786) | 2004/01/01~2019/09/17 | X | X | 6.5 | 0.91 |
Kaohsiung (1486) | 1947/05/16~2019/09/17 | 2.0 | 0.84 | 1.0 | 0.86 |
Keelung (1516) | 1946/05/01~2019/09/17 | 2.4 | 0.87 | 1.2 | 0.91 |
Gengfan (123) | 1976/05/01~2008/05/29 | X | X | 3.3 | 0.90 |
Su-ao (1246) | 1981/01/01~2019/09/17 | 7.1 | 0.94 | 4.6 | 0.95 |
Hualien (1256) | 1950/06/01~2019/09/17 | 2.6 | 0.91 | 6.8 | 0.94 |
Shiti (1566) | 2004/01/01~2019/09/17 | X | X | 11.5 | 0.96 |
Fugang (1586) | 1976/10/01~2019/09/17 | 3.8 | 0.91 | 4.3 | 0.94 |
Lanyu (1396) | 1992/07/23~2019/09/17 | 3.5 | 0.92 | 3.2 | 0.94 |
Tidal Station | Annual Ascent Rate in Past 20 Years (mm/yr) | Vertical-Change Rate of Surface GPS (mm/yr) | GPS-Measurement Time | SLR-Rise Rate for Sea-Level Correction of Vertical-Ground Change (mm/yr) |
---|---|---|---|---|
Keelung (1516) | 1.2 | −1.63 ± 0.09 | 2002/01–2012/12 | −0.4 |
Jiangjun (1176) | 6.2 | −7.91 ± 0.05 | 2001/12–2012/09 | −1.71 |
Kaohsiung (1486) | 1.03 | −0.91 ± 0.07 | 2004/01–2012/08 | 0.12 |
Syunguangzuei (1496) | 5.0 | −3.55 ± 0.12 | 2001/12–2012/09 | 1.45 |
Su-ao (1246) | 4.6 | −4.63 ± 0.12 | 2002/01–2012/08 | −0.03 |
Hualien (1256) | 6.83 | −5.15 ± 0.13 | 2002/01–2012/12 | 1.73 |
Fugang (1586) | 4.3 | −3.89 ± 0.07 | 2003/12–2012/12 | 0.41 |
Databases and Scenarios | Increase in SLR from Min. to Max. |
---|---|
Tide gauge [8,22,23,31,32] | 3.0 ± 0.7 mm/yr~3.1 ± 1.4 mm/yr |
Satellite altimetry [6,11,13,14,15,22,24,33] | 0.3 mm/yr~1.2 mm/yr |
Ice melting [25,27,28,29] | 0.21 mm/yr~0.74 mm/yr |
Greenhouse effect and higher CO2-emissions scenarios [9,10,12,21,23,26] | 0.11 mm/yr~8.9 mm/yr |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hsieh, C.-M.; Chou, D.; Hsu, T.-W. Using Modified Harmonic Analysis to Estimate the Trend of Sea-Level Rise around Taiwan. Sustainability 2022, 14, 7291. https://doi.org/10.3390/su14127291
Hsieh C-M, Chou D, Hsu T-W. Using Modified Harmonic Analysis to Estimate the Trend of Sea-Level Rise around Taiwan. Sustainability. 2022; 14(12):7291. https://doi.org/10.3390/su14127291
Chicago/Turabian StyleHsieh, Chih-Min, Dean Chou, and Tai-Wen Hsu. 2022. "Using Modified Harmonic Analysis to Estimate the Trend of Sea-Level Rise around Taiwan" Sustainability 14, no. 12: 7291. https://doi.org/10.3390/su14127291