Interactive Effect of Biochar and Bio-Compost on Starting Growth and Physiologic Parameters of Argan
Abstract
:1. Introduction
2. Materiel and Method
2.1. Soil, Biochar, Bio-Compost
2.2. Water Holding Capacity
2.3. Monitoring the Starting of Growth and Productivity of the Argan Tree
2.4. BC, Bio-Compost and Soil Chemicals Analysis
2.5. Data Analysis
- Summary of Experiment Scheme
3. Results and Discussion
3.1. Correlations between the Different Parameters PCA
3.2. Water Holding Capacity
3.3. BC, Bio-Compost and Soil Chemicals Analysis
3.4. Monitoring the Starting of Growth and Productivity of the Argan Tree
4. Conclusions and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Charrouf, Z.; Guillaume, D. Argan oil: Occurrence, composition and impact on human health. Eur. J. Lipid Sci. Technol. 2008, 110, 632–636. [Google Scholar] [CrossRef]
- Charrouf, Z.; Guillaume, D. Argan oil, the 35-years-of-research product. Eur. J. Lipid Sci. Technol. 2014, 116, 1316–1321. [Google Scholar] [CrossRef]
- Prendergast, H.D.V.; Walker, C.C. The Argan: Multipurpose Tree of Morocco. Curtis’s Bot. Mag. 1992, 9, 75–85. [Google Scholar] [CrossRef]
- Morton, J.F.; Voss, G.L. The argan tree (Argania sideroxylon, sapotaceae), a desert source of edible oil. Econ. Bot. 1987, 41, 221–233. [Google Scholar] [CrossRef]
- Mohammed, G. Etude experimentale sur la germination des semences de l’arganier. Mem. Fine d’etudes. Inst. Agron. Vet. Hassan II 1981. [Google Scholar]
- Charrouf, Z.; Guillaume, D. Sustainable development in Northern Africa: The argan forest case. Sustainability 2009, 1, 1012–1022. [Google Scholar] [CrossRef] [Green Version]
- Díaz-Barradas, M.C.; Zunzunegui, M.; Ain-Lhout, F.; Jáuregui, J.; Boutaleb, S.; Álvarez-Cansino, L.; Esquivias, M.P. Seasonal physiological responses of Argania spinosa tree from Mediterranean to semi-arid climate. Plant Soil 2010, 337, 217–231. [Google Scholar] [CrossRef]
- Velázquez, M.V.B.; López, M.Á.L.; Alcalá, V.M.C.; Diakite, L. Substrates and nutrient addition rates affect morphology and physiology of Pinus leiophylla seedlings in the nursery stage. IForest 2017, 10, 115–120. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.; Li, S.; Sun, H.; Wang, W.; Zhao, F. Effects of substrate material on plant growth and nutrient loss. Pol. J. Environ. Stud. 2018, 27, 2821–2832. [Google Scholar] [CrossRef]
- Torabi, M. Physiological and biochemical responses of plants to salt stress. In Proceedings of the 1st International Conference on New Ideas in Agriculture, Isfahan, Iran, 26 January 2014; pp. 26–27. [Google Scholar]
- Zgallaï, H.; Steppe, K.; Lemeur, R. Photosynthetic, physiological and biochemical responses of tomato plants to polyethylene glycol-induced water deficit. J. Integr. Plant Biol. 2005, 47, 1470–1478. [Google Scholar] [CrossRef]
- Hasan, M.R.; Solaiman, A.H.M. Efficacy of organic and organic fertilizer on the growth of Brassica oleracea L. (Cabbage ). Int. J. Agric. Crop Sci. 2012, 4, 128–138. [Google Scholar]
- Lee, J. Effect of application methods of organic fertilizer on growth, soil chemical properties and microbial densities in organic bulb onion production. Sci. Hortic. 2010, 124, 299–305. [Google Scholar] [CrossRef]
- Siavoshi, M.; Nasiri, A.; Laware, S.L. Effect of Organic Fertilizer on Growth and Yield Components in Rice (Oryza sativa L.). J. Agric. Sci. 2011, 3, 217–224. [Google Scholar] [CrossRef] [Green Version]
- Weber, K.; Quicker, P. Properties of biochar. Fuel 2018, 217, 240–261. [Google Scholar] [CrossRef]
- Biederman, L.A.; Stanley Harpole, W. Biochar and its effects on plant productivity and nutrient cycling: A meta-analysis. GCB Bioenergy 2013, 5, 202–214. [Google Scholar] [CrossRef]
- Burrell, L.D.; Zehetner, F.; Rampazzo, N.; Wimmer, B.; Soja, G. Long-term effects of biochar on soil physical properties. Geoderma 2016, 282, 96–102. [Google Scholar] [CrossRef]
- Karhu, K.; Mattila, T.; Bergström, I.; Regina, K. Biochar addition to agricultural soil increased CH4 uptake and water holding capacity—Results from a short-term pilot field study. Agric. Ecosyst. Environ. 2011, 140, 309–313. [Google Scholar] [CrossRef]
- Wang, H.; Xia, W.; Lu, P. Study on adsorption characteristics of biochar on heavy metals in soil. Korean J. Chem. Eng. 2017, 34, 1867–1873. [Google Scholar] [CrossRef]
- Blanco-Canqui, H. Biochar and Soil Physical Properties. Soil Sci. Soc. Am. J. 2017, 81, 687–711. [Google Scholar] [CrossRef] [Green Version]
- Paz-Ferreiro, J.; Fu, S.; Méndez, A.; Gascó, G. Interactive effects of biochar and the earthworm Pontoscolex corethrurus on plant productivity and soil enzyme activities. J. Soils Sediments 2014, 14, 483–494. [Google Scholar] [CrossRef]
- Gonzaga, M.I.S.; Mackowiak, C.; de Almeida, A.Q.; de Carvalho Junior, J.I.T.; Andrade, K.R. Positive and negative effects of biochar from coconut husks, orange bagasse and pine wood chips on maize (Zea mays L.) growth and nutrition. Catena 2018, 162, 414–420. [Google Scholar] [CrossRef]
- Buss, W.; Mašek, O.; Graham, M.; Wüst, D. Inherent organic compounds in biochar-Their content, composition and potential toxic effects. J. Environ. Manag. 2015, 156, 150–157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agegnehu, G.; Bass, A.M.; Nelson, P.N.; Bird, M.I. Benefits of biochar, compost and biochar-compost for soil quality, maize yield and greenhouse gas emissions in a tropical agricultural soil. Sci. Total Environ. 2016, 543, 295–306. [Google Scholar] [CrossRef] [PubMed]
- Roy, R.; Núñez-Delgado, A.; Wang, J.; Kader, M.A.; Sarker, T.; Hasan, A.K.; Dindaroglu, T. Cattle manure compost and biochar supplementation improve growth of Onobrychis viciifolia in coal-mined spoils under water stress conditions. Environ. Res. 2022, 205, 112440. [Google Scholar] [CrossRef]
- Oldfield, T.L.; Sikirica, N.; Mondini, C.; López, G.; Kuikman, P.J.; Holden, N.M. Biochar, compost and biochar-compost blend as options to recover nutrients and sequester carbon. J. Environ. Manag. 2018, 218, 465–476. [Google Scholar] [CrossRef]
- Buragohain, S.; Sarma, B.; Nath, D.J.; Gogoi, N.; Meena, R.S.; Lal, R. Effect of 10 years of biofertiliser use on soil quality and rice yield on an Inceptisol in Assam, India. Soil Res. 2018, 56, 49–58. [Google Scholar] [CrossRef]
- Khan, A.H.; Singh, A.K.; Singh, S.; Zaidi, N.W.; Singh, U.S.; Haefele, S.M. Response of Salt-Tolerant Rice Varieties to Biocompost Application in Sodic Soil of Eastern Uttar Pradesh. Am. J. Plant Sci. 2014, 5, 7–13. [Google Scholar] [CrossRef] [Green Version]
- Ferradous, A.; Hafidi, M. Production de plants d’arganier (Argania spinosa) au Maroc: Choix du conteneur et du substrat. Bois For. Des Trop. 2018, 334, 37. [Google Scholar] [CrossRef] [Green Version]
- Lindsay, W.L.; Norvell, W.A. Development of a DTPA Soil Test for Zinc, Iron, Manganese, and Copper. Soil Sci. Soc. Am. J. 1978, 42, 421–428. [Google Scholar] [CrossRef]
- Blakemore, L.C. Methods for chemicalanalysis of soils. NZ Soil Bur. Sci. Rep. 1987, 80, 72–76. [Google Scholar]
- Walkley, A. A critical examination of a rapid method for determining organic carbon in soils—Effect of variations in digestion conditions and of inorganic soil constituents. Soil Sci. 1947, 63, 251–264. [Google Scholar] [CrossRef]
- Kjeldahl, C. A new method for the determination of nitrogen in organic matter. Z. Anal. Chem. 1883, 22, 366. [Google Scholar] [CrossRef] [Green Version]
- Olsen, S.R. Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate; US Department of Agriculture: Washington, DC, USA, 1954.
- Metson, A.J. Methods of chemical analysis for soil survey samples. Soil Sci. 1957, 83, 245. [Google Scholar] [CrossRef]
- Mohamed, B.A.; Ellis, N.; Kim, C.S.; Bi, X.; Emam, A.E.R. Engineered biochar from microwave-assisted catalytic pyrolysis of switchgrass for increasing water-holding capacity and fertility of sandy soil. Sci. Total Environ. 2016, 566, 387–397. [Google Scholar] [CrossRef] [PubMed]
- Cooper, J.; Greenberg, I.; Ludwig, B.; Hippich, L.; Fischer, D.; Glaser, B.; Kaiser, M. Effect of biochar and compost on soil properties and organic matter in aggregate size fractions under field conditions. Agric. Ecosyst. Environ. 2020, 295, 106882. [Google Scholar] [CrossRef]
- Hazelton, P.; Murphy, B. Interpreting Soil Test Results: What Do All the Numbers Mean? CSIRO Publishing: Melbourne, Australia, 2016; ISBN 1486303978. [Google Scholar]
- Liu, J.; Schulz, H.; Brandl, S.; Miehtke, H.; Huwe, B.; Glaser, B. Short-term effect of biochar and compost on soil fertility and water status of a Dystric Cambisol in NE Germany under field conditions. J. Plant Nutr. Soil Sci. 2012, 175, 698–707. [Google Scholar] [CrossRef]
- Agegnehu, G.; Srivastava, A.K.; Bird, M.I. The role of biochar and biochar-compost in improving soil quality and crop performance: A review. Appl. Soil Ecol. 2017, 119, 156–170. [Google Scholar] [CrossRef]
- Schulz, H.; Dunst, G.; Glaser, B. Positive effects of composted biochar on plant growth and soil fertility. Agron. Sustain. Dev. 2013, 33, 817–827. [Google Scholar] [CrossRef] [Green Version]
- Kechairi, R.; Benmahioul, B. Comportement des plants d’Arganier (Argania spinosa L. Skeels, Sapotaceae) au sud-ouest Algérien (Tindouf, Bechar et Adrar). Int. J. Environ. Stud. 2019, 76, 800–814. [Google Scholar] [CrossRef]
- Streubel, J.D.; Collins, H.P.; Garcia-Perez, M.; Tarara, J.; Granatstein, D.; Kruger, C.E. Influence of Contrasting Biochar Types on Five Soils at Increasing Rates of Application. Soil Sci. Soc. Am. J. 2011, 75, 1402–1413. [Google Scholar] [CrossRef]
- Dugan, E.; Verhoef, A.; Robinson, S.; Sohi, S. Bio-char from sawdust, maize stover and charcoal: Impact on water holding capacities of three soils from Ghana. In Proceedings of the 19th World Congress of Soil Science, Soil Solutions for a Changing World, Brisbane, Australia, 1–6 August 2010; pp. 9–12. [Google Scholar]
- Hansen, V.; Hauggaard-Nielsen, H.; Petersen, C.T.; Mikkelsen, T.N.; Müller-Stöver, D. Effects of gasification biochar on plant-available water capacity and plant growth in two contrasting soil types. Soil Tillage Res. 2016, 161, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Basso, A.S.; Miguez, F.E.; Laird, D.A.; Horton, R.; Westgate, M. Assessing potential of biochar for increasing water-holding capacity of sandy soils. GCB Bioenergy 2013, 5, 132–143. [Google Scholar] [CrossRef] [Green Version]
- Ibrahim, H.M.; Al-Wabel, M.I.; Usman, A.R.A.; Al-Omran, A. Effect of conocarpus biochar application on the hydraulic properties of a sandy loam soil. Soil Sci. 2013, 178, 165–173. [Google Scholar] [CrossRef]
- Fassman-Beck, E.; Wang, S.; Simcock, R.; Liu, R. Assessing the Effects of Bioretention’s Engineered Media Composition and Compaction on Hydraulic Conductivity and Water Holding Capacity. J. Sustain. Water Built Environ. 2015, 1, 04015003. [Google Scholar] [CrossRef]
- Hernando, S.; Lobo, M.C.; Polo, A. Effect of the application of a municipal refuse compost on the physical and chemical properties of a soil. Sci. Total Environ. 1989, 81, 589–596. [Google Scholar] [CrossRef]
- Sorrenti, G.; Toselli, M. Soil leaching as affected by the amendment with biochar and compost. Agric. Ecosyst. Environ. 2016, 226, 56–64. [Google Scholar] [CrossRef]
- Luo, X.; Liu, G.; Xia, Y.; Chen, L.; Jiang, Z.; Zheng, H.; Wang, Z. Use of biochar-compost to improve properties and productivity of the degraded coastal soil in the Yellow River Delta, China. J. Soils Sediments 2017, 17, 780–789. [Google Scholar] [CrossRef]
- Agegnehu, G.; Bass, A.M.; Nelson, P.N.; Muirhead, B.; Wright, G.; Bird, M.I. Biochar and biochar-compost as soil amendments: Effects on peanut yield, soil properties and greenhouse gas emissions in tropical North Queensland, Australia. Agric. Ecosyst. Environ. 2015, 213, 72–85. [Google Scholar] [CrossRef]
- Schulz, H.; Glaser, B. Effects of biochar compared to organic and inorganic fertilizers on soil quality and plant growth in a greenhouse experiment. J. Plant Nutr. Soil Sci. 2012, 175, 410–422. [Google Scholar] [CrossRef]
- Antonović, A.; Krička, T.; Jurišić, V.; Bilandžija, N.; Voća, N.; Stanešić, J. Biochar quantification and its properties in relation to the raw material. In Proceedings of the 51st Croatian and 11th International Symposium on Agriculture, Opatija, Croatia, 15–18 February 2016; pp. 445–449. [Google Scholar]
- Al-Wabel, M.I.; Al-Omran, A.; El-Naggar, A.H.; Nadeem, M.; Usman, A.R.A. Pyrolysis temperature induced changes in characteristics and chemical composition of biochar produced from conocarpus wastes. Bioresour. Technol. 2013, 131, 374–379. [Google Scholar] [CrossRef]
- Gaskin, J.W.; Steiner, C.; Harris, K.; Das, K.C.; Bibens, B. Effect of Low-Temperature Pyrolysis Conditions on Biochar for Agricultural Use. Trans. ASABE 2008, 51, 2061–2069. [Google Scholar] [CrossRef]
- Barker, A.V. Composition and Uses of Compost. ACS Symp. Ser. 1997, 668, 140–162. [Google Scholar] [CrossRef]
- Esekhade, T.U.; Orimoloye, J.R.; Ugwa, I.K.; Idoko, S.O. Potentials of multiple cropping systems in young rubber plantations. J. Sustain. Agric. 2003, 22, 79–94. [Google Scholar] [CrossRef]
- Ruas, M.P.; Ros, J.; Terral, J.F.; Ivorra, S.; Andrianarinosy, H.; Ettahiri, A.S.; Fili, A.; Van Staëvel, J.P. History and archaeology of the emblematic argan tree in the medieval Anti-Atlas Mountains (Morocco). Quat. Int. 2016, 404, 114–136. [Google Scholar] [CrossRef]
- Aabd, N.A.I.T.; El Ayadi, F.; Msanda, F.; Mousadik, A.E.L. Genetic Variability of Argan Tree and Preselection of the Candidate Plus Trees Genetic Variability of Argan Tree and Preselection of the Candidate Plus Trees. Bot. Horti Agrobot. Cluj-Napoca 2010, 38, 293–301. [Google Scholar] [CrossRef]
- Alba-Sánchez, F.; López-Sáez, J.A.; Nieto-Lugilde, D.; Svenning, J.C. Long-term climate forcings to assess vulnerability in North Africa dry argan woodlands. Appl. Veg. Sci. 2015, 18, 283–296. [Google Scholar] [CrossRef]
- Tazi, M.R.; Boukroute, A.; Berrichi, A.; Rharrabti, Y.; Kouddane, N. Growth of young argan tree seedlings (Argania spinosa L. Skeels) in northeast of morocco under controlled conditions at different NaCl concentrations. J. Mater. Environ. Sci. 2018, 9, 212–218. [Google Scholar] [CrossRef]
- Chakhchar, A.; Haworth, M.; El Modafar, C.; Lauteri, M. An Assessment of Genetic Diversity and Drought Tolerance in Argan Tree (Argania spinosa) Populations: Potential for the Development of Improved Drought Tolerance. Front. Plant Sci. 2017, 8, 276. [Google Scholar] [CrossRef] [Green Version]
- Girault, T. Etude du Photocontrole du Debourrement du Bourgeon Chez le Rosier (Rosa sp. L.): Impact de la Lumière sur le Métabolisme Glucidique et L’élongation Cellulaire. Ph.D. Thesis, Université d’Angers, Angers, France, 2009. [Google Scholar]
- Antoun, M. Effet de la Température sur le Développement Chez Arabidopsis Thaliana; Département de Biologie, Université du Québec à Montréal: Montreal, QC, Canada, 2013. [Google Scholar]
- Luo, T.; Zhang, J.; Khan, M.N.; Liu, J.; Xu, Z.; Hu, L. Temperature variation caused by sowing dates significantly affects floral initiation and floral bud differentiation processes in rapeseed (Brassica napus L.). Plant Sci. 2018, 271, 40–51. [Google Scholar] [CrossRef]
- Li, Y.; Hu, S.; Chen, J.; Müller, K.; Li, Y.; Fu, W.; Lin, Z.; Wang, H. Effects of biochar application in forest ecosystems on soil properties and greenhouse gas emissions: A review. J. Soils Sediments 2017, 18, 546–563. [Google Scholar] [CrossRef]
- McElligott, K. Biochar Amendments to Forest Soils: Effects on Soil Properties and Tree Growth. Ph.D. Thesis, University of Idaho, Moscow, ID, USA, 2011. [Google Scholar]
- Lefebvre, D.; Román-Dañobeytia, F.; Soete, J.; Cabanillas, F.; Corvera, R.; Ascorra, C.; Fernandez, L.E.; Silman, M. Biochar effects on two tropical tree species and its potential as a tool for reforestation. Forests 2019, 10, 678. [Google Scholar] [CrossRef] [Green Version]
- Somerville, P.D.; Farrell, C.; May, P.B.; Livesley, S.J. Biochar and compost equally improve urban soil physical and biological properties and tree growth, with no added benefit in combination. Sci. Total Environ. 2020, 706, 135736. [Google Scholar] [CrossRef] [PubMed]
- Sorrenti, G.; Ventura, M.; Toselli, M. Effect of biochar on nutrient retention and nectarine tree performance: A three-year field trial. J. Plant Nutr. Soil Sci. 2016, 179, 336–346. [Google Scholar] [CrossRef]
- Ghosh, S.; Ow, L.F.; Wilson, B. Influence of biochar and compost on soil properties and tree growth in a tropical urban environment. Int. J. Environ. Sci. Technol. 2015, 12, 1303–1310. [Google Scholar] [CrossRef] [Green Version]
- Aabd, N.A.; El Ayadi, F.; Msanda, F.; El Mousadik, A. Evaluation of agromorphological variability of Argan tree under different environmental conditions in Morocco: Implication for selection. Int. J. Biodivers. Conserv. 2011, 3, 73–82. [Google Scholar]
- El Mousadik, A.; Petit, R.J. High level of genetic differentiation for allelic richness among populations of the argan tree [Argania spinosa (L.) Skeels] endemic to Morocco. Theor. Appl. Genet. 1996, 92, 832–839. [Google Scholar] [CrossRef]
- Alba-Sánchez, F.; López-Sáez, J.A.; Nieto-Lugilde, D.; Svenning, J.-C. Climatic Forcings on Past and Future Range Dynamics of the Argan (Argania spinosa) Woodland Ecosystem in North Africa. Available online: https://digital.csic.es/bitstream/10261/223410/1/Long-term_climate_forcings_argan.pdf (accessed on 7 June 2022).
- Laaribya, S.; Alaoui, A.; Gmira, N. The Moroccan forest and sustainable development case of the argan tree Argania spinosa L. Skeels in Morocco. Biyol. Çeşitlilik Ve Koruma 2017, 10, 1–7. [Google Scholar]
Feedstock | Temperature | Rate | Residence Time | Yield |
---|---|---|---|---|
RAM (Biochar of municipal sewage) | 483 °C | 0.8 Kg | 55 min | 60% |
AR (Biochar of argan tree shell) | 443 °C | 2 Kg | 30 min | 17% |
Treatement | Control 0% BC 0% CP | 0% BC 3% CP | 0% BC 6% CP | 3% BC 0% CP | 3% BC 3% CP | 3% BC 6% CP | 6% BC 0% CP | 6% BC 3% CP | 6% BC 6% CP |
---|---|---|---|---|---|---|---|---|---|
CEC (meq/100 g) | 9.99 | 9.16 | 8.49 | 6.66 | 6.66 | 5.83 | 6.83 | 6.827 | 5.828 |
PH | CE µS/Cm | WHC g H2O/g dw | % TOM (Organic Matter Content) | % OC (Organic Carbon) | % Nt (Total Nitrogen) | C/N | % Pt (Total Phosphorus) | % K | % Na | % Ca | % Mg | Fe mg/kg | Mn mg/kg | Cu mg/kg | Zn mg/kg | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
bio-compost | 8.01 | 2990 | 0.73 | 41.47 | 24.05 | 2.84 | 28.17 | 0.20 | 0.16 | 0.36 | 6.01 | 0.42 | 6079 | 232.5 | 993.8 | 241.4 |
biochar RAMAR | 9.40 | 3050 | 1.41 | 28.23 | 16.38 | 0.85 | 19.27 | 0.95 | 0.26 | 0.27 | 9.14 | 1.69 | 7482.3 | 217.1 | 196.5 | 59.0 |
P2O5 0/00 | K2O 0/00 | Na2O 0/00 | CaO 0/00 | MgO 0/00 | ||||||||||||
Soil | 8.49 | 60 | 0.62 | 2.84 | 1.65 | 0.059 | 28.06 | 0.341 | 1.711 | 0.503 | 4.978 | 1.221 | 1.1 | 13.8 | 0.5 | 1.8 |
Treatement | Control 0% BC 0% CP | 0% BC 3% CP | 0% BC 6% CP | 3% BC 0% CP | 3% BC 3% CP | 3% BC 6% CP | 6% BC 0% CP | 6% BC 3% CP | 6% BC 6% CP |
---|---|---|---|---|---|---|---|---|---|
Measure Number | |||||||||
1st Measure Photosynthetic rate, A (µmol CO2 m−2 s−1) | 13.33 ± 0.54 c | 6.31 ± 0.30 ab | 10.11 ± 0.54 a | 5.55 ± 2.8 ab | 17.32 ± 1.59 cd | 10.98 ± 3.32 a | 3.52 ± 2.38 b | 7.63 ± 2.54 ab | 9.05 ± 2.04 ab |
2nd Measure Photosynthetic rate, A (µmol CO2 m−2 s−1) | 4.78 ± 1.7 a | 3.26 ± 1.31 a | 2.7 ± 1.14 a | 7.69 ± 2.73 ab | 7.31 ± 3.41 ab | 13.42 ± 3.42 b | 3.54 ± 0.66 a | 6.55 ± 2.9 a | 7.73 ± 0.94 ab |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El Moussaoui, H.; Bouqbis, L. Interactive Effect of Biochar and Bio-Compost on Starting Growth and Physiologic Parameters of Argan. Sustainability 2022, 14, 7270. https://doi.org/10.3390/su14127270
El Moussaoui H, Bouqbis L. Interactive Effect of Biochar and Bio-Compost on Starting Growth and Physiologic Parameters of Argan. Sustainability. 2022; 14(12):7270. https://doi.org/10.3390/su14127270
Chicago/Turabian StyleEl Moussaoui, Hassan, and Laila Bouqbis. 2022. "Interactive Effect of Biochar and Bio-Compost on Starting Growth and Physiologic Parameters of Argan" Sustainability 14, no. 12: 7270. https://doi.org/10.3390/su14127270
APA StyleEl Moussaoui, H., & Bouqbis, L. (2022). Interactive Effect of Biochar and Bio-Compost on Starting Growth and Physiologic Parameters of Argan. Sustainability, 14(12), 7270. https://doi.org/10.3390/su14127270