Biomonitoring Potentially Toxic Elements (PTEs) Using Lichen Transplant Usnea misaminensis: A Case Study from Malaysia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection and Preparation
2.2. Sample Exposure
2.3. Analysis Procedure for Elements
2.4. Lichen’s Vitality Rate Measurement
2.5. Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- United Nations. 68% of the World Population Projected to Live in Urban Areas by 2050, Says UN|UN DESA|United Nations Department of Economic and Social Affairs. United Nations News, 2–5. 2018. Available online: https://www.un.org/development/desa/en/news/population/2018-revision-of-world-urbanization-prospects.html (accessed on 13 April 2021).
- Halim, N.D.A.; Latif, M.T.; Mohamed, A.F.; Maulud, K.N.A.; Idrus, S.; Azhari, A.; Othman, M.; Sofwan, N.M. Spatial assessment of land use impact on air quality in mega urban regions, Malaysia. Sustain. Cities Soc. 2020, 63, 102436. [Google Scholar] [CrossRef]
- Hanif, N.M.; Hawari, N.S.S.L.; Othman, M.; Abd Hamid, H.H.; Ahamad, F.; Uning, R.; Ooi, M.C.G.; Wahab, M.I.A.; Sahani, M.; Latif, M.T. Ambient volatile organic compounds in tropical environments: Potential sources, composition and impacts—A review. Chemosphere 2021, 285, 131355. [Google Scholar] [CrossRef] [PubMed]
- Suradi, H.; Khan, M.F.; Sairi, N.A.; Rahim, H.A.; Yusoff, S.; Fujii, Y.; Qin, K.; Bari, M.; Othman, M.; Latif, M.T. Ambient levels, emission sources and health effect of pm2.5-bound carbonaceous particles and polycyclic aromatic hydrocarbons in the city of Kuala Lumpur, Malaysia. Atmosphere 2021, 12, 549. [Google Scholar] [CrossRef]
- Rosehan, N.S.; Abas, A.; Aiyub, K. Systematic review on urban ecosystem services in south-east asia: Asean countries. Prob. Ekorozwoju 2022, 17, 256–266. [Google Scholar] [CrossRef]
- Zaman, N.A.F.K.; Kanniah, K.D.; Kaskaoutis, D.G.; Latif, M.T. Evaluation of machine learning models for estimating pm2.5 concentrations across Malaysia. Appl. Sci. 2021, 11, 7326. [Google Scholar] [CrossRef]
- Qadeer, A.; Saqib, Z.A.; Ajmal, Z.; Xing, C.; Khalil, S.K.; Usman, M.; Huang, Y.; Bashir, S.; Ahmad, Z.; Ahmed, S.; et al. Concentrations, pollution indices and health risk assessment of heavy metals in road dust from two urbanized cities of Pakistan: Comparing two sampling methods for heavy metals concentration. Sustain. Cities Soc. 2019, 53, 101959. [Google Scholar] [CrossRef]
- Fry, K.L.; Gillings, M.M.; Isley, C.F.; Gunkel-Grillon, P.; Taylor, M.P. Trace element contamination of soil and dust by a New Caledonian ferronickel smelter: Dispersal, enrichment, and human health risk. Environ. Pollut. 2021, 288, 117593. [Google Scholar] [CrossRef]
- Soltani, N.; Keshavarzi, B.; Moore, F.; Cave, M.; Sorooshian, A.; Mahmoudi, M.R.; Ahmadi, M.R.; Golshani, R. In vitro bioaccessibility, phase partitioning, and health risk of potentially toxic elements in dust of an iron mining and industrial complex. Ecotoxicol. Environ. Saf. 2021, 212, 111972. [Google Scholar] [CrossRef]
- Jeong, H.; Choi, J.Y.; Ra, K. Potentially toxic elements pollution in road deposited sediments around the active smelting industry of Korea. Sci. Rep. 2021, 11, 7238. [Google Scholar] [CrossRef]
- Abas, A.; Awang, A.; Din, L. Liken Khazanah Hidupan Terasing; Penerbit UKM: Bangi, Malaysia, 2018. [Google Scholar]
- Abas, A. A systematic review on biomonitoring using lichen as the biological indicator: A decade of practices, progress and challenges. Ecol. Indic. 2021, 121, 107197. [Google Scholar] [CrossRef]
- Bačkor, M.; Loppi, S. Interactions of lichens with heavy metals. Biol. Plant. 2009, 53, 214–222. [Google Scholar] [CrossRef]
- Abas, A.; Awang, A. Air pollution assessment using lichen biodiversity index (LBI) in Kuala Lumpur, Malaysia. Poll. Res. 2017, 36, 242–249. [Google Scholar]
- Root, H.T.; Jovan, S.; Fenn, M.; Amacher, M.; Hall, J.; Shaw, J.D. Lichen bioindicators of nitrogen and sulfur deposition in dry forests of Utah and New Mexico, USA. Ecol. Indic. 2021, 127, 107727. [Google Scholar] [CrossRef]
- Klimek, B.; Tarasek, A.; Hajduk, J. Trace element concentrations in lichens collected in the beskidy mountains, the outer western carpathians. Bull. Environ. Contam. Toxicol. 2015, 94, 532–536. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abas, A.; Awang, A.; Aiyub, K. Lichen as bio-indicator for air pollution in Klang, Selangor. Poll. Res. 2018, 37, 35–39. [Google Scholar]
- Boonpeng, C.; Polyiam, W.; Sriviboon, C.; Sangiamdee, D.; Watthana, S.; Nimis, P.; Boonpragob, K. Airborne trace elements near a petrochemical industrial complex in Thailand assessed by the lichen Parmotrema tinctorum (Despr. ex Nyl.) Hale. Environ. Sci. Pollut. Res. 2017, 24, 12393–12404. [Google Scholar] [CrossRef]
- Abas, A.; Awang, A.; Aiyub, K. Analysis of heavy metal concentration using transplanted lichen Usnea misaminensis at Kota Kinabalu, Sabah (Malaysia). Appl. Ecol. Environ. Res. 2020, 18, 1175–1182. [Google Scholar] [CrossRef]
- Boonpeng, C.; Sriviboon, C.; Polyiam, W.; Sangiamdee, D.; Watthana, S.; Boonpragob, K. Assessing atmospheric pollution in a petrochemical industrial district using a lichen-air quality index (LiAQI). Ecol. Indic. 2018, 95, 589–594. [Google Scholar] [CrossRef]
- Pinho, P.; Augusto, S.; Branquinho, C.; Bio, A.; Pereira, M.J.; Soares, A.; Catarino, F. Mapping lichen diversity as a first step for air quality assessment. J. Atmos. Chem. 2004, 49, 377–389. [Google Scholar] [CrossRef]
- Bozkurt, Z. Determination of airborne trace elements in an urban area using lichens as biomonitor. Environ. Monit. Assess. 2017, 189, 573. [Google Scholar] [CrossRef]
- Abas, A.; Mazlan, S.M.; Latif, M.T.; Aiyub, K.; Muhammad, N.; Nadzir, M.S.M. Lichens reveal the quality of indoor air in Selangor, Malaysia. Ecol. Proc. 2021, 10, 3. [Google Scholar] [CrossRef]
- Protano, C.; Owczarek, M.; Antonucci, A.; Guidotti, M.; Vitali, M. Assessing indoor air quality of school environments: Transplanted lichen Pseudevernia furfuracea as a new tool for biomonitoring and bioaccumulation. Environ. Monit. Assess. 2017, 189, 358. [Google Scholar] [CrossRef] [PubMed]
- Bari, A.; Rosso, A.; Minciardi, M.R.; Troiani, F.; Piervittori, R. Analysis of heavy metals in atmospheric particulates in relation to their bioaccumulation in explanted Pseudevernia furfuracea thalli. Environ. Monit. Assess. 2001, 69, 205–220. [Google Scholar] [CrossRef] [PubMed]
- Nannoni, F.; Santolini, R.; Protano, G. Heavy element accumulation in Evernia prunastri lichen transplants around a municipal solid waste landfill in central Italy. Waste Manag. 2015, 43, 353–362. [Google Scholar] [CrossRef]
- Paoli, L.; Maccelli, C.; Guarnieri, M.; Vannini, A.; Loppi, S. Lichens “travelling” in smokers’ cars are suitable biomonitors of indoor air quality. Ecol. Indic. 2019, 103, 576–580. [Google Scholar] [CrossRef]
- Frati, L.; Brunialti, G.; Loppi, S. Problems related to lichen transplants to monitor trace element deposition in repeated surveys: A case study from central Italy. J. Atmos. Chem. 2005, 52, 221–230. [Google Scholar] [CrossRef]
- Bajpai, R.; Upreti, D. Accumulation and toxic effect of arsenic and other heavy metals in a contaminated area of West Bengal, India, in the lichen Pyxine cocoes (Sw.) Nyl. Ecotoxicol. Environ. Saf. 2012, 83, 63–70. [Google Scholar] [CrossRef]
- Kurnaz, K.; Cobanoglu, G. Biomonitoring of air quality in Istanbul Metropolitan Territory with epiphytic lichen Physcia adscendens (Fr.) Olivier. Fresen. Environ. Bull. 2017, 26, 7296–7308. [Google Scholar]
- Yemets, O.A.; Solhaug, K.A.; Gauslaa, Y. Spatial dispersal of airborne pollutants and their effects on growth and viability of lichen transplants along a rural highway in Norway. Lichenologist 2014, 46, 809–823. [Google Scholar] [CrossRef]
- Garty, J. Biomonitoring atmospheric heavy metals with lichens: Theory and Application. Crit. Rev. Plant Sci. 2001, 20, 309–371. [Google Scholar] [CrossRef]
- Sujetovienė, G. Monitoring lichen as indicators of atmospheric quality. In Recent Advances in Lichenology; Upreti, D., Divakar, P., Shukla, V., Bajpai, R., Eds.; Springer: New Delhi, India, 2015; pp. 87–118. [Google Scholar]
- Ratier, A.; Dron, J.; Revenko, G.; Austruy, A.; Dauphin, C.-E.; Chaspoul, F.; Wafo, E. Characterization of atmospheric emission sources in lichen from metal and organic contaminant patterns. Environ. Sci. Pollut. Res. 2018, 25, 8364–8379. [Google Scholar] [CrossRef] [PubMed]
- Boamponsem, L.K.; Freitas, C.R.D.; Williams, D. Source apportionment of air pollutants in the Greater Auckland Region of New Zealand using receptor models and elemental levels in the lichen, Parmotrema reticulatum. Atmos. Pollut. Res. 2017, 8, 101–113. [Google Scholar] [CrossRef]
- Aguilera, A.; Bautista, F.; Gutiérrez-Ruiz, M.; Ceniceros-Gómez, A.E.; Cejudo, R.; Goguitchaichvili, A. Heavy metal pollution of street dust in the largest city of Mexico, sources and health risk assessment. Environ. Monit. Assess. 2021, 193, 193. [Google Scholar] [CrossRef] [PubMed]
- Alias, A.; Nadzir, M.S.M.; Latif, M.T.; Khan, M.F.; Hamid, H.H.A.; Sahani, M.; Wahab, M.I.A.; Othman, M.; Mohamed, F.; Mohamad, N.; et al. The concentration of particulate matters in mechanically ventilated school classroom during haze episode in Kuala Lumpur City Centre. Air Qual. Atmos. Health 2021, 1–17. [Google Scholar] [CrossRef]
- Briffa, J.; Sinagra, E.; Blundell, R. Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon 2020, 6, e04691. [Google Scholar] [CrossRef]
- Azis, M.N.; Abas, A. The determinant factors for macroinvertebrate assemblages in a recreational river in Negeri Sembilan, Malaysia. Environ. Monit. Assess. 2021, 193, 394. [Google Scholar] [CrossRef]
- Vieira, B.J.; Freitas, M.C.; Wolterbeek, H.T. Vitality assessment of exposed lichens along different altitudes. Influence of weather conditions. Environ. Sci. Pollut. Res. Int. 2017, 24, 11991–11997. [Google Scholar] [CrossRef]
Sampling Stations | Kuala Lumpur (Coordinate) | Johor Bahru (Coordinate) | Penang (Coordinate) |
---|---|---|---|
1 | 3°08′47.4″ N 101°42′43.5″ E | 1°32′59.5″ N 103°42′46.0″ E | 5°25′52.4″ N 100°18′42.7″ E |
2 | 3°08′44.6″ N 101°41′58.3″ E | 1°31′50.4″ N 103°44′52.4″ E | 5°27′15.3″ N 100°17′40.1″ E |
3 | 3°09′02.0″ N 101°41′34.2″ E | 1°32′19.9″ N 103°47′08.2″ E | 5°23′55.7″ N 100°18′30.2″ E |
4 | 3°07′54.9″ N 101°40′19.8″ E | 1°31′22.1″ N 103°45′48.2″ E | 5°22′49.1″ N 100°18′28.1″ E |
5 | 3°06′56.3″ N 101°40′40.3″ E | 1°30′13.0″ N 103°41′36.2″ E | 5°21′25.9″ N 100°18′37.8″ E |
6 | 3°06′18.7″ N 101°41′38.1″ E | 1°30′57.8″ N 103°43′21.0″ E | 5°19′53.7″ N 100°17′47.5″ E |
7 | 3°06′52.7″ N 101°43′39.7″ E | 1°29′24.5″ N 103°43′58.4″ E | 5°17′39.7″ N 100°15′23.6″ E |
8 | 3°07′08.0″ N 101°42′59.3″ E | 1°29′19.8″ N 103°44′26.6″ E | 5°17′11.7″ N 100°14′11.1″ E |
9 | 3°08′11.3″ N 101°43′10.3″ E | 1°27′58.1″ N 103°45′39.3″ E | 5°21′18.7″ N 100°16′17.1″ E |
10 | 3°07′59.9″ N 101°41′41.0″ E | 1°29′44.9″ N 103°46′58.4″ E | 5°21′02.5″ N 100°14′05.3″ E |
Control (n = 3) | Kuala Lumpur (n = 10) | Johor Bahru (n = 10) | Penang (n = 10) | ||
---|---|---|---|---|---|
Elements (µg/g) | Al | 15.87 ± 0.18 | 32.73 ± 0.24 | 39.55 ± 0.71 | 27.19 ± 0.19 |
Ba | 0.29 ± 0.001 | 1.22 ± 0.0012 | 0.98 ± 0.0009 | 0.82 ± 0.002 | |
Ca | 5.12 ± 0.02 | 11.34 ± 0.17 | 9.13 ± 0.21 | 13.32 ± 0.11 | |
Cd | 0.008 ± 0.001 | 0.029 ± 0.0001 | 0.022 ± 0.0002 | 0.019 ± 0.0001 | |
Co | 0.09 ± 0.001 | 0.17 ± 0.003 | 0.13 ± 0.002 | 0.11± 0.002 | |
Cr | 0.24 ± 0.02 | 0.59 ± 0.06 | 0.57 ± 0.05 | 0.61 ± 0.02 | |
Cu | 0.54 ± 0.01 | 1.44 ± 0.08 | 1.03 ± 0.02 | 1.17 ± 0.02 | |
Fe | 11.09 ± 0.31 | 22.01 ± 0.22 | 18.77 ± 0.11 | 24.89 ± 0.19 | |
K | 10.18 ± 0.22 | 23.81 ± 0.58 | 27.34 ± 0.43 | 20.19 ± 0.1 | |
La | 1.88 ± 0.023 | 4.44 ± 0.09 | 3.78 ± 0.08 | 2.33 ± 0.02 | |
Mg | 3.47 ± 0.015 | 7.22 ± 0.001 | 6.91 ± 0.008 | 5.02 ± 0.001 | |
Mn | 0.46 ± 0.001 | 1.18 ± 0.0002 | 0.97 ± 0.0001 | 0.87 ± 0.0001 | |
Na | 2.71 ± 0.018 | 4.11 ± 0.006 | 3.31 ± 0.003 | 4.09 ± 0.004 | |
Ni | 0.09 ± 0.001 | 0.21 ± 0.008 | 0.20 ± 0.006 | 0.19 ± 0.001 | |
Pb | 0.98 ± 0.001 | 2.44 ± 0.0051 | 2.12 ± 0.004 | 2.32 ± 0.007 | |
Rb | 0.045 ± 0.001 | 0.082 ± 0.0003 | 0.065 ± 0.0004 | 0.088 ± 0.0002 | |
S | 6.67 ± 0.023 | 11.88 ± 0.051 | 10.92 ± 0.048 | 9.63 ± 0.022 | |
Sb | 0.002 ± 0.0001 | 0.005 ± 0.0001 | 0.003 ± 0.0001 | 0.002 ± 0.0001 | |
Sm | 0.003 ± 0.0001 | 0.007 ± 0.0001 | 0.006 ± 0.0002 | 0.006 ± 0.0001 | |
Sr | 0.082 ± 0.0001 | 0.111 ± 0.0023 | 0.152 ± 0.0011 | 0.1019 ± 0.0018 | |
Tb | 0.0004 ± 0.0001 | 0.0009 ± 0.0001 | 0.0006 ± 0.0001 | 0.0007 ± 0.0001 | |
Th | 0.068 ± 0.0001 | 0.133 ± 0.072 | 0.129 ± 0.052 | 0.0944 ± 0.022 | |
Ti | 6.81 ± 0.007 | 10.98 ± 0.025 | 9.33 ± 0.017 | 8.54 ± 0.022 | |
V | 0.042 ± 0.0001 | 0.103 ± 0.0001 | 0.096 ± 0.0001 | 0.0877 ± 0.0001 | |
Zn | 2.11 ± 0.019 | 3.98 ± 0.021 | 4.56 ± 0.019 | 4.03 ± 0.020 | |
Vitality Rate | FV/FM | 0.81 ± 0.0003 | 0.244 ± 0.0001 | 0.399 ± 0.0002 | 0.222 ± 0.0012 |
PIABS | 0.172 ± 0.0003 | 0.2289 ± 0.0002 | 0.2176 ± 0.0003 | 0.2199 ± 0.0001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abas, A.; Aiyub, K.; Awang, A. Biomonitoring Potentially Toxic Elements (PTEs) Using Lichen Transplant Usnea misaminensis: A Case Study from Malaysia. Sustainability 2022, 14, 7254. https://doi.org/10.3390/su14127254
Abas A, Aiyub K, Awang A. Biomonitoring Potentially Toxic Elements (PTEs) Using Lichen Transplant Usnea misaminensis: A Case Study from Malaysia. Sustainability. 2022; 14(12):7254. https://doi.org/10.3390/su14127254
Chicago/Turabian StyleAbas, Azlan, Kadaruddin Aiyub, and Azahan Awang. 2022. "Biomonitoring Potentially Toxic Elements (PTEs) Using Lichen Transplant Usnea misaminensis: A Case Study from Malaysia" Sustainability 14, no. 12: 7254. https://doi.org/10.3390/su14127254