Characterizing the Spatiotemporal Patterns and Key Determinants of Homestay Industry Agglomeration in Rural China Using Multi Geospatial Datasets
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Source
2.3. Methods
2.3.1. Mapping Rural Settlement Changes
2.3.2. Spatiotemporal Pattern Analysis of Rural Homestay Inns
2.3.3. Identifying Key Determinants of the Spatiotemporal Patterns of Rural Homestay Inns
- (1)
- Identifying key determinants of the quantity growth of rural homestay inns
- (2)
- Identifying key determinants of the spatial evolution of rural homestay inns
3. Results
3.1. Rural Settlement Changes
3.2. Spatiotemporal Patterns of Rural Homestay Inns
3.2.1. Quantity Growth of Rural Homestay Inns
3.2.2. Spatial Evolution of Rural Homestay Inns
3.3. Multidimensional Determinants of the Spatiotemporal Patterns of Rural Homestay Inns
3.3.1. Key Determinants of the Quantity Growth of Rural Homestay Inns
3.3.2. Key Determinants of the Spatial Evolution of Rural Homestay Inns
4. Discussion
4.1. Strengths of the Research Framework
4.2. Spatiotemporal Patterns of Rural Settlements and Homestay Inns
4.3. Multidimensional Determinants of the Spatiotemporal Patterns
4.4. Implications for This Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, Y.; Li, Y. Revitalize the World’s Countryside. Nature 2017, 548, 275–277. [Google Scholar] [CrossRef] [PubMed]
- Long, F.; Liu, J.; Zhu, H.; Li, T. Spatial Distribution of Homestay and Its Influencing Factors in the Yangtze River Delta of China. Geogr. Res. 2019, 38, 950–960. [Google Scholar] [CrossRef]
- Yang, J.; Yang, R.; Chen, M.H.; Su, C.H.; Zhi, Y.; Xi, J. Effects of Rural Revitalization on Rural Tourism. J. Hosp. Tour. Manag. 2021, 47, 35–45. [Google Scholar] [CrossRef]
- Gao, J.; Wu, B. Revitalizing Traditional Villages through Rural Tourism: A Case Study of Yuanjia Village, Shaanxi Province, China. Tour. Manag. 2017, 63, 223–233. [Google Scholar] [CrossRef]
- Yu, P.; Zhang, J.; Wang, Y.; Wang, C.; Zhang, H. Can Tourism Development Enhance Livelihood Capitals of Rural Households? Evidence from Huangshan National Park Adjacent Communities, China. Sci. Total Environ. 2020, 748, 141099. [Google Scholar] [CrossRef] [PubMed]
- Guo, J. Blue Book of Homestay: Annual Report on Homestay in China (2019); Social Science Literature Press: Beijing, China, 2020. [Google Scholar]
- Jones, D.L.; Guan, J.J. Bed and Breakfast Lodging Development in Mainland China: Who Is the Potential Customer? Asia Pac. J. Tour. Res. 2011, 16, 517–536. [Google Scholar] [CrossRef]
- Liu, F.; Wu, X.; Xu, J.; Chen, D. Examining Cultural Intelligence, Heritage Responsibility, and Entrepreneurship Performance of Migrant Homestay Inn Entrepreneurs: A Case Study of Hongcun Village in China. J. Hosp. Tour. Manag. 2021, 48, 538–550. [Google Scholar] [CrossRef]
- Ministry of Culture and Tourism of PRC. Basic Requirements and Evaluation for Homestay Inn; Ministry of Culture and Tourism of PRC: Beijing, China, 2019. [Google Scholar]
- Ahmad, S.Z.; Jabeen, F.; Khan, M. Entrepreneurs Choice in Business Venture: Motivations for Choosing Home-Stay Accommodation Businesses in Peninsular Malaysia. Int. J. Hosp. Manag. 2014, 36, 31–40. [Google Scholar] [CrossRef]
- Gao, C.; Cheng, L. Tourism-Driven Rural Spatial Restructuring in the Metropolitan Fringe: An Empirical Observation. Land Use Policy 2020, 95, 104609. [Google Scholar] [CrossRef]
- Kamisan Pusiran, A.; Xiao, H. Challenges and Community Development: A Case Study of Homestay in Malaysia. Asian Soc. Sci. 2013, 9, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Tsai, K.T.; Lin, T.P.; Hwang, R.L.; Huang, Y.J. Carbon Dioxide Emissions Generated by Energy Consumption of Hotels and Homestay Facilities in Taiwan. Tour. Manag. 2014, 42, 13–21. [Google Scholar] [CrossRef]
- Li, J.; Bai, Y.; Alatalo, J.M. Impacts of Rural Tourism-Driven Land Use Change on Ecosystems Services Provision in Erhai Lake Basin, China. Ecosyst. Serv. 2020, 42, 101081. [Google Scholar] [CrossRef]
- Zhang, H.; Lu, L.; Zhang, D.; Yu, H.; Zhang, X. Spatial Pattern and Contributing Factors of Homestay Inns in the Area around Mogan Mountain. Geogr. Res. 2019, 38, 2695–2715. [Google Scholar] [CrossRef] [Green Version]
- Yanwu, C.; Wei, F. Spatial Relations and Coordinated Development of Characteristic Villages and A-Level Scenic Spots in Guangxi. Trib. Tour. 2020, 35, 113–126. [Google Scholar] [CrossRef]
- Yoshimura, N.; Hiura, T. Demand and Supply of Cultural Ecosystem Services: Use of Geotagged Photos to Map the Aesthetic Value of Landscapes in Hokkaido. Ecosyst. Serv. 2017, 24, 68–78. [Google Scholar] [CrossRef]
- Jiao, J.; Bai, S. An Empirical Analysis of Airbnb Listings in Forty American Cities. Cities 2020, 99, 102618. [Google Scholar] [CrossRef]
- Fan, T.; Guo, N.; Ren, Y. Consumer Clusters Detection with Geo-Tagged Social Network Data Using DBSCAN Algorithm: A Case Study of the Pearl River Delta in China. GeoJournal 2021, 86, 317–337. [Google Scholar] [CrossRef]
- Lin, Y.; Chen, X.; Huang, L.; Zhu, C.; Shahtahmassebi, A.R.; Zhang, J.; Shen, S.; Peng, R.; Deng, J.; Wang, K.; et al. Fine-Scale Mapping of Urban Ecosystem Service Demand in a Metropolitan Context: A Population-Income-Environmental Perspective. Sci. Total Environ. 2021, 781, 146784. [Google Scholar] [CrossRef]
- Adamiak, C. Mapping Airbnb Supply in European Cities. Ann. Tour. Res. 2018, 71, 67–71. [Google Scholar] [CrossRef]
- Domènech, A.; Zoğal, V. Geographical Dimensions of Airbnb in Mountain Areas: The Case of Andorra. J. Rural Stud. 2020, 79, 361–372. [Google Scholar] [CrossRef]
- Gyódi, K. Airbnb in European Cities: Business as Usual or True Sharing Economy? J. Clean. Prod. 2019, 221, 536–551. [Google Scholar] [CrossRef]
- Adamiak, C. Current State and Development of Airbnb Accommodation Offer in 167 Countries. Curr. Issues Tour. 2019. [Google Scholar] [CrossRef] [Green Version]
- Lagonigro, R.; Martori, J.C.; Apparicio, P. Understanding Airbnb Spatial Distribution in a Southern European City: The Case of Barcelona. Appl. Geogr. 2020, 115, 102136. [Google Scholar] [CrossRef]
- Adamiak, C.; Szyda, B.; Dubownik, A.; García-Álvarez, D. Airbnb Offer in Spain-Spatial Analysis of the Pattern and Determinants of Its Distribution. ISPRS Int. J. Geo-Inf. 2019, 8, 155. [Google Scholar] [CrossRef] [Green Version]
- Rosalina, P.D.; Dupre, K.; Wang, Y. Rural Tourism: A Systematic Literature Review on Definitions and Challenges. J. Hosp. Tour. Manag. 2021, 47, 134–149. [Google Scholar] [CrossRef]
- Ma, X.; Jin, Y. The Characteristics and Mechanism of Land Selection under Zhangjiajie Tourism Development. Areal Res. Dev. 2016, 35, 127–131. [Google Scholar]
- Gutiérrez, J.; García-Palomares, J.C.; Romanillos, G.; Salas-Olmedo, M.H. The Eruption of Airbnb in Tourist Cities: Comparing Spatial Patterns of Hotels and Peer-to-Peer Accommodation in Barcelona. Tour. Manag. 2017, 62, 278–291. [Google Scholar] [CrossRef] [Green Version]
- Zhou, L.; Wall, G.; Zhang, D.; Cheng, X. Tourism and the (Re)Making of Rural Places: The Cases of Two Chinese Villages. Tour. Manag. Perspect. 2021, 40, 100910. [Google Scholar] [CrossRef]
- Zhou, L.; Chan, E.; Song, H. Social Capital and Entrepreneurial Mobility in Early-Stage Tourism Development: A Case from Rural China. Tour. Manag. 2017, 63, 338–350. [Google Scholar] [CrossRef]
- Li, Y.; Westlund, H.; Zheng, X.; Liu, Y. Bottom-up Initiatives and Revival in the Face of Rural Decline: Case Studies from China and Sweden. J. Rural Stud. 2016, 47, 506–513. [Google Scholar] [CrossRef]
- Liu, R. The State-Led Tourism Development in Beijing’s Ecologically Fragile Periphery: Peasants’ Response and Challenges. Habitat Int. 2020, 96, 102119. [Google Scholar] [CrossRef]
- Liu, C.; Dou, X.; Li, J.; Cai, L.A. Analyzing Government Role in Rural Tourism Development: An Empirical Investigation from China. J. Rural Stud. 2020, 79, 177–188. [Google Scholar] [CrossRef]
- Hall, C.M. The Role of Government in the Management of Tourism: The Public Sector and Tourism Policies; Sage Publications: Thousand Oaks, CA, USA, 2005; ISBN 9781446214961. [Google Scholar]
- Yang, Y.; Mao, Z. Location Advantages of Lodging Properties: A Comparison between Hotels and Airbnb Units in an Urban Environment. Ann. Tour. Res. 2020, 81, 102861. [Google Scholar] [CrossRef]
- Rymarzak, M.; Siemińska, E. Factors Affecting the Location of Real Estate. J. Corp. Real Estate 2012, 14, 214–225. [Google Scholar] [CrossRef]
- Wang, C.; Lv, J.; Xu, Q.; Yang, G.; Fei, M. Research on Homestay Inns of Deqing, Zhejiang Province: A Case Study of French Mountain Homestay. In China Tourism Homestay Development Report (2019); Social Science Literature Press: Beijing, China, 2019. [Google Scholar]
- Zhang, H.; Lu, L.; Sun, F. Changing Role of Lifestyle in Tourism Entrepreneurship: Case Study of Naked Retreats Enterprise. Tour. Manag. 2021, 84, 104259. [Google Scholar] [CrossRef]
- Shu, B.; Ma, J. Evolution and Trend of Rural Tourism Policy System in China: An Empirical Analysis Based on 30 Years Data. Agric. Econ. Probl. 2019, 94–107. [Google Scholar] [CrossRef]
- Erwig, M. Toward Spatio-Temporal Patterns. In Spatio-Temporal Databases; Springer: Berlin/Heidelberg, Germany, 2004; pp. 29–53. [Google Scholar]
- Hu, Y.; Wang, F.; Guin, C.; Zhu, H. A Spatio-Temporal Kernel Density Estimation Framework for Predictive Crime Hotspot Mapping and Evaluation. Appl. Geogr. 2018, 99, 89–97. [Google Scholar] [CrossRef]
- Silverman, B.W. Density Estimation for Statistics and Data Analysis; Routledge: New York, NY, USA, 2018. [Google Scholar]
- Xie, Z.; Yan, J. Detecting Traffic Accident Clusters with Network Kernel Density Estimation and Local Spatial Statistics: An Integrated Approach. J. Transp. Geogr. 2013, 31, 64–71. [Google Scholar] [CrossRef]
- Ord, J.K.; Getis, A. Local Spatial Autocorrelation Statistics: Distributional Issues and an Application. Geogr. Anal. 1995, 27, 286–306. [Google Scholar] [CrossRef]
- Anselin, L. Local Indicators of Spatial Association—LISA. Geogr. Anal. 1995, 27, 93–115. [Google Scholar] [CrossRef]
- Kuo, P.-F.; Zeng, X.; Lord, D. Guidelines for Choosing Hot-Spot Analysis Tools Based on Data Characteristics, Network Restrictions, and Time Distributions. In Proceedings of the 91 Annual Meeting of the Transportation Research Board, Washington, DC, USA, 22–26 January 2012. [Google Scholar]
- Huang, L.; Wu, Y.; Zheng, Q.; Zheng, Q.; Zheng, X.; Gan, M.; Wang, K.; Shahtahmassebi, A.R.; Deng, J.; Wang, J.; et al. Quantifying the Spatiotemporal Dynamics of Industrial Land Uses through Mining Free Access Social Datasets in the Mega Hangzhou Bay Region, China. Sustainability 2018, 10, 3463. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Heuvelink, G.B.M.; Bai, Z.; He, P.; Xu, X.; Ding, W.; Huang, S. Analysis of Spatio-Temporal Variation of Crop Yield in China Using Stepwise Multiple Linear Regression. Field Crops Res. 2021, 264, 108098. [Google Scholar] [CrossRef]
- Truchet, S.; Piguet, V.; Aubert, F.; Callois, J.M. Spatial Influence of Attractions on Tourism Development. Tour. Geogr. 2016, 18, 539–560. [Google Scholar] [CrossRef] [Green Version]
- Kerebel, A.; Gélinas, N.; Déry, S.; Voigt, B.; Munson, A. Landscape Aesthetic Modelling Using Bayesian Networks: Conceptual Framework and Participatory Indicator Weighting. Landsc. Urban Plan. 2019, 185, 258–271. [Google Scholar] [CrossRef]
- Komossa, F.; van der Zanden, E.H.; Schulp, C.J.E.; Verburg, P.H. Mapping Landscape Potential for Outdoor Recreation Using Different Archetypical Recreation User Groups in the European Union. Ecol. Indic. 2018, 85, 105–116. [Google Scholar] [CrossRef] [Green Version]
- Faggi, A.; Breuste, J.; Madanes, N.; Gropper, C.; Perelman, P. Water as an Appreciated Feature in the Landscape: A Comparison of Residents’ and Visitors’ Preferences in Buenos Aires. J. Clean. Prod. 2013, 60, 182–187. [Google Scholar] [CrossRef]
- Nainggolan, D.; de Vente, J.; Boix-Fayos, C.; Termansen, M.; Hubacek, K.; Reed, M.S. Afforestation, Agricultural Abandonment and Intensification: Competing Trajectories in Semi-Arid Mediterranean Agro-Ecosystems. Agric. Ecosyst. Environ. 2012, 159, 90–104. [Google Scholar] [CrossRef]
- Su, B. Rural Tourism in China. Tour. Manag. 2011, 32, 1438–1441. [Google Scholar] [CrossRef]
- Cunha, C.; Kastenholz, E.; Carneiro, M.J. Entrepreneurs in Rural Tourism: Do Lifestyle Motivations Contribute to Management Practices That Enhance Sustainable Entrepreneurial Ecosystems? J. Hosp. Tour. Manag. 2020, 44, 215–226. [Google Scholar] [CrossRef]
- Walter, P.; Regmi, K.D.; Khanal, P.R. Host Learning in Community-Based Ecotourism in Nepal: The Case of Sirubari and Ghalegaun Homestays. Tour. Manag. Perspect. 2018, 26, 49–58. [Google Scholar] [CrossRef]
- Long, F.; Liu, J.; Zhang, S.; Yu, H.; Jiang, H. Development Characteristics and Evolution Mechanism of Homestay Agglomeration in Mogan Mountain, China. Sustainability 2018, 10, 2964. [Google Scholar] [CrossRef] [Green Version]
- Su, Y.; Qian, K.; Lin, L.; Wang, K.; Guan, T.; Gan, M. Identifying the Driving Forces of Non-Grain Production Expansion in Rural China and Its Implications for Policies on Cultivated Land Protection. Land Use Policy 2020, 92, 104435. [Google Scholar] [CrossRef]
- Dou, H. Xiantan Village: Great Mountain, Good Water, Nice Day. Available online: http://paper.people.com.cn (accessed on 10 August 2020).
- Guo, Q.; Yin, S.; Liu, Y.; Yan, F.; Jiang, H. Research on the Impact of Initial Resources and Social Capital on the Growth of Small Tourism Enterprises: A Case Study of the Hongcun Village. Tour. Trib. 2019, 34, 36–47. [Google Scholar] [CrossRef]
- Xu, F.; Hu, M.; La, L.; Wang, J.; Huang, C. The Influence of Neighbourhood Environment on Airbnb: A Geographically Weighed Regression Analysis. Tour. Geogr. 2020, 22, 192–209. [Google Scholar] [CrossRef]
- Long, F.; Dai, X.; Zhang, S. The Development Model of Homestay Tourism Agglomeration in Yangtze River Delta from the L-R-D Perspective. J. Nat. Resour. 2021, 36, 1302–1315. [Google Scholar] [CrossRef]
- Dramstad, W.E.; Tveit, M.S.; Fjellstad, W.J.; Fry, G.L.A. Relationships between Visual Landscape Preferences and Map-Based Indicators of Landscape Structure. Landsc. Urban Plan. 2006, 78, 465–474. [Google Scholar] [CrossRef]
- Khachatryan, H.; Rihn, A.; Hansen, G.; Clem, T. Landscape Aesthetics and Maintenance Perceptions: Assessing the Relationship between Homeowners’ Visual Attention and Landscape Care Knowledge. Land Use Policy 2020, 95, 104645. [Google Scholar] [CrossRef]
- Howley, P. Landscape Aesthetics: Assessing the General Publics’ Preferences towards Rural Landscapes. Ecol. Econ. 2011, 72, 161–169. [Google Scholar] [CrossRef]
- Arriaza, M.; Cañas-Ortega, J.F.; Cañas-Madueño, J.A.; Ruiz-Aviles, P. Assessing the Visual Quality of Rural Landscapes. Landsc. Urban Plan. 2004, 69, 115–125. [Google Scholar] [CrossRef]
- Lindemann-Matthies, P.; Briegel, R.; Schüpbach, B.; Junge, X. Aesthetic Preference for a Swiss Alpine Landscape: The Impact of Different Agricultural Land-Use with Different Biodiversity. Landsc. Urban Plan. 2010, 98, 99–109. [Google Scholar] [CrossRef]
Variable | Description | Sources |
---|---|---|
Government policy | ||
Gpolicy | Number of rural tourism policies issued by government | [40] |
Entrepreneurship and investment | ||
Einvest | Tertiary industry investment and funds from the private and individual economy | Zhejiang Statistical Yearbook |
Market demand | ||
Mdemand | Per capita consumption expenditure of urban residents | Zhejiang/Shanghai/Jiangsu/Anhui Statistical Yearbook |
Regional transportation facilities | ||
Troad | Area of urban roads | Zhejiang/Shanghai/Jiangsu/Anhui Statistical Yearbook |
Variable | Description | Sources |
---|---|---|
Topography | ||
Elevation | Elevation | DEM at 30 m spatial resolution |
Slope | Slope | DEM at 30 m spatial resolution |
Tourism resources | ||
N-HNSS | Number of historical and natural scenic spots | Number of historical and natural scenic spots |
Landscape aesthetics | ||
SWDI | Landscape diversity | Digital land use map at 1:10,000 scale |
LDI | Landscape dominance | Digital land use map at 1:10,000 scale |
Outdoor Recreation | ||
D-CL | Distance to the cultivated land | Digital land use map at 1:10,000 scale |
D-OL | Distance to the orchard land | Digital land use map at 1:10,000 scale |
Proximity | ||
D-CMNP | Distance to the core Moganshan National Park | Digital map of Moganshan National Park |
D-River | Distance to the nearest river | Digital land use map at 1:10,000 scale |
D-Road | Distance to the nearest road | Digital land use map at 1:10,000 scale |
Zone Type | Village | 2004 (ha) | 2019 (ha) | 2004–2019 (ha) |
---|---|---|---|---|
Core Zone | National Park | 15.2 | 15.6 | 0.4 |
Inner zone | Houwu (HW) | 32.3 | 37.1 | 4.8 |
Xiantan (XT) | 40.9 | 50.8 | 10.0 | |
Liaoyuan (LY) | 44.1 | 55.2 | 11.1 | |
Laoling (LL) | 28.7 | 35.1 | 6.4 | |
Ziling (ZL) | 17.7 | 22.1 | 4.4 | |
Miaoqian (MQ) | 18.0 | 20.2 | 2.2 | |
Periphery zone | Yaowu (YW) | 14.3 | 14.9 | 0.6 |
Dazaowu (DZW) | 17.9 | 19.3 | 1.4 | |
Nanlu (NL) | 48.3 | 52.8 | 4.5 | |
Sihe (SH) | 47.1 | 55.6 | 8.4 | |
Gaofeng (GF) | 29.6 | 39.9 | 10.3 | |
Hecun (HC) | 35.0 | 41.0 | 6.0 | |
Lanshukeng (LSK) | 26.1 | 27.5 | 1.4 | |
Fatou (FAT) | 37.5 | 56.6 | 19.2 | |
Fotang (FOT) | 26.1 | 28.3 | 2.1 | |
Dongshen (DS) | 27.8 | 30.5 | 2.7 | |
Qinlao (QL) | 20.5 | 25.9 | 5.4 | |
Shang aowu (SAW) | 29.3 | 30.8 | 1.5 | |
Sum | 556.2 | 659.0 | 102.8 |
Variables | Unstandardized Coefficient | t | Significant | Multicollinearity Analysis | ||
---|---|---|---|---|---|---|
B | Standard Error | Tolerance | VIF | |||
Intercept | −103.188 | 28.748 | −3.589 | 0.003 | ||
Government policy | 3.404 | 1.361 | 2.502 | 0.027 * | 0.19 | 5.274 |
Entrepreneurship and investment | 0.069 | 0.017 | 4.055 | 0.001 ** | 0.19 | 5.274 |
Variable | Regression Coefficient | Residual | p | Exp (β) |
---|---|---|---|---|
Elevation | 0.634 | 0.456 | 0.164 | 1.886 |
Slope | −0.275 | 0.345 | 0.426 | 0.76 |
N-HNSS | 1.828 | 0.863 | 0.034 * | 6.218 |
SWDI | −0.947 | 0.59 | 0.108 | 0.388 |
LDI | −1.283 | 0.618 | 0.038 * | 0.277 |
D-CL | −1.609 | 0.601 | 0.007 ** | 0.2 |
D-OL | −0.028 | 0.338 | 0.933 | 0.972 |
D-CMNP | −1.13 | 0.402 | 0.005 ** | 0.323 |
D-River | −0.702 | 0.305 | 0.021 * | 0.495 |
D-Road | −0.511 | 0.321 | 0.112 | 0.6 |
Constant parameter | −0.064 | 0.323 | 0.843 | 0.938 |
n | 100 | |||
PCP (%) | 81 | |||
H–L test P | 0.485 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, J.; Huang, L. Characterizing the Spatiotemporal Patterns and Key Determinants of Homestay Industry Agglomeration in Rural China Using Multi Geospatial Datasets. Sustainability 2022, 14, 7242. https://doi.org/10.3390/su14127242
Zheng J, Huang L. Characterizing the Spatiotemporal Patterns and Key Determinants of Homestay Industry Agglomeration in Rural China Using Multi Geospatial Datasets. Sustainability. 2022; 14(12):7242. https://doi.org/10.3390/su14127242
Chicago/Turabian StyleZheng, Jianzhuang, and Lingyan Huang. 2022. "Characterizing the Spatiotemporal Patterns and Key Determinants of Homestay Industry Agglomeration in Rural China Using Multi Geospatial Datasets" Sustainability 14, no. 12: 7242. https://doi.org/10.3390/su14127242
APA StyleZheng, J., & Huang, L. (2022). Characterizing the Spatiotemporal Patterns and Key Determinants of Homestay Industry Agglomeration in Rural China Using Multi Geospatial Datasets. Sustainability, 14(12), 7242. https://doi.org/10.3390/su14127242