Potential of Biomass Frond Fiber on Mechanical Properties of Green Foamed Concrete
Abstract
:1. Introduction
2. Methodology
2.1. Materials Preparation
2.2. Mix Design
2.3. Test Methods
2.3.1. Compression Test
2.3.2. Flexural Test
2.3.3. Splitting Tensile Test
3. Results and Discussion
3.1. Compressive Strength
3.2. Flexural Strength
3.3. Splitting Tensile Strength
3.4. Correlation between Compressive and Flexural Strengths
4. Conclusions
- Adding BFF into FC enhanced the compressive strength for all of the weight fractions used in this study when compared to the control FC specimen. The optimal result for compressive strength was attained with the inclusion of a 0.36% weight fraction of BFF. Beyond the optimal weight fraction of BFF, the accumulation and the non-homogeneous distribution of BFF were found, which resulted in a drop in compressive strength.
- The inclusion of BFF into FC enhanced its flexural strength for all the densities, irrespective of the BFF weight fraction used for the FC mixtures. The control FC specimen attained the lowest flexural strength, showing insignificant growth along with the testing age. The optimal weight fraction of BFF that gave the best results for the flexural strength was 0.36%. The presence of BFF in FC plays an important role in strengthening the FC cementitious matrix and modifying the material characteristics from the brittle to the ductile state.
- For the tensile strength, the same trend was found as that in which the addition of a 0.36% weight fraction of BFF led to the greatest results. The tensile strength was improved because of the higher FC robustness facilitated by BFF. Additionally, the presence of BFF enhances the ideal pozzolanic interactions with the cement, producing high-density FC. Beyond the optimal weight fraction of the BFF addition, accretion and the non-regular spreading of BFF were discovered, which resulted in a decrease in the tensile strength.
- This preliminary investigation will support future works on the development of more innovative, lighter-weight, low-cost, and environmentally friendly cement-based materials with the addition of natural biomass fibers in the building and construction sectors. The research on BFF-reinforced FC can be further expanded to assess the long-term durability properties, the engineering properties, and the thermal performance.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Arrigoni, A.; Panesar, D.K.; Duhamel, M.; Opher, T.; Saxe, S.; Posen, I.D.; MacLean, H.L. Life cycle greenhouse gas emissions of concrete containing supplementary cementitious materials: Cut-off vs. substitution. J. Clean. Prod. 2020, 263, 121465. [Google Scholar] [CrossRef]
- Zhao, X.; Hwang, B.G.; Lim, J. Job satisfaction of project managers in green construction projects: Constituents, barriers, and improvement strategies. J. Clean. Prod. 2020, 246, 118968. [Google Scholar] [CrossRef]
- Mydin, M.A.O. The effect of raw mesocarp fibre inclusion on the durability properties of lightweight foamed concrete. ASEAN J. Sci. Technol. Dev. 2021, 38, 59–66. [Google Scholar]
- Raj, A.; Sathyan, D.; Mini, K.M. Physical and functional characteristics of foam concrete: A review. Constr. Build. Mater. 2019, 221, 787–799. [Google Scholar] [CrossRef]
- Mohamad, N.; Iman, M.A.; Mydin, M.A.O.; Samad, A.A.A.; Rosli, J.A.; Noorwirdawati, A. Mechanical properties and flexure behaviour of lightweight foamed concrete incorporating coir fibre. IOP Conf. Ser. Earth Environ. Sci. 2018, 140, 012140. [Google Scholar] [CrossRef]
- Gencel, O.; Benli, A.; Bayraktar, O.Y.; Kaplan, G.; Sutcu, M.; Elabade, W.A.T. Effect of waste marble powder and rice husk ash on the microstructural, physicomechanical and transport properties of foam concrete exposed to high temperatures and freeze-thaw cycles. Constr. Build. Mater. 2021, 291, 123374. [Google Scholar] [CrossRef]
- Mydin, M.A.O.; Musa, M.; Ghani, A.N.A. Fiber glass strip laminates strengthened lightweight foamed concrete: Performance index, failure modes and microscopy analysis. AIP Conf. Proc. 2018, 2016, 020111. [Google Scholar]
- Serri, E.; Othuman Mydin, M.A.; Suleiman, M.Z. Thermal properties of Oil Palm Shell lightweight concrete with different mix designs. J. Teknol. 2014, 70, 155–159. [Google Scholar] [CrossRef]
- Zhang, Z.; Provis, J.L.; Reid, A.; Wang, H. Geopolymer foam concrete: An emerging material for sustainable construction. Constr Build Mater. 2014, 56, 113–127. [Google Scholar] [CrossRef]
- Mohd Zamzani, N.; Othuman Mydin, M.A.; Abdul Ghani, A.N. Mathematical regression models for prediction of durability properties of foamed concrete with the inclusion of coir fibre. Int. J. Eng. Adv. 2019, 8, 3353–3358. [Google Scholar] [CrossRef]
- Jones, M.R.; Zheng, L.; Ozlutas, K. Stability and instability of foamed concrete. Mag. Concr. Res. 2016, 68, 542–549. [Google Scholar] [CrossRef]
- Mydin, M.A.O. Preliminary studies on the development of lime-based mortar with added egg white. Int. J. Technol. 2017, 8, 800–810. [Google Scholar] [CrossRef]
- Norgaard, J.; Othuman Mydin, M.A. Drywall thermal properties exposed to high temperatures and fire condition. J. Teknol. 2013, 62, 63–68. [Google Scholar]
- Nensok, M.H.; Mydin, M.A.O.; Awang, H. Investigation of Thermal, Mechanical and Transport Properties of Ultra Lightweight Foamed Concrete (ULFC) Strengthened with Alkali Treated Banana Fibre. J. Adv. Res. Fluid Mech. Therm. Sci. 2021, 86, 123–139. [Google Scholar] [CrossRef]
- Serudin, A.M.; Othuman, M.A.M.; Ghani, A.N.A. Effect of lightweight foamed concrete confinement with woven fiberglass mesh on its drying shrinkage. Rev. Ing. Constr. 2021, 36, 21–28. [Google Scholar] [CrossRef]
- Serudin, A.M.; Mydin, M.A.O.; Ghani, A.N.A. Influence of Fibreglass Mesh on Physical Properties of Lightweight Foamcrete. IIUM Eng. J. 2021, 22, 23–34. [Google Scholar] [CrossRef]
- Dhasindrakrishna, K.; Pasupathy, K.; Ramakrishnan, S.; Sanjayan, J. Effect of yield stress development on the foam-stability of aerated geopolymer concrete. Cem. Concr. Res. 2020, 138, 106233. [Google Scholar] [CrossRef]
- Bediako, M.; Adobor, C.D.; Amankwah, E.O.; Nyako, K.; Kankam, C.K. Maximizing the sustainability of cement utilization in building projects through the use of greener materials. J. Eng. 2016, 2016, 1375493. [Google Scholar] [CrossRef]
- Mydin, M.A.O.; Nawi, M.N.M.; Munaaim, M.A.C.; Mohamed, O. A Study on the Influence of Oil Palm Trunk Fiber on Ultrasonic Pulse Velocity (UPV) and Shrinkage of Foamcrete. J. Adv. Res. Fluid Mech. Therm. Sci. 2020, 76, 111–117. [Google Scholar] [CrossRef]
- Mohd Zamzani, N.; Othuman Mydin, M.A.; Abdul Ghani, A.N. Influence of ‘Cocos Nucifera Linn’ fiber volume fraction on water absorption and porosity of foamed concrete. Int. J. Eng. Adv. Technol. 2019, 8, 3428–3435. [Google Scholar] [CrossRef]
- Musa, M.; Othuman Mydin, M.A.; Abdul Ghani, A.N. Influence of oil palm empty fruit bunch (EFB) fibre on drying shrinkage in restrained lightweight foamed mortar. Int. J. Innov. Technol. Exp. Eng. 2019, 8, 4533–4538. [Google Scholar]
- Kamaruddin, S.; Goh, W.I.; Jhatial, A.A.; Lakhiar, M.T. Chemical and fresh state properties of foamed concrete incorporating palm oil fuel ash and eggshell ash as cement replacement. Int. J. Eng. Technol. 2018, 7, 350–354. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, Z.; Fan, Z.; Gu, J. Study on properties of sisal fiber modified foamed concrete. IOP Conf. Ser. Mater. Sci. Eng. 2020, 744, 012042. [Google Scholar] [CrossRef]
- Nensok Hassan, M.; Othuman Mydin, M.A.; Awang, H. Fresh state and mechanical properties of ultra-lightweight foamed concrete incorporating alkali treated banana fibre. J. Teknol. 2022, 84, 117–128. [Google Scholar] [CrossRef]
- Flores-Johnson, E.A.; Yan, Y.Z.; Carrillo, J.G.; González-Chi, P.I.; Herrera-Franco, P.J.; Li, Q.M. Mechanical Characterization of Foamed Concrete Reinforced with Natural Fibre. Mater. Res. Proc. 2018, 7, 1–6. [Google Scholar]
- Amarnath, Y.; Ramachandrudu, C. Properties of Foamed Concrete with Sisal Fibre. In Proceedings of the 9th International Concrete Conference 2016: Environment, Efficiency and Economic Challenges for Concrete, University of Dundee, Dundee, UK, 4–6 July 2016. [Google Scholar]
- Raj, B.; Dhanya, S.; Mini, K.M.; Amritha, R. Mechanical and durability properties of hybrid fiber reinforced foam concrete. Constr. Build. Mater. 2020, 245, 118373. [Google Scholar] [CrossRef]
- BS 12; Specification for Portland Cement. British Standards Institute: London, UK, 1996.
- BS 882; Specification for Aggregates from Natural Sources for Concrete. British Standards Institute: London, UK, 1992.
- BS 12390-3; Testing Hardened Concrete. Compressive Strength of Test Specimens. British Standards Institute: London, UK, 2011.
- BS EN 12390-5; Testing Hardened Concrete. Flexural Strength of Test Specimens. British Standards Institute: London, UK, 2019.
- BS EN 12390-6; Testing Hardened Concrete. Tensile Splitting Strength of Test Specimens. British Standards Institute: London, UK, 2009.
- Zamzani, N.M.; Mydin, M.A.O.; Ghani, A.N.A. Effectiveness of ‘cocos nucifera linn’ fibre reinforcement on the drying shrinkage of lightweight foamed concrete. ARPN J. Eng. Appl. Sci. 2019, 14, 3932–3937. [Google Scholar]
- Suhaili, S.S.; Mydin, M.A.O.; Awang, H. Influence of Mesocarp Fibre Inclusion on Thermal Properties of Foamed Concrete. J. Adv. Res. Fluid Mech. Therm. Sci. 2021, 87, 1–11. [Google Scholar] [CrossRef]
- Elrahman, M.A.; El Madawy, M.E.; Chung, S.Y.; Sikora, P.; Stephan, D. Preparation and characterization of ultra-lightweight foamed concrete incorporating lightweight aggregates. Appl. Sci. 2019, 9, 1447. [Google Scholar] [CrossRef]
- Mydin, M.A.O.; Ganesan, S.; Yunos, M.Y.M.; Utaberta, N.; Ismail, N.A. Structural behaviour of coir fibre-reinforced foamed concrete wall panel system. J. Teknol. 2016, 78, 169–177. [Google Scholar] [CrossRef]
- Ferreira, S.R.; De Andrade, S.F.; Lima, P.R.L.; Filho, R.D.T. Effect of hornification on the structure, tensile behavior and fiber matrix bond of sisal, jute and curaua´ fiber cement based composite systems. Constr. Build. Mater. 2017, 139, 551–561. [Google Scholar] [CrossRef]
- Kochova, K.; Gauvin, F.; Schollbach, K.; Brouwers, H. Using alternative waste coir fibres as a reinforcement in cement fibre composites. Constr. Build. Mater. 2020, 231, 117121. [Google Scholar] [CrossRef]
Element | Properties |
---|---|
Length | 18 mm |
Diameter | 28.9 um |
Runkel Ratio | 0.26 |
Lumen Width | 16.1 um |
Fibril Angle (°) | 44 |
Density | 0.76 g/cm3 |
Composition | %, Dry Weight |
---|---|
Cellulose | 25.7 |
Hemicellulose | 16.8 |
Lignin | 24.7 |
Xylose | 10.3 |
Glucose | 20.9 |
Ash | 1.6 |
Element | Properties |
---|---|
Tensile strength | 80.8 MPa |
Modulus of elasticity | 5.63 GPa |
Elongation at break | 14.34% |
Bond Type | Wavenumber (cm−1) | Remarks |
---|---|---|
O-H stretching | 3435.7 | Stretching of hydrogen bond of hemicellulose and fats |
C-H vibration | 2949.5 | Modes of methyl and methylene groups |
C=O stretching | 1660.4 | Stretching of the acetyl group of hemicellulose |
C-H deformation | 1325.8 | Cellulose and hemicellulose deformation |
Si-O stretching | 1071.5 | Cellulose and lignin deformation |
O-H stretching | 651.2 | Lignin deformation |
Specimen | Mix Density (kg/m3) | Mix Ratio (s:c:w) | Cement (kg) | Fine Sand (kg) | Water (kg) | BFF (kg) |
---|---|---|---|---|---|---|
0.00% BFF | 600 | 1:1.5:0.45 | 46.05 | 69.07 | 20.72 | 0.000 |
0.12% BFF | 600 | 1:1.5:0.45 | 46.05 | 69.07 | 20.72 | 0.173 |
0.24% BFF | 600 | 1:1.5:0.45 | 46.05 | 69.07 | 20.72 | 0.347 |
0.36% BFF | 600 | 1:1.5:0.45 | 46.05 | 69.07 | 20.72 | 0.520 |
0.48% BFF | 600 | 1:1.5:0.45 | 46.05 | 69.07 | 20.72 | 0.693 |
0.60% BFF | 600 | 1:1.5:0.45 | 46.05 | 69.07 | 20.72 | 0.867 |
0.00% BFF | 800 | 1:1.5:0.45 | 60.49 | 90.74 | 27.22 | 0.000 |
0.12% BFF | 800 | 1:1.5:0.45 | 60.49 | 90.74 | 27.22 | 0.223 |
0.24% BFF | 800 | 1:1.5:0.45 | 60.49 | 90.74 | 27.22 | 0.446 |
0.36% BFF | 800 | 1:1.5:0.45 | 60.49 | 90.74 | 27.22 | 0.669 |
0.48% BFF | 800 | 1:1.5:0.45 | 60.49 | 90.74 | 27.22 | 0.892 |
0.60% BFF | 800 | 1:1.5:0.45 | 60.49 | 90.74 | 27.22 | 1.115 |
0.00% BFF | 1000 | 1:1.5:0.45 | 74.94 | 112.40 | 33.72 | 0.000 |
0.12% BFF | 1000 | 1:1.5:0.45 | 74.94 | 112.40 | 33.72 | 0.273 |
0.24% BFF | 1000 | 1:1.5:0.45 | 74.94 | 112.40 | 33.72 | 0.545 |
0.36% BFF | 1000 | 1:1.5:0.45 | 74.94 | 112.40 | 33.72 | 0.818 |
0.48% BFF | 1000 | 1:1.5:0.45 | 74.94 | 112.40 | 33.72 | 1.091 |
0.60% BFF | 1000 | 1:1.5:0.45 | 74.94 | 112.40 | 33.72 | 1.363 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Othuman Mydin, M.A.; Nawi, M.N.M.; Odeh, R.A.; Salameh, A.A. Potential of Biomass Frond Fiber on Mechanical Properties of Green Foamed Concrete. Sustainability 2022, 14, 7185. https://doi.org/10.3390/su14127185
Othuman Mydin MA, Nawi MNM, Odeh RA, Salameh AA. Potential of Biomass Frond Fiber on Mechanical Properties of Green Foamed Concrete. Sustainability. 2022; 14(12):7185. https://doi.org/10.3390/su14127185
Chicago/Turabian StyleOthuman Mydin, Md Azree, Mohd Nasrun Mohd Nawi, Ruba A. Odeh, and Anas A. Salameh. 2022. "Potential of Biomass Frond Fiber on Mechanical Properties of Green Foamed Concrete" Sustainability 14, no. 12: 7185. https://doi.org/10.3390/su14127185