3D-Printed Programmable Mechanical Metamaterials for Vibration Isolation and Buckling Control
Abstract
:1. Introduction
2. Materials and Methods
2.1. Unit Cell Designs
2.2. Design of the Graded Cylindrical Metamaterials
2.3. Fabrication Process
2.4. Material Behaviors
2.5. Cylindrical Metamaterials, Mechanical and Vibration Tests
2.6. Finite Element Analysis
3. Results and Discussions
3.1. A Comparison between Soft and Stiff Re-Entrant Unit Cells
3.2. Deformation Patterns
3.3. Control of Global Buckling
3.4. Vibration Isolation Capability
4. Concluding Remarks
- “Soft and stiff” re-entrant unit cells with varying stiffness are introduced.
- The different unit cells’ configurations and cell-wall thicknesses are considered the gradient items.
- The variability in the unit cells’ stiffness is caused by the specific designs of the unit cells, as shown by simulation using the finite element method and verified using experimental results.
- The variability in the unit cells’ stiffness leads to controlling the unit cells’ densification throughout the cylindrical metamaterial under compression. This means that the cylindrical metamaterials comprise a specific arrangement of the unit cells, leading to controlling long cylindrical tubes’ global buckling (cylindrical tubes with a 3.7 length to diameter ratio).
- The considerable difference in “soft and stiff” unit cells’ stiffness leads to the appearance of quasi-zero stiffness (QZS) in the force-displacement relationship under compression, making the graded cylindrical metamaterials superior in terms of vibration isolation over the conventional isolators.
- Unlike conventional springs, graded cylindrical metamaterials can isolate selective external excitations in low-frequency ranges from 10 to 30 Hz, verified through experimental vibration tests. These frequency ranges are related to the subjective comfort levels experienced by the human body in off-road vehicles.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, W.; Zhang, B.; Fang, X.; Cheng, K.; Chen, W.; Wang, Z.; Hong, D.; Zhang, M. Microfluid-based soft metasurface for tunable optical activity in THz wave. Opt. Express 2021, 29, 8786–8795. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Zhang, M.; Yan, Z.; Zhao, X.; Cheng, J.; Liu, A.Q. Single mode to dual mode switch through a THz reconfigurable metamaterial. Appl. Phys. Lett. 2017, 111, 241106. [Google Scholar] [CrossRef]
- Moeini, M.; Begon, M.; Lévesque, M. Numerical homogenization of a linearly elastic honeycomb lattice structure and comparison with analytical and experimental results. Mech. Mater. 2022, 167, 104210. [Google Scholar] [CrossRef]
- Abdulaziz, A.H.; Hedaya, M.; Elsabbagh, A.; Holford, K.; McCrory, J. Acoustic emission wave propagation in honeycomb sandwich panel structures. Compos. Struct. 2021, 277, 114580. [Google Scholar] [CrossRef]
- Wei, Y.; Zhang, Y.; Song, Q.; Zhou, X.; Zhou, Y.; Shen, Y. Effects of different configurations and gradients on compression responses of gradient honeycombs via selective laser melting. Thin-Walled Struct. 2022, 170, 108462. [Google Scholar] [CrossRef]
- Dong, J.; Fan, H. Crushing behaviors of buckling-oriented hexagonal lattice structures. Mech. Mater. 2022, 165, 104160. [Google Scholar] [CrossRef]
- Hamzehei, R.; Zolfagharian, A.; Dariushi, S.; Bodaghi, M. 3D-Printed Bio-inspired Zero Poisson’s Ratio Graded Metamaterials with High Energy Absorption Performance. Smart Mater. Struct. 2022, 31, 035001. [Google Scholar] [CrossRef]
- Hexiang, W.; Zhang, X.; Liu, Y. In-plane crushing behavior of density graded cross-circular honeycombs with zero Poisson’s ratio. Thin-Walled Struct. 2020, 151, 106767. [Google Scholar]
- Jha, A.; Dayyani, I. Shape optimisation and buckling analysis of large strain zero Poisson’s ratio fish-cells metamaterial for morphing structures. Compos. Struct. 2021, 268, 113995. [Google Scholar] [CrossRef]
- Hamzehei, R.; Rezaei, S.; Kadkhodapour, J.; Anaraki, A.P.; Mahmoudi, A. 2D triangular anti-trichiral structures and auxetic stents with symmetric shrinkage behavior and high energy absorption. Mech. Mater. 2020, 142, 103291. [Google Scholar] [CrossRef]
- Rezaei, S.; Kadkhodapour, J.; Hamzehei, R.; Taherkhani, B.; Anaraki, A.P.; Dariushi, S. Design and modeling of the 2D auxetic metamaterials with hyperelastic properties using topology optimization approach. Photon-Nanostructures Fundam. Appl. 2021, 43, 100868. [Google Scholar] [CrossRef]
- Mansoori, H.; Hamzehei, R.; Dariushi, S. Crashworthiness analysis of cylindrical tubes with coupling effects under quasi-static axial loading: An experimental and numerical study. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 2022, 236, 647–662. [Google Scholar] [CrossRef]
- Hamzehei, R.; Kadkhodapour, J.; Anaraki, A.P.; Rezaei, S.; Dariushi, S.; Rezadoust, A.M. Octagonal auxetic metamaterials with hyperelastic properties for large compressive deformation. Int. J. Mech. Sci. 2018, 145, 96–105. [Google Scholar] [CrossRef]
- Iwai, A.; Righetti, F.; Wang, B.; Sakai, O.; Cappelli, M.A. A tunable double negative device consisting of a plasma array and a negative-permeability metamaterial. Phys. Plasmas 2020, 27, 023511. [Google Scholar] [CrossRef]
- Elmadih, W.; Chronopoulos, D.; Zhu, J. Metamaterials for simultaneous acoustic and elastic bandgaps. Sci. Rep. 2021, 11, 14635. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Guo, D.; Hu, G. Tailored Mechanical Metamaterials with Programmable Quasi-Zero-Stiffness Features for Full-Band Vibration Isolation. Adv. Funct. Mater. 2021, 31, 2101428. [Google Scholar] [CrossRef]
- Zhakatayev, A.; Kappassov, Z.; Varol, H.A. Analytical modeling and design of negative stiffness honeycombs. Smart Mater. Struct. 2020, 29, 045024. [Google Scholar] [CrossRef]
- Noroozi, R.; Bodaghi, M.; Jafari, H.; Zolfagharian, A.; Fotouhi, M. Shape-Adaptive Metastructures with Variable Bandgap Regions by 4D Printing. Polymers 2020, 12, 519. [Google Scholar] [CrossRef] [Green Version]
- Wang, K.; Zhou, J.; Ouyang, H.; Cheng, L.; Xu, D. A semi-active metamaterial beam with electromagnetic quasi-zero-stiffness resonators for ultralow-frequency band gap tuning. Int. J. Mech. Sci. 2020, 176, 105548. [Google Scholar] [CrossRef]
- Wang, L.; Zhao, Y.; Sang, T.; Zhou, H.; Wang, P.; Zhao, C. Ultra-low frequency vibration control of urban rail transit: The general quasi-zero-stiffness vibration isolator. Veh. Syst. Dyn. 2021, 60, 1788–1805. [Google Scholar] [CrossRef]
- Suman, S.; Balaji, P.S.; Selvakumar, K.; Kumaraswamidhas, L.A. Nonlinear Vibration Control Device for a Vehicle Suspension Using Negative Stiffness Mechanism. J. Vib. Eng. Technol. 2021, 9, 957–966. [Google Scholar] [CrossRef]
- Zolfagharian, A.; Denk, M.; Bodaghi, M.; Kouzani, A.Z.; Kaynak, A. Topology-Optimized 4D Printing of a Soft Actuator. Acta Mech. Solida Sin. 2019, 33, 418–430. [Google Scholar] [CrossRef]
- Guo, L.; Wang, X.; Fan, R.-L.; Bi, F. Review on Development of High-Static–Low-Dynamic-Stiffness Seat Cushion Mattress for Vibration Control of Seating Suspension System. Appl. Sci. 2020, 10, 2887. [Google Scholar] [CrossRef]
- Fan, H.; Yang, L.; Tian, Y.; Wang, Z. Design of metastructures with quasi-zero dynamic stiffness for vibration isolation. Compos. Struct. 2020, 243, 112244. [Google Scholar] [CrossRef]
- Zhao, F.; Ji, J.; Luo, Q.; Cao, S.; Chen, L.; Du, W. An improved quasi-zero stiffness isolator with two pairs of oblique springs to increase isolation frequency band. Nonlinear Dyn. 2021, 104, 349–365. [Google Scholar] [CrossRef]
- Cai, C.; Zhou, J.; Wu, L.; Wang, K.; Xu, D.; Ouyang, H. Design and numerical validation of quasi-zero-stiffness metamaterials for very low-frequency band gaps. Compos. Struct. 2020, 236, 111862. [Google Scholar] [CrossRef]
- Xu, L.; Chai, X.; Gao, Z.; Li, Y.; Wang, Y. Experimental study on driver seat vibration characteristics of crawler-type combine harvester. Int. J. Agric. Biol. Eng. 2019, 12, 90–97. [Google Scholar] [CrossRef]
- Abaqus. 2019ABAQUS User’s Manual. Version 6.14. Available online: http://130.149.89.49:2080/v6.14/books/usb/default.htm (accessed on 30 May 2022).
- Dai, M.; Jiang, H.; Dai, X.; Chen, G.; Yang, F.; He, X. Investigations of the compressive mechanical properties of open-cell hollow-sphere structures. Mech. Mater. 2020, 148, 103517. [Google Scholar] [CrossRef]
- Araújo, H.; Leite, M.; Ribeiro, A. The effect of geometry on the flexural properties of cellular core structures. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 2019, 233, 338–347. [Google Scholar] [CrossRef]
- Hussain, N.N.; Regalla, S.P.; Rao, Y.V.D.; Dirgantara, T.; Gunawan, L.; Jusuf, A. Drop-weight impact testing for the study of energy absorption in automobile crash boxes made of composite material. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 2021, 235, 114–130. [Google Scholar] [CrossRef]
- Bodaghi, M. Reversible energy absorbing meta-sandwiches by FDM 4D printing. Int. J. Mech. Sci. 2020, 173, 105451. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.; Ma, J.; Lim, C.; Chu, H. Dynamic local and global buckling of cylindrical shells under axial impact. Eng. Struct. 2009, 31, 1132–1140. [Google Scholar] [CrossRef]
- Noroozi, R.; Shamekhi, M.A.; Zolfagharian, A.; Asgari, F.; Mousavizadeh, A.; Bodaghi, M.; Haghighipour, N. In vitro static and dynamic cell culture study of novel bone scaffolds based on 3D-printed PLA and cell-laden alginate hydrogel. Biomed. Mater. 2022. [Google Scholar] [CrossRef] [PubMed]
Symbols | L1 | L2 | O1 | O2 | O3 | Ө1 | Ө2 |
---|---|---|---|---|---|---|---|
Values (mm) | 22 | 22 | 11.3 | 11.3 | 4.5 | 45 | 45 |
Properties | Value/Type |
---|---|
Fresh Material | 20% |
Print Profile | Mono Balanced |
Cooling Profile | Natural Cooling |
Packing Density | 10.42% |
Weighted Acceleration Value | The Subjective Experience of the Human Body |
---|---|
˂0.315 | Very Comfortable |
0.315–0.63 | Fairly Comfortable |
0.5–1 | Less Comfortable |
0.8–1.6 | Not Comfortable |
1.25–2.5 | Uncomfortable |
>2 | Very Uncomfortable |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zolfagharian, A.; Bodaghi, M.; Hamzehei, R.; Parr, L.; Fard, M.; Rolfe, B.F. 3D-Printed Programmable Mechanical Metamaterials for Vibration Isolation and Buckling Control. Sustainability 2022, 14, 6831. https://doi.org/10.3390/su14116831
Zolfagharian A, Bodaghi M, Hamzehei R, Parr L, Fard M, Rolfe BF. 3D-Printed Programmable Mechanical Metamaterials for Vibration Isolation and Buckling Control. Sustainability. 2022; 14(11):6831. https://doi.org/10.3390/su14116831
Chicago/Turabian StyleZolfagharian, Ali, Mahdi Bodaghi, Ramin Hamzehei, Liam Parr, Mohammad Fard, and Bernard F. Rolfe. 2022. "3D-Printed Programmable Mechanical Metamaterials for Vibration Isolation and Buckling Control" Sustainability 14, no. 11: 6831. https://doi.org/10.3390/su14116831