An Online Pattern Recognition-Oriented Workshop to Promote Interest among Undergraduate Students in How Mathematical Principles Could Be Applied within Veterinary Science
Abstract
:1. Introduction
2. Materials and Methods
2.1. Target Population
2.2. Evaluation Method
2.3. Program Overview
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kogan, J.; Hatala, R.; Hauer, K.; Holmboe, E. Guidelines: The Do’s, Don’ts and Don’t Knows of Direct Observation of Clinical Skills in Medical Education. Perspect. Med. Educ. 2017, 65, 286–305. [Google Scholar] [CrossRef] [PubMed]
- Rösch, T.; Schaper, E.; Tipold, A.; Fischer, M.R.; Dilly, M.; Ehlers, J.P. Clinical Skills of Veterinary Students—A Cross-Sectional Study of the Self-Concept and Exposure to Skills Training in Hannover, Germany. BMC Vet. Res. 2014, 10, 969. [Google Scholar] [CrossRef] [Green Version]
- Kuchmenko, T.; Shuba, A.; Umarkhanov, R.; Lvova, L. The new approach to a pattern recognition of volatile compounds: The inflammation markers in nasal mucus swabs from calves using the gas sensor array. Chemosensors 2021, 9, 116. [Google Scholar] [CrossRef]
- Ebrahimie, E.; Ebrahimi, F.; Ebrahimi, M.; Tomlinson, S.; Petrovski, K.R. Hierarchical pattern recognition in milking parameters predicts mastitis prevalence. Comput. Electron. Agric. 2018, 147, 6–11. [Google Scholar] [CrossRef]
- Perez, A. Past, Present, and Future of Veterinary Epidemiology and Economics: One Health, Many Challenges, No Silver Bullets. Front. Vet. Sci. 2015, 2, 60. [Google Scholar] [CrossRef] [Green Version]
- Gautam, R.; Kaur, P.; Sharma, M. A Comprehensive Review on Nature Inspired Computing Algorithms for the Diagnosis of Chronic Disorders in Human Beings. Prog. Artif. Intell. 2019, 8, 401–424. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, B.; Ma, Z.; Wong, K.C.; Li, X. Nature-Inspired Multiobjective Cancer Subtype Diagnosis. IEEE J. Transl. Eng. Health Med. 2019, 7, 4300112. [Google Scholar] [CrossRef]
- Cengizler, Ç.; Ün, M.K.; Büyükkurt, S. A Nature-Inspired Search Space Reduction Technique for Spine Identification on Ultrasound Samples of Spina Bifida Cases. Sci. Rep. 2020, 10, 9280. [Google Scholar] [CrossRef]
- FAO. One Health: Food and Agriculture Organization of the United Nations Strategic Action Plan; FAO: Rome, Italy, 2011. [Google Scholar]
- Patterns in Nature. Why Study Patterns in Nature? Available online: http://www.patternsinnature.org/Book/WhyStudyPatterns.html (accessed on 17 November 2020).
- Naderi, Y. Appropriate Mathematical Models to Describe the Lactation Curves of Milk Production Traits of Iranian Holstein Dairy Cattle. Acta Sci. Anim. Sci. 2018, 40, e37895. [Google Scholar] [CrossRef]
- O’Neill, D.G.; James, H.; Brodbelt, D.C.; Church, D.B.; Pegram, C. Prevalence of Commonly Diagnosed Disorders in UK Dogs under Primary Veterinary Care: Results and Applications. BMC Vet. Res. 2021, 17, 69. [Google Scholar] [CrossRef]
- Crosby-Durrani, H.; Blowey, R.; Manning, A.; Afonso, J.S.; Carter, S.; Evans, N.; Angell, J. An Observational Study Investigating Potential Risk Factors and Economic Impact for Bovine Ischaemic Teat Necrosis on Dairy Farms in Great Britain. Front. Vet. Sci. 2022, 9, 748259. [Google Scholar] [CrossRef] [PubMed]
- Adam, J. Mathematics in Nature: Modeling Patterns in the Natural World; Princeton University Press: Princeton, NJ, USA, 2003. [Google Scholar]
- Stakhov, A.; Rozin, B. The Golden Section, Fibonacci Series and New Hyperbolic Models of Nature. Available online: http://www.mi.sanu.ac.rs/vismath/stakhov/ (accessed on 12 November 2020).
- Sacco, R.G. Fibonacci Harmonics: A New Mathematical Model of Synchronicity. Appl. Math. 2018, 9, 702–718. [Google Scholar] [CrossRef] [Green Version]
- National Research Council. The Mathematical Sciences in 2025; National Academies Press: Washington, DC, USA, 2013. [Google Scholar]
- Gabryś, E.; Rybaczuk, M.; Kȩdzia, A. Fractal Models of Circulatory System. Symmetrical and Asymmetrical Approach Comparison. Chaos Solit. Fractals 2005, 24, 707–715. [Google Scholar] [CrossRef]
- Lennon, F.; Cianci, G.; Cipriani, N.; Hensing, T.; Zhang, H.; Chen, C.; Murgu, S.; Vokes, E.; Vannier, M.; Salgia, R. Lung Cancer—A Fractal Viewpoint. Nat. Rev. Clin. Oncol. 2015, 12, 664–675. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baish, J.; Jain, R. Fractals and Cancer. Cancer Res. 2000, 60, 3683–3688. [Google Scholar]
- Dokukin, M.E.; Guz, N.V.; Woodworth, C.D.; Sokolov, I. Emergence of Fractal Geometry on the Surface of Human Cervical Epithelial Cells during Progression towards Cancer. New J. Phys. 2015, 17, 033019. [Google Scholar] [CrossRef]
- Klein, K.; Maier, T.; Hirschfeld-Warneken, V.; Spatz, J. Marker-Free Phenotyping of Tumor Cells by Fractal Analysis of Reflection Interference Contrast Microscopy Images. Nano Lett. 2013, 13, 5474–5479. [Google Scholar] [CrossRef]
- University of Nottingham Physical and Mathematical Veterinary Medicine—The University of Nottingham. Available online: https://www.nottingham.ac.uk/research/groups/physical-mathematical-veterinary-medicine/index.aspx (accessed on 17 November 2020).
- Yang, A.; Fernando, S.; Tighe, J.; O-Halloran, M.; Morphet, J.; Kumar, A. Introduction of an in-terprofessional gynaecology surgical skills workshop for undergraduate medical and nursing students. Aust. N. Z. J. Obstet. Gynaecol. 2020, 60, 238–243. [Google Scholar] [CrossRef]
- Kompella, P.; Gracia, B.; LeBlanc, L.; Engelman, S.; Kulkarni, C.; Desai, N.; June, V.; March, S.; Pattengale, S.; Rodriguez-Rivera, G.; et al. Interactive youth science workshops benefit student participants and graduate student mentors. PLoS Biol. 2020, 18, e3000668. [Google Scholar] [CrossRef]
- Çakır, N.A.; Gass, A.; Foster, A.; Lee, F.J. Development of a game-design workshop to promote young girls’ interest towards computing through identity exploration. Comput. Educ. J. 2017, 108, 115–130. [Google Scholar] [CrossRef]
- R Core Team R: A Language and Environment for Statistical Computing. Available online: https://www.r-project.org/ (accessed on 25 March 2022).
- Asia Society Understanding the World Through Math. Available online: https://asiasociety.org/education/understanding-world-through-math (accessed on 7 November 2020).
- Bouvier, S. Increasing Student Interest in Science, Technology, Engineering, and Math (STEM): Massachusetts STEM Pipeline Fund Programs Using Promising Practices; University of Massachusetts Donahue Institute Research and Evaluation Group: Hadley, MA, USA, 2011. [Google Scholar]
- Issuu Building Teacher’s Notebook: STEM-Learning through Science-Based Nature Journaling. Available online: https://issuu.com/nurturenaturecenter/docs/building_teacher_s_notebook (accessed on 9 December 2020).
- Yildiz, C.; Çabakçor, B.Ö.; Özdogan, Z.B.; Arslan, S. The Views of the Teacher and Students in Regards to the Use of the History of Mathematics in the Teaching of Fractal Subject. Procedia Soc. Behav. Sci. 2011, 15, 868–872. [Google Scholar] [CrossRef] [Green Version]
- Conner, B. Drug Calculations in Veterinary Medical Education—Where Are We? J. Vet. Med. Educ. 2020, 48, 252–255. [Google Scholar] [CrossRef] [PubMed]
- Neill, C.; Hansen, C.; Salois, M. The Economic Cost of Burnout in Veterinary Medicine. Front. Vet. Sci. 2022, 9, 814104. [Google Scholar] [CrossRef] [PubMed]
- Harackiewicz, J.M.; Smith, J.L.; Priniski, S.J. Interest Matters: The Importance of Promoting Interest in Education. Policy Insights Behav. Brain Sci. 2016, 3, 220–227. [Google Scholar] [CrossRef] [Green Version]
- Rotgans, J.I.; Schmidt, H.G. The Relation between Individual Interest and Knowledge Acquisition. Br. Educ. Res. J. 2017, 43, 350–371. [Google Scholar] [CrossRef]
- Rotgans, J.I.; Schmidt, H.G. Situational Interest and Learning: Thirst for Knowledge. Learn. Instr. 2014, 32, 37–50. [Google Scholar] [CrossRef]
- Peralta, P.; Sagara, E.; Klich, G.; Buglione, M.; Yaful, G.; Torres, P. Abordeaje Interdisciplinar en la Carrera Medicina Veterinaria de la Universidad Nacional de Río Negro; Universidad Nacional de Río Negro: La Plata, Argentina, 2015. [Google Scholar]
- Wrocław University of Environmental and Life Science Interdisciplinarity in Veterinary Science—A Recipe for Success. Available online: https://upwr.edu.pl/en/news/interdisciplinarity-in-veterinary-science-a-recipe-for-success-324.html (accessed on 25 March 2022).
- Swarat, S.; Ortony, A.; Revelle, W. Activity Matters: Understanding Student Interest in School Science. J. Res. Sci. Teach. 2012, 49, 515–537. [Google Scholar] [CrossRef]
- Heitzman-Breen, N.; Golden, J.; Vazquez, A.; Kuchinsky, S.; Duggal, N.; Ciupe, S. Modeling the Dynamics of Usutu Virus Infection in Birds. J. Theor. Biol. 2021, 531, 110896. [Google Scholar] [CrossRef]
- Layan, M.; Dellicour, S.; Baele, G.; Cauchemez, S.; Bourhy, H. Mathematical Modelling and Phylodynamics for the Study of Dog Rabies Dynamics and Control: A Scoping Review. PLoS Negl. Trop. Dis. 2021, 15, e0009449. [Google Scholar] [CrossRef]
- Sun, T.; Liu, Y.; Qin, X.; Aspridou, Z.; Zheng, J.; Wang, X.; Li, Z.; Dong, Q. The Prevalence and Epidemiology of Salmonella in Retail Raw Poultry Meat in China: A Systematic Review and Meta-Analysis. Foods 2021, 10, 2757. [Google Scholar] [CrossRef]
- Weber, S.H.; dos Santos, S.K.; Heinzen, B.C.; Viana, N.P.; Sotomaior, C.S. Comparison of Nonlinear Mathematical Models for Lamb Growth Analysis. Trop. Anim. Health Prod. 2021, 53, 151. [Google Scholar] [CrossRef] [PubMed]
- Aubreville, M.; Bertram, C.A.; Marzahl, C.; Gurtner, C.; Dettwiler, M.; Schmidt, A.; Bartenschlager, F.; Merz, S.; Fragoso, M.; Kershaw, O.; et al. Deep Learning Algorithms Out-Perform Veterinary Pathologists in Detecting the Mitotically Most Active Tumor Region. Sci. Rep. 2020, 10, 16447. [Google Scholar] [CrossRef] [PubMed]
- Ortega-Paredes, D.; Larrea-Álvarez, C.; Herrera, M.; Fernandez-Moreira, E.; Larrea-Álvarez, M. Assessing Knowledge of Genetics in Undergraduate Students in Quito, Ecuador. F1000Research 2019, 8, 290. [Google Scholar] [CrossRef] [PubMed]
- Ortega-Paredes, D.; Larrea-Álvarez, C.M.; Torres-Elizalde, L.; de Janon, S.; Vinueza-Burgos, C.; Hidalgo-Arellano, L.; Šefcová, M.A.; Molina-Cuasapaz, G.; Fernandez-Moreira, E.; Larrea-Álvarez, M. Antibiotic Resistance Awareness among Undergraduate Students in Quito, Ecuador. Antibiotics 2022, 11, 197. [Google Scholar] [CrossRef]
- Ortega-Paredes, D.; Larrea-Álvarez, C.M.; Jijón, S.I.; Loaiza, K.; Šefcová, M.A.; Molina-Cuasapaz, G.; Barba, P.; Vinueza-Burgos, C.; Fernandez-Moreira, E.; Ramírez, H.; et al. A Cross-Sectional Study to Assess Knowledge of COVID-19 among Undergraduate Students in North-Central Ecuador. Int. J. Environ. Res. Public Health 2021, 18, 8706. [Google Scholar] [CrossRef]
- Ortega-Paredes, D.; Zurita, J.; Zurita, C.; Leoro-Garzón, P.; Leoro-Monroy, G.; Larrea-Álvarez, C.M.; Loaiza, K.; Fernandez-Moreira, E.; Molina-Cuasapaz, G.; Larrea-Álvarez, M. An On-Line Cross-Sectional Questionnaire to Assess Knowledge of COVID-19 Pandemic among Citizens Tested for the SARS-CoV-2 Virus in Quito and Ibarra, Ecuador. Int. J. Environ. Res. Public Health 2021, 18, 1691. [Google Scholar] [CrossRef]
Statement | Assessment | Agreement Level (Counts, n = 120) | p-Value a | ||||
---|---|---|---|---|---|---|---|
1. Strongly Disagree | 2. Disagree | 3. Neither Agree nor Disagree | 4. Agree | 5. Strongly Agree | |||
1. Biological phenomena can be explained and predicted by applying mathematics | Pre-workshop | 5 | 10 | 29 | 52 | 24 | 0.0009 |
Post-workshop | 6 | 7 | 10 | 49 | 48 | ||
2. It is possible to identify mathematical patterns in living beings | Pre-workshop | 3 | 9 | 26 | 53 | 29 | <0.0001 |
Post-workshop | 5 | 8 | 7 | 40 | 60 | ||
3. Mathematics are important for my career as a veterinarian | Pre-workshop | 4 | 3 | 15 | 41 | 57 | 0.0964 |
Post-workshop | 8 | 1 | 5 | 43 | 63 | ||
4. I want to deepen my knowledge in mathematics | Pre-workshop | 6 | 2 | 15 | 50 | 47 | 0.1188 |
Post-workshop | 3 | 9 | 13 | 40 | 55 | ||
Post-workshop | 4 | 7 | 12 | 28 | 69 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Molina-Cuasapaz, G.; de Janon, S.; Larrea-Álvarez, M.; Fernández-Moreira, E.; Loaiza, K.; Šefcová, M.; Ayala-Velasteguí, D.; Mena, K.; Vinueza Burgos, C.; Ortega-Paredes, D. An Online Pattern Recognition-Oriented Workshop to Promote Interest among Undergraduate Students in How Mathematical Principles Could Be Applied within Veterinary Science. Sustainability 2022, 14, 6768. https://doi.org/10.3390/su14116768
Molina-Cuasapaz G, de Janon S, Larrea-Álvarez M, Fernández-Moreira E, Loaiza K, Šefcová M, Ayala-Velasteguí D, Mena K, Vinueza Burgos C, Ortega-Paredes D. An Online Pattern Recognition-Oriented Workshop to Promote Interest among Undergraduate Students in How Mathematical Principles Could Be Applied within Veterinary Science. Sustainability. 2022; 14(11):6768. https://doi.org/10.3390/su14116768
Chicago/Turabian StyleMolina-Cuasapaz, Gabriel, Sofía de Janon, Marco Larrea-Álvarez, Esteban Fernández-Moreira, Karen Loaiza, Miroslava Šefcová, David Ayala-Velasteguí, Karla Mena, Christian Vinueza Burgos, and David Ortega-Paredes. 2022. "An Online Pattern Recognition-Oriented Workshop to Promote Interest among Undergraduate Students in How Mathematical Principles Could Be Applied within Veterinary Science" Sustainability 14, no. 11: 6768. https://doi.org/10.3390/su14116768