A Comprehensive Review on Sustainable Natural Fiber in Cementitious Composites: The Date Palm Fiber Case
Abstract
:1. Introduction
2. Natural Fibers
2.1. Types of Natural Fibers
2.1.1. Animal Based Natural Fiber
2.1.2. Plant Based Natural Fibers
2.2. Treatment and Modifications of Natural Fibers
2.3. Plant-Based Natural Fibers in Cementitious Composites
3. Date Palm Fiber Reinforced Composites
3.1. Date Palm Tree
3.2. Date Palm Fiber
3.3. Date Palm Fiber Utilization in Cementitious Composites
3.3.1. DPF Reinforced Mortar
3.3.2. DPF Reinforced Concrete
3.3.3. DPF Reinforced Gypsum Composites
3.3.4. DPF Reinforced Clay Brick Composites
4. Concluding Remarks
- DPF is one of the most available natural fibers globally, as the number of date palm trees exceeds 120 million, out of which about 67% of it are cultivated in the Middle East and North Africa; this makes DPF readily available as a waste material for use in Fiber-reinforced composites with no processing cost.
- Due to its availability, zero cost, very low processing cost, sustainable, and environmentally friendly, DPF is continuously gaining acceptability as fiber material usually as substitute to synthetic and other organic fibers.
- DPF has been used in different composites, such as concrete, mortar, gypsum composites, clay composites and bricks and have been found to significantly improved the mechanical properties such as tensile strength, flexural strength, and impact resistance.
- DPF have been found to be a good insulation material, when used in composites, such as mortar or gypsum they were reported to significantly improve the thermal properties of buildings thereby leading to efficient energy saving which consequently reduced the cost of running and maintaining the buildings, as the DPF is a waste material with no processing cost.
- DPF have been reported to significantly enhance the toughness, ductility and bending strengths of composites, such as concrete, through crack bridging effect, delaying crack growth and propagation and reduction in stiffness; this gives it an advantage for use in structures mostly subjected to bending loads such as beams and columns, where it helps in delaying crack propagation and preventing catastrophic failures.
- DPF has been reported to decrease the density of composites, such as concrete, mortar, gypsum, or clay; this gives it the advantage for usage in areas prone to seismic effects, and when the DPF composite is used for buildings, the overall weight of the building is expected to reduce hence reduction in foundation cost.
- However, studies had shown that the use of DPF in cementitious composites, such as concrete and mortar resulted to decrease in compressive strength, which is the major property of concern. Additionally, DPF have been reported to decrease the durability performance of composite by increasing porosity in the matrix; this happens mostly due to poor adhesion between the composite matrix and the DPF, and due to increased porosity in the composite caused by the fiber.
- Therefore, for DPF to be efficiently used in composites especially cementitious composites such as concrete, which is mostly used for structural applications, methods must be devised to diminish or lessen the negative effect of the DPF on the properties of the concrete. Some studies used different treatment methods to remove impurities and improve the roughness of the fiber for enhanced bonding, thus it slightly mitigated the strength loss in the composite due to DPF addition, but it is not yet very effective.
- Hence, future research should focus on developing ways to improve the mechanical and durability performance of DPF-reinforced composite through developing ways to lessen or mitigate the harmful effect of DPF on the cementitious composite’s performance for proper acceptability and utilization.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bentur, A.; Mindess, S. Fibre Reinforced Cementitious Composites; CRC Press: Boca Raton, FL, USA, 2006. [Google Scholar]
- Balea, A.; Fuente, E.; Monte, M.C.; Blanco, Á.; Negro, C. Fiber reinforced cement based composites. In Fiber Reinforced Composites; Elsevier: Amsterdam, The Netherlands, 2021; pp. 597–648. [Google Scholar]
- Balaguru, P.N.; Shah, S.P. Fiber-Reinforced Cement Composites; McGraw-Hill: New York, NY, USA, 1992. [Google Scholar]
- Banthia, N. Fiber Reinforced Concrete; ACI SP-142ACI: Detroit, MI, USA, 1994; Volume 91, p. 119. [Google Scholar]
- Banthia, N. ACI 544.5R-Report on the Physical Properties and Durability of Fiber-Reinforced Concrete; American Concrete Institute: Farmington Hills, MI, USA, 2010. [Google Scholar]
- Hannant, D. Fibre-reinforced concrete. Adv. Concr. Technol. 2003, 4, 1–17. [Google Scholar]
- Beaudoin, J.J. Handbook of fiber-reinforced concrete. In Principles, Properties, Developments and Applications; Noyes: Park Ridge, NJ, USA, 1990. [Google Scholar]
- Plizzari, G.; Mindess, S. Fiber-reinforced concrete. In Developments in the Formulation and Reinforcement of Concrete; Elsevier: Amsterdam, The Netherlands, 2019; pp. 257–287. [Google Scholar]
- Kuruvilla, J.; Oksman, K.; Gejo, G.; Wilson, R.; Appukuttan, S. Fiber Reinforced Composites: Constituents, Compatibility, Perspectives and Applications; Woodhead Publishing: Cambridge, UK, 2021. [Google Scholar]
- Pacheco-Torgal, F.; Jalali, S. Cementitious building materials reinforced with vegetable fibres: A review. Constr. Build. Mater. 2011, 25, 575–581. [Google Scholar] [CrossRef] [Green Version]
- Venkateshwaran, S. A Review on the Study of Strength Properties of High Performance Concrete Using Various Fibers. Int. Res. J. Multidiscip. Technovation 2019, 1, 411–415. [Google Scholar]
- Liew, K.M.; Akbar, A. The recent progress of recycled steel fiber reinforced concrete. Constr. Build. Mater. 2020, 232, 117232. [Google Scholar] [CrossRef]
- Frazão, C.; Camões, A.; Barros, J.; Gonçalves, D. Durability of steel fiber reinforced self-compacting concrete. Constr. Build. Mater. 2015, 80, 155–166. [Google Scholar] [CrossRef] [Green Version]
- Shah, S.P.; Daniel, J.I.; Ludirdja, D. Toughness of Glass Fiber Reinforced Concrete Panels Subjected to Accelerated Aging. PCI J. 1987, 32, 82–99. [Google Scholar] [CrossRef]
- Moceikis, R.; Kičaitė, A.; Skripkiūnas, G.; Korjakins, A. Ageing models and accelerated ageing tests of glass fiber reinforced concrete. Eng. Struct. Technol. 2018, 10, 10–17. [Google Scholar] [CrossRef] [Green Version]
- Onuaguluchi, O.; Banthia, N. Plant-based natural fibre reinforced cement composites: A review. Cem. Concr. Compos. 2016, 68, 96–108. [Google Scholar] [CrossRef]
- Ardanuy, M.; Claramunt, J.; Toledo Filho, R.D. Cellulosic fiber reinforced cement-based composites: A review of recent research. Constr. Build. Mater. 2015, 79, 115–128. [Google Scholar] [CrossRef] [Green Version]
- Chares Subash, M.; Muthiah, P. Eco-friendly degumming of natural fibers for textile applications: A comprehensive review. Clean. Eng. Technol. 2021, 5, 100304. [Google Scholar] [CrossRef]
- Karimah, A.; Ridho, M.R.; Munawar, S.S.; Adi, D.S.; Ismadi; Damayanti, R.; Subiyanto, B.; Fatriasari, W.; Fudholi, A. A review on natural fibers for development of eco-friendly bio-composite: Characteristics, and utilizations. J. Mater. Res. Technol. 2021, 13, 2442–2458. [Google Scholar] [CrossRef]
- FAO. Why Natural Fibres? International Year of Natural Fibres. 2009. Available online: http://www.fao.org/natural-fibres-2009/about/why-natural-fibres/en/ (accessed on 24 March 2022).
- Li, Z.; Wang, X.; Wang, L. Properties of hemp fibre reinforced concrete composites. Compos. Part A Appl. Sci. Manuf. 2006, 37, 497–505. [Google Scholar] [CrossRef] [Green Version]
- Torgal, F.; Jalali, S. Natural fiber reinforced concrete. In Fibrous and Composite Materials for Civil Engineering Applications; Elsevier: Amsterdam, The Netherlands, 2011; pp. 154–167. [Google Scholar]
- Li, M.; Pu, Y.; Thomas, V.M.; Yoo, C.G.; Ozcan, S.; Deng, Y.; Nelson, K.; Ragauskas, A.J. Recent advancements of plant-based natural fiber–reinforced composites and their applications. Compos. Part B Eng. 2020, 200, 108254. [Google Scholar] [CrossRef]
- Vijayan, R.; Krishnamoorthy, A. Review on Natural Fiber Reinforced Composites. Mater. Today Proc. 2019, 16, 897–906. [Google Scholar] [CrossRef]
- Kerni, L.; Singh, S.; Patnaik, A.; Kumar, N. A review on natural fiber reinforced composites. Mater. Today Proc. 2020, 28, 1616–1621. [Google Scholar] [CrossRef]
- Verma, D.; Senal, I. Natural fiber-reinforced polymer composites: Feasibiliy study for sustainable automotive industries. In Biomass, Biopolymer-Based Materials, and Bioenergy; Elsevier: Amsterdam, The Netherlands, 2019; pp. 103–122. [Google Scholar]
- Hiremath, S.S. Natural fiber reinforced composites in the context of biodegradability: A review. In Encyclopedia of Renewable and Sustainable Materials-Reference Module in Materials Science and Materials Engineering; Elsevier: Amsterdam, The Netherlands, 2020; pp. 160–178. [Google Scholar]
- Fiore, V.; Di Bella, G.; Valenza, A. Effect of sheep wool fibers on thermal insulation and mechanical properties of cement-based composites. J. Nat. Fibers 2019, 17, 1532–1543. [Google Scholar] [CrossRef]
- Valenza, A.; Fiore, V.; Nicolosi, A.; Rizzo, G.; Scaccianoce, G.; Di Bella, G. Effect of sheep wool fibres on thermal-insulation and mechanical properties of cement matrix. Acad. J. Civ. Eng. 2015, 33, 40–45. [Google Scholar]
- Alyousef, R.; Alabduljabbar, H.; Mohammadhosseini, H.; Mohamed, A.M.; Siddika, A.; Alrshoudi, F.; Alaskar, A. Utilization of sheep wool as potential fibrous materials in the production of concrete composites. J. Build. Eng. 2020, 30, 101216. [Google Scholar] [CrossRef]
- Rocha, D.B.; dos Santos Rosa, D. Natural fibre composites: Processing, fabrication and applications. In Fundamentals of Natural Fibres and Textiles; Elsevier: Amsterdam, The Netherlands, 2021; pp. 179–220. [Google Scholar]
- Parlato, M.C.; Porto, S.M. Organized Framework of Main Possible Applications of Sheep Wool Fibers in Building Components. Sustainability 2020, 12, 761. [Google Scholar] [CrossRef] [Green Version]
- Narayanan, G.S.; Kumar, K.S. Study of mechanical properties of the polymer matrix composite material (solid wool). Mater. Today Proc. 2020, 33, 2907–2911. [Google Scholar] [CrossRef]
- Manivannan, J.; Rajesh, S.; Mayandi, K.; Rajini, N.; Ismail, S.O.; Mohammad, F.; Kuzman, M.K.; Al-Lohedan, H.A. Animal fiber characterization and fiber loading effect on mechanical behaviors of sheep wool fiber reinforced polyester composites. J. Nat. Fibers 2020, 1–17. [Google Scholar] [CrossRef]
- Alyousef, R.; Mohammadhosseini, H.; Deifalla, A.F.; Ngian, S.P.; Alabduljabbar, H.; Mohamed, A.M. Synergistic effects of modified sheep wool fibers on impact resistance and strength properties of concrete composites. Constr. Build. Mater. 2022, 336, 127550. [Google Scholar] [CrossRef]
- Chen, S.; Hori, N.; Kajiyama, M.; Takemura, A. Compatibilities and properties of poly lactide/poly (methyl acrylate) grafted chicken feather composite: Effects of graft chain length. J. Appl. Polym. Sci. 2020, 137, 48981. [Google Scholar] [CrossRef]
- Sogawa, H.; Korawit, T.; Masunaga, H.; Numata, K. Silk/Natural Rubber (NR) and 3,4-Dihydroxyphenylalanine (DOPA)-Modified Silk/NR Composites: Synthesis, Secondary Structure, and Mechanical Properties. Molecules 2020, 25, 235. [Google Scholar] [CrossRef] [Green Version]
- Brenner, M.; Popescu, C.; Weichold, O. Anti-Frothing Effect of Poultry Feathers in Bio-Based, Polycondensation-Type Thermoset Composites. Appl. Sci. 2020, 10, 2150. [Google Scholar] [CrossRef] [Green Version]
- Pan, L.; Wang, F.; Cheng, Y.; Leow, W.R.; Zhang, Y.-W.; Wang, M.; Cai, P.; Ji, B.; Li, D.; Chen, X. A supertough electro-tendon based on spider silk composites. Nat. Commun. 2020, 11, 1332. [Google Scholar] [CrossRef]
- Zaini, E.; Azaman; Jamali, M.; Ismail, K. Synthesis and characterization of natural fiber reinforced polymer composites as core for honeycomb core structure: A review. J. Sandw. Struct. Mater. 2018, 22, 525–550. [Google Scholar] [CrossRef]
- Praharaj, S.; Rout, D.; Nayak, R. Synergistic effect of natural fiber-reinforced polymer composite. In Hybrid Natural Fiber Composites; Elsevier: Amsterdam, The Netherlands, 2021; pp. 145–165. [Google Scholar]
- Shahinur, S.; Hasan, M. Jute/Coir/Banana Fiber Reinforced Bio-Composites: Critical Review of Design, Fabrication, Properties and Applications; Elsevier: Amsterdam, The Netherlands, 2020. [Google Scholar]
- Yan, L.; Kasal, B.; Huang, L. A review of recent research on the use of cellulosic fibres, their fibre fabric reinforced cementitious, geo-polymer and polymer composites in civil engineering. Compos. Part B Eng. 2016, 92, 94–132. [Google Scholar] [CrossRef]
- Tang, X.; Yan, X. A review on the damping properties of fiber reinforced polymer composites. J. Ind. Text. 2018, 49, 693–721. [Google Scholar] [CrossRef]
- Koolen, G.; Soete, J.; van Vuure, A.W. Interface modification and the influence on damage development of flax fibre—Epoxy composites when subjected to hygroscopic cycling. Mater. Today Proc. 2020, 31, S273–S279. [Google Scholar] [CrossRef]
- Page, J.; Khadraoui, F.; Boutouil, M.; Gomina, M. Multi-physical properties of a structural concrete incorporating short flax fibers. Constr. Build. Mater. 2017, 140, 344–353. [Google Scholar] [CrossRef]
- Alzeer, M.I.; MacKenzie, K.J. Fiber composites of inorganic polymers (geopolymers) reinforced with natural fibers. In Composite Materials; Elsevier: Amsterdam, The Netherlands, 2021; pp. 117–147. [Google Scholar]
- Asim, M.; Paridah, M.; Jawaid, M.; Nasir, M.; Saba, N. (Eds.) Physical and Flammability Properties of Kenaf and Pineapple Leaf Fibre Hybrid Composites. In Materials Science and Engineering; IOP Conference Series; IOP Publishing: Bristol, UK, 2018. [Google Scholar]
- Pehanich, J.L.; Blankenhorn, P.R.; Silsbee, M.R. Wood fiber surface treatment level effects on selected mechanical properties of wood fiber–cement composites. Cem. Concr. Res. 2004, 34, 59–65. [Google Scholar] [CrossRef]
- Castellano, M.; Gandini, A.; Fabbri, P.; Belgacem, M. Modification of cellulose fibres with organosilanes: Under what conditions does coupling occur? J. Colloid Interface Sci. 2004, 273, 505–511. [Google Scholar] [CrossRef] [PubMed]
- Abdelmouleh, M.; Boufi, S.; Belgacem, M.N.; Dufresne, A.; Gandini, A. Modification of cellulose fibers with functionalized silanes: Effect of the fiber treatment on the mechanical performances of cellulose-thermoset composites. J. Appl. Polym. Sci. 2005, 98, 974–984. [Google Scholar] [CrossRef]
- Arsène, M.-A.; Okwo, A.; Bilba, K.; Soboyejo, A.; Soboyejo, W. Chemically and thermally treated vegetable fibers for reinforcement of cement-based composites. Mater. Manuf. Processes 2007, 22, 214–227. [Google Scholar] [CrossRef]
- Khelifa, H.; Bezazi, A.; Boumediri, H.; del Pino, G.G.; Reis, P.N.; Scarpa, F.; Dufresne, A. Mechanical characterization of mortar reinforced by date palm mesh fibers: Experimental and statistical analysis. Constr. Build. Mater. 2021, 300, 124067. [Google Scholar] [CrossRef]
- Benaimeche, O.; Carpinteri, A.; Mellas, M.; Ronchei, C.; Scorza, D.; Vantadori, S. The influence of date palm mesh fibre reinforcement on flexural and fracture behaviour of a cement-based mortar. Compos. Part B Eng. 2018, 152, 292–299. [Google Scholar] [CrossRef] [Green Version]
- Vantadori, S.; Carpinteri, A.; Zanichelli, A. Lightweight construction materials: Mortar reinforced with date-palm mesh fibres. Theor. Appl. Fract. Mech. 2019, 100, 39–45. [Google Scholar] [CrossRef]
- Ali-Boucetta, T.; Ayat, A.; Laifa, W.; Behim, M. Treatment of date palm fibres mesh: Influence on the rheological and mechanical properties of fibre-cement composites. Constr. Build. Mater. 2021, 273, 121056. [Google Scholar] [CrossRef]
- Siakeng, R.; Jawaid, M.; Tahir, P.M.; Siengchin, S.; Asim, M. Improving the properties of pineapple leaf fibres by chemical treatments. In Pineapple Leaf Fibers; Springer: Berlin/Heidelberg, Germany, 2020; pp. 55–71. [Google Scholar]
- Mansour, R.; El Abidine, R.Z.; Brahim, B. Performance of polymer concrete incorporating waste marble and alfa fibers. Adv. Concr. Constr. 2017, 5, 331. [Google Scholar]
- Sullins, T.; Pillay, S.; Komus, A.; Ning, H. Hemp fiber reinforced polypropylene composites: The effects of material treatments. Compos. Part B Eng. 2017, 114, 15–22. [Google Scholar] [CrossRef] [Green Version]
- Machaka, M.; Basha, H.; Abou Chakra, H.; Elkordi, A. Alkali treatment of fan palm natural fibers for use in fiber reinforced concrete. Eur. Sci. J. 2014, 10, 186–195. [Google Scholar]
- Khan, M.; Rehman, A.; Ali, M. Efficiency of silica-fume content in plain and natural fiber reinforced concrete for concrete road. Constr. Build. Mater. 2020, 244, 118382. [Google Scholar] [CrossRef]
- Kesikidou, F.; Stefanidou, M. Natural fiber-reinforced mortars. J. Build. Eng. 2019, 25, 100786. [Google Scholar] [CrossRef]
- Castillo-Lara, J.F.; Flores-Johnson, E.A.; Valadez-Gonzalez, A.; Herrera-Franco, P.J.; Carrillo, J.G.; Gonzalez-Chi, P.I.; Li, Q.M. Mechanical Properties of Natural Fiber Reinforced Foamed Concrete. Materials 2020, 13, 3060. [Google Scholar] [CrossRef]
- Zhang, D.; Tan, K.H.; Dasari, A.; Weng, Y. Effect of natural fibers on thermal spalling resistance of ultra-high performance concrete. Cem. Concr. Compos. 2020, 109, 103512. [Google Scholar] [CrossRef]
- Marvila, M.T.; Azevedo, A.R.; Cecchin, D.; Costa, J.M.; Xavier, G.C.; do Carmo, D.d.F.; Monteiro, S.N. Durability of coating mortars containing açaí fibers. Case Stud. Constr. Mater. 2020, 13, e00406. [Google Scholar] [CrossRef]
- Boumaaza, M.; Belaadi, A.; Bourchak, M. The effect of alkaline treatment on mechanical performance of natural fibers-reinforced plaster: Optimization using RSM. J. Nat. Fibers 2020, 1–21. [Google Scholar] [CrossRef]
- Zhou, X.; Saini, H.; Kastiukas, G. Engineering Properties of Treated Natural Hemp Fiber-Reinforced Concrete. Front. Built Environ. 2017, 3, 33. [Google Scholar] [CrossRef] [Green Version]
- Grubeša, I.N.; Marković, B.; Gojević, A.; Brdarić, J. Effect of hemp fibers on fire resistance of concrete. Constr. Build. Mater. 2018, 184, 473–484. [Google Scholar] [CrossRef]
- Lazorenko, G.; Kasprzhitskii, A.; Yavna, V.; Mischinenko, V.; Kukharskii, A.; Kruglikov, A.; Kolodina, A.; Yalovega, G. Effect of pre-treatment of flax tows on mechanical properties and microstructure of natural fiber reinforced geopolymer composites. Environ. Technol. Innov. 2020, 20, 101105. [Google Scholar] [CrossRef]
- De Azevedo, A.R.; Klyuev, S.; Marvila, M.T.; Vatin, N.; Alfimova, N.; de Lima, T.E.; Fediuk, R.; Olisov, A. Investigation of the potential use of curauá fiber for reinforcing mortars. Fibers 2020, 8, 69. [Google Scholar] [CrossRef]
- Tragoonwichian, S.; Yanumet, N.; Ishida, H. Effect of fiber surface modification on the mechanical properties of sisal fiber-reinforced benzoxazine/epoxy composites based on aliphatic diamine benzoxazine. J. Appl. Polym. Sci. 2007, 106, 2925–2935. [Google Scholar] [CrossRef]
- Santos, E.B.C.; Moreno, C.G.; Barros, J.J.P.; Moura, D.A.D.; Fim, F.D.C.; Ries, A.; Wellen, R.M.R.; Silva, L.B. Effect of Alkaline and Hot Water Treatments on the Structure and Morphology of Piassava Fibers. Mater. Res. 2018, 21, 0365. [Google Scholar] [CrossRef]
- Kim, J.T.; Netravali, A.N. Mercerization of sisal fibers: Effect of tension on mechanical properties of sisal fiber and fiber-reinforced composites. Compos. Part A Appl. Sci. Manuf. 2010, 41, 1245–1252. [Google Scholar] [CrossRef]
- Mwaikambo, L.Y.; Ansell, M.P. Mechanical properties of alkali treated plant fibres and their potential as reinforcement materials. I. Hemp fibres. J. Mater. Sci. 2006, 41, 2483–2496. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, Y.; Chen, C. Synergic effects of cellulose nanocrystals and alkali on the mechanical properties of sisal fibers and their bonding properties with epoxy. Compos. Part A Appl. Sci. Manuf. 2017, 101, 480–489. [Google Scholar] [CrossRef]
- Rout, J.; Misra, M.; Tripathy, S.; Nayak, S.; Mohanty, A. The influence of fibre treatment on the performance of coir-polyester composites. Compos. Sci. Technol. 2001, 61, 1303–1310. [Google Scholar] [CrossRef]
- Sreekumar, P.; Thomas, S.P.; Saiter, J.M.; Joseph, K.; Unnikrishnan, G.; Thomas, S. Effect of fiber surface modification on the mechanical and water absorption characteristics of sisal/polyester composites fabricated by resin transfer molding. Compos. Part A Appl. Sci. Manuf. 2009, 40, 1777–1784. [Google Scholar] [CrossRef]
- Dong, Y.; Ghataura, A.; Takagi, H.; Haroosh, H.J.; Nakagaito, A.N.; Lau, K.-T. Polylactic acid (PLA) biocomposites reinforced with coir fibres: Evaluation of mechanical performance and multifunctional properties. Compos. Part A Appl. Sci. Manuf. 2014, 63, 76–84. [Google Scholar] [CrossRef] [Green Version]
- Mwaikambo, L.Y.; Ansell, M.P. Mechanical properties of alkali treated plant fibres and their potential as reinforcement materials II. Sisal fibres. J. Mater. Sci. 2006, 41, 2497–2508. [Google Scholar] [CrossRef]
- Krishna, N.K.; Prasanth, M.; Gowtham, R.; Karthic, S.; Mini, K.M. Enhancement of properties of concrete using natural fibers. Mater. Today Proc. 2018, 5, 23816–23823. [Google Scholar] [CrossRef]
- Sabarish, K.V.; Paul, P.; Bhuvaneshwari; Jones, J. An experimental investigation on properties of sisal fiber used in the concrete. Mater. Today Proc. 2020, 22, 439–443. [Google Scholar] [CrossRef]
- Okeola, A.A.; Abuodha, S.O.; Mwero, J. The effect of specimen shape on the mechanical properties of sisal fiber-reinforced Concrete. Open Civ. Eng. J. 2018, 12, 368–382. [Google Scholar] [CrossRef]
- Sabapathy, Y.; Sajeevan, R.; Rekha, J.; Vishal, V.; Sabarish, S.; Revathy, D. Impact resistance of sisal fiber reinforced concrete. Int. J. Eng. Technol. 2018, 7, 742–745. [Google Scholar]
- Sivakumaresa Chockalingam, L.N.; Rymond, N.M. Strength and Durability Characteristics of Coir, Kenaf and Polypropylene Fibers Reinforced High Performance Concrete. J. Nat. Fibers 2021, 1–9. [Google Scholar] [CrossRef]
- Aziz, A.N.A.; Hamid, R. Mechanical properties and impact resistance of hybrid kenaf and coir fibre reinforced concrete. J. Adv. Res. Appl. Mech. 2018, 47, 1–10. [Google Scholar]
- Yadav, S.K.; Singh, A. An Experimental Study on Coconut Fiber Reinforced Concrete. Int. Res. J. Eng. Technol. 2019, 6, 2250–2254. [Google Scholar]
- Zhang, L.; Jiang, Z.; Zhang, W.; Peng, S.; Chen, P. Flexural Properties and Microstructure Mechanisms of Renewable Coir-Fiber-Reinforced Magnesium Phosphate Cement-Based Composite Considering Curing Ages. Polymers 2020, 12, 2556. [Google Scholar] [CrossRef]
- Zakaria, M.; Ahmed, M.; Hoque, M.; Shaid, A. A comparative study of the mechanical properties of jute fiber and yarn reinforced concrete composites. J. Nat. Fibers 2018, 17, 676–687. [Google Scholar] [CrossRef]
- Jirawattanasomkul, T.; Likitlersuang, S.; Wuttiwannasak, N.; Ueda, T.; Zhang, D.; Shono, M. Structural behaviour of pre-damaged reinforced concrete beams strengthened with natural fibre reinforced polymer composites. Compos. Struct. 2020, 244, 112309. [Google Scholar] [CrossRef]
- Hussain, T.; Ali, M. Improving the impact resistance and dynamic properties of jute fiber reinforced concrete for rebars design by considering tension zone of FRC. Constr. Build. Mater. 2019, 213, 592–607. [Google Scholar] [CrossRef]
- Nambiar, R.A.; Haridharan, M. Mechanical and durability study of high performance concrete with addition of natural fiber (jute). Mater. Today Proc. 2021, 46, 4941–4947. [Google Scholar] [CrossRef]
- Islam, M.S.; Ahmed, S.J. Influence of jute fiber on concrete properties. Constr. Build. Mater. 2018, 189, 768–776. [Google Scholar] [CrossRef]
- Zhou, H.; Jia, B.; Huang, H.; Mou, Y. Experimental Study on Basic Mechanical Properties of Basalt Fiber Reinforced Concrete. Materials 2020, 13, 1362. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Wang, B.; Xie, A.; Qi, Y. Experimental study on dynamic mechanical properties and constitutive model of basalt fiber reinforced concrete. Constr. Build. Mater. 2017, 152, 154–167. [Google Scholar] [CrossRef]
- Wang, X.; He, J.; Mosallam, A.S.; Li, C.; Xin, H. The Effects of Fiber Length and Volume on Material Properties and Crack Resistance of Basalt Fiber Reinforced Concrete (BFRC). Adv. Mater. Sci. Eng. 2019, 2019, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Sohail, M.G.; Alnahhal, W.; Taha, A.; Abdelaal, K. Sustainable alternative aggregates: Characterization and influence on mechanical behavior of basalt fiber reinforced concrete. Constr. Build. Mater. 2020, 255, 119365. [Google Scholar] [CrossRef]
- Pirmohammad, S.; Shokorlou, Y.M.; Amani, B. Laboratory investigations on fracture toughness of asphalt concretes reinforced with carbon and kenaf fibers. Eng. Fract. Mech. 2020, 226, 106875. [Google Scholar] [CrossRef]
- Mohsin, S.S.; Baarimah, A.; Jokhio, G. (Eds.) Effect of Kenaf Fiber in Reinforced Concrete Slab. In Materials Science and Engineering; IOP Conference Series; IOP Publishing: Bristol, UK, 2018. [Google Scholar]
- Dewi, S.M.; Wijaya, M.N. (Eds.) The use of bamboo fiber in reinforced concrete beam to reduce crack. In AIP Conference Proceedings; AIP Publishing LLC: Melville, NY, USA, 2017. [Google Scholar]
- Gupta, D.K.; Singh, R. An Experimental Evaluation of Compressive Strength and Flexural Strength of Bamboo Fiber Reinforced Concrete. Carbon 2018, 1, 200. [Google Scholar]
- Kumarasamy, K.; Shyamala, G.; Gebreyowhanse, H. (Eds.) Strength Properties of Bamboo Fiber Reinforced Concrete. In Materials Science and Engineering; IOP Conference Series; IOP Publishing: Bristol, UK, 2020. [Google Scholar]
- Ede, A.N.; Olofinnade, O.M.; Joshua, O.; Nduka, D.O.; Oshogbunu, O.A. Influence of bamboo fiber and limestone powder on the properties of self-compacting concrete. Cogent Eng. 2020, 7, 1721410. [Google Scholar] [CrossRef]
- Mali, P.R.; Datta, D. Experimental evaluation of bamboo reinforced concrete beams. J. Build. Eng. 2020, 28, 101071. [Google Scholar] [CrossRef]
- Zhang, K.; Sun, Y.; Wang, F.; Liang, W.; Wang, Z. Progressive Failure and Energy Absorption of Chopped Bamboo Fiber Reinforced Polybenzoxazine Composite under Impact Loadings. Polymers 2020, 12, 1809. [Google Scholar] [CrossRef] [PubMed]
- Ramesh, M.; Deepa, C.; Ravanan, A. Bamboo Fiber Reinforced Concrete Composites. In Bamboo Fiber Composites; Springer: Berlin/Heidelberg, Germany, 2021; pp. 127–145. [Google Scholar]
- Huang, K.; Rammohan, A.V.; Kureemun, U.; Teo, W.S.; Tran, L.Q.N.; Lee, H.P. Shock wave impact behavior of flax fiber reinforced polymer composites. Compos. Part B Eng. 2016, 102, 78–85. [Google Scholar] [CrossRef] [Green Version]
- Mak, K.; Fam, A. Freeze-thaw cycling effect on tensile properties of unidirectional flax fiber reinforced polymers. Compos. Part B Eng. 2019, 174, 106960. [Google Scholar] [CrossRef]
- Akın, E.; Rashidi, M. Axial behavior of concrete confined with flax fiber-reinforced polymers. Mater. Today Commun. 2021, 28, 102646. [Google Scholar] [CrossRef]
- Asim, M.; Uddin, G.M.; Jamshaid, H.; Raza, A.; Hussain, U.; Satti, A.N.; Hayat, N.; Arafat, S.M. Comparative experimental investigation of natural fibers reinforced light weight concrete as thermally efficient building materials. J. Build. Eng. 2020, 31, 101411. [Google Scholar] [CrossRef]
- Wongsa, A.; Kunthawatwong, R.; Naenudon, S.; Sata, V.; Chindaprasirt, P. Natural fiber reinforced high calcium fly ash geopolymer mortar. Constr. Build. Mater. 2020, 241, 118143. [Google Scholar] [CrossRef]
- Okeola, A.A.; Abuodha, S.O.; Mwero, J. Experimental investigation of the physical and mechanical properties of sisal fiber-reinforced concrete. Fibers 2018, 6, 53. [Google Scholar] [CrossRef] [Green Version]
- Khaleel, S.; Madhavi, K.; Basutkar, S. Mechanical characteristics of brick masonry using natural fiber composites. Mater. Today Proc. 2020, 46, 4817–4824. [Google Scholar] [CrossRef]
- Razmi, A.; Mirsayar, M. On the mixed mode I/II fracture properties of jute fiber-reinforced concrete. Constr. Build. Mater. 2017, 148, 512–520. [Google Scholar] [CrossRef]
- Zhou, C.; Cai, L.; Chen, Z.; Li, J. Effect of kenaf fiber on mechanical properties of high-strength cement composites. Constr. Build. Mater. 2020, 263, 121007. [Google Scholar] [CrossRef]
- Gupta, M.; Kumar, M. Effect of nano silica and coir fiber on compressive strength and abrasion resistance of Concrete. Constr. Build. Mater. 2019, 226, 44–50. [Google Scholar] [CrossRef]
- Maier, M.; Javadian, A.; Saeidi, N.; Unluer, C.; Taylor, H.K.; Ostertag, C.P. Mechanical properties and flexural behavior of sustainable bamboo fiber-reinforced mortar. Appl. Sci. 2020, 10, 6587. [Google Scholar] [CrossRef]
- Mohamed, H.I.; El-Beltagi, H.S.; Jain, S.M.; Al-Khayri, J.M. Date palm (Phoenix dactylifera L.) secondary metabolites: Bioactivity and pharmaceutical potential. In Phytomedicine; Elsevier: Amsterdam, The Netherlands, 2021; pp. 483–531. [Google Scholar]
- Ashraf, Z.; Hamidi-Esfahani, Z. Date and Date Processing: A Review. Food Rev. Int. 2011, 27, 101–133. [Google Scholar] [CrossRef]
- Salomón-Torres, R.; Krueger, R.; García-Vázquez, J.; Villa-Angulo, R.; Villa-Angulo, C.; Ortiz-Uribe, N.; Sol-Uribe, J.; Samaniego-Sandoval, L. Date Palm Pollen: Features, Production, Extraction and Pollination Methods. Agronomy 2021, 11, 504. [Google Scholar] [CrossRef]
- Nixon, R.W. The date palm—“Tree of Life” in the subtropical deserts. Econ. Bot. 1951, 5, 274–301. [Google Scholar] [CrossRef]
- Al-Alawi, R.A.; Al-Mashiqri, J.H.; Al-Nadabi, J.S.M.; Al-Shihi, B.I.; Baqi, Y. Date Palm Tree (Phoenix dactylifera L.): Natural Products and Therapeutic Options. Front. Plant Sci. 2017, 8, 845. [Google Scholar] [CrossRef] [Green Version]
- Jonoobi, M.; Shafie, M.; Shirmohammadli, Y.; Ashori, A.; Hosseinabadi, H.Z.; Mekonnen, T. A review on date palm tree: Properties, characterization and its potential applications. J. Renew. Mater. 2019, 7, 1055–1075. [Google Scholar] [CrossRef] [Green Version]
- Karasawa, K.; Uzuhashi, Y.; Hirota, M.; Otani, H. A Matured Fruit Extract of Date Palm Tree (Phoenix dactylifera L.) Stimulates the Cellular Immune System in Mice. J. Agric. Food Chem. 2011, 59, 11287–11293. [Google Scholar] [CrossRef]
- Abbo, S.; Gopher, A.; Lev-Yadun, S. Fruit domestication in the Near East. Plant Breed. Rev. 2015, 39, 325–377. [Google Scholar]
- Tengberg, M. Beginnings and early history of date palm garden cultivation in the Middle East. J. Arid Environ. 2012, 86, 139–147. [Google Scholar] [CrossRef]
- Chaluvadi, S.R.; Young, P.; Thompson, K.; Bahri, B.A.; Gajera, B.; Narayanan, S.; Krueger, R.; Bennetzen, J.L. Phoenix phylogeny, and analysis of genetic variation in a diverse collection of date palm (Phoenix dactylifera) and related species. Plant Divers. 2019, 41, 330–339. [Google Scholar] [CrossRef]
- El-Juhany, L.I. Degradation of date palm trees and date production in Arab countries: Causes and potential rehabilitation. Australian. J. Basic Appl. Sci. 2010, 4, 3998–4010. [Google Scholar]
- Chao, C.T.; Krueger, R.R. The date palm (Phoenix dactylifera L.): Overview of biology, uses, and cultivation. HortScience 2007, 42, 1077–1082. [Google Scholar] [CrossRef] [Green Version]
- Mostaan, A. 9 Mechanization in Date. In Dates: Production, Processing, Food, and Medicinal Values; CRC Press: Boca Raton, FL, USA, 2012. [Google Scholar]
- Alawar, A.; Hamed, A.M.; Al-Kaabi, K. Characterization of treated date palm tree fiber as composite reinforcement. Compos. Part B Eng. 2009, 40, 601–606. [Google Scholar] [CrossRef]
- Siddiq, M.; Aleid, S.M.; Kader, A.A. Dates: Postharvest Science, Processing Technology and Health Benefits; John Wiley & Sons: Hoboken, NJ, USA, 2013. [Google Scholar]
- Eoin, L.N. Systematics: Blind dating. Nat. Plants 2016, 2, 16069. [Google Scholar] [CrossRef]
- Awad, S.; Zhou, Y.; Katsou, E.; Li, Y.; Fan, M. A Critical Review on Date Palm Tree (Phoenix dactylifera L.) Fibres and Their Uses in Bio-composites. Waste Biomass-Valorization 2021, 12, 2853–2887. [Google Scholar] [CrossRef]
- Shoaib, M.; Al-Swaidan, H.M. Optimization and characterization of sliced activated carbon prepared from date palm tree fronds by physical activation. Biomass Bioenergy 2015, 73, 124–134. [Google Scholar] [CrossRef]
- Shoaib, M.; Al-Swaidan, H.M. Synthesis of Activated Carbon from Saudi Date Tree Fronds by Gaseous Mixture (N2 and CO2). J. Chem. Soc. Pak. 2014, 36, 771–774. [Google Scholar]
- AL-Oqla, F.M.; Alothman, O.Y.; Jawaid, M.; Sapuan, S.; Es-Saheb, M. Processing and properties of date palm fibers and its composites. In Biomass and Bioenergy; Springer: Berlin/Heidelberg, Germany, 2014; pp. 1–25. [Google Scholar]
- FAOSTAT. Production of Dates: Top 10 Producers; Food and Agriculture Organization (FAO) of the United Nations: Rome, Italy, 2019. [Google Scholar]
- Al-Oqla, F.M.; Sapuan, S. Natural fiber reinforced polymer composites in industrial applications: Feasibility of date palm fibers for sustainable automotive industry. J. Clean. Prod. 2014, 66, 347–354. [Google Scholar] [CrossRef]
- Barreveld, W. Date Palm Products; Food and Agriculture Organization: Rome, Italy, 1993. [Google Scholar]
- Alotaibi, M.D.; Alshammari, B.A.; Saba, N.; Alothman, O.Y.; Sanjay, M.; Almutairi, Z.; Jawaid, M. Characterization of natural fiber obtained from different parts of date palm tree (Phoenix dactylifera L.). Int. J. Biol. Macromol. 2019, 135, 69–76. [Google Scholar] [CrossRef] [PubMed]
- Dhakal, H.; Bourmaud, A.; Berzin, F.; Almansour, F.; Zhang, Z.; Shah, D.; Beaugrand, J. Mechanical properties of leaf sheath date palm fibre waste biomass reinforced polycaprolactone (PCL) biocomposites. Ind. Crop. Prod. 2018, 126, 394–402. [Google Scholar] [CrossRef] [Green Version]
- Wazzan, A.A. The Effect of Surface Treatment on the Strength and Adhesion Characteristics of Phoenix dactylifera-L(Date Palm) Fibers. Int. J. Polym. Mater. Polym. Biomater. 2006, 55, 485–499. [Google Scholar] [CrossRef]
- Wazzan, A. Effect of fiber orientation on the mechanical properties and fracture characteristics of date palm fiber reinforced composites. Int. J. Polym. Mater. Polym. Biomater. 2005, 54, 213–225. [Google Scholar] [CrossRef]
- Al-Sulaiman, F.A. Mechanical Properties of Date Palm Fiber Reinforced Composites. Appl. Compos. Mater. 2002, 9, 369–377. [Google Scholar] [CrossRef]
- Al-Kaabi, K.; Al-Khanbashi, A.; Hammami, A. Date palm fibers as polymeric matrix reinforcement: DPF/polyester composite properties. Polym. Compos. 2005, 26, 604–613. [Google Scholar] [CrossRef]
- Eslami-Farsani, R. Effect of fiber treatment on the mechanical properties of date palm fiber reinforced PP/EPDM composites. Adv. Compos. Mater. 2014, 24, 27–40. [Google Scholar] [CrossRef]
- Alatshan, F.; Altlomate, A.; Mashiri, F. (Eds.) The Behavior of Concrete Reinforced with High Proportion of Date Palm Fibers. In Proceedings of the 13th Arab Structural Engineering Conference, Blida, Algeria, 13–15 December 2015; University of Blida: Blida, Algeria, 2015. [Google Scholar]
- Dhakal, H.N.; Ismail, S.O. Sustainable natural fibre reinforcements and their morphological structures. In Sustainable Composites for Lightweight Applications; Woodhead Publishing Series in Composites Science and Engineering; Elsevier: Kidlington, UK, 2021; pp. 17–51. [Google Scholar]
- Chand, N.; Fahim, M. Natural fibers and their composites. In Tribology of Natural Fiber Polymer Composites, 2nd ed.; Woodhead Publishing Series in Composites Science and Engineering/Elsevier Science Publishing Co Inc.: Amsterdam, The Netherlands, 2021; pp. 1–59. [Google Scholar]
- Suksong, W.; Kongjan, P.; Prasertsan, P.; Imai, T.; O-Thong, S. Optimization and microbial community analysis for production of biogas from solid waste residues of palm oil mill industry by solid-state anaerobic digestion. Bioresour. Technol. 2016, 214, 166–174. [Google Scholar] [CrossRef]
- De Rosa, I.M.; Santulli, C.; Sarasini, F. Mechanical and thermal characterization of epoxy composites reinforced with random and quasi-unidirectional untreated Phormium tenax leaf fibers. Mater. Des. 2010, 31, 2397–2405. [Google Scholar] [CrossRef]
- Saadaoui, N.; Rouilly, A.; Fares, K.; Rigal, L. Characterization of date palm lignocellulosic by-products and self-bonded composite materials obtained thereof. Mater. Des. 2013, 50, 302–308. [Google Scholar] [CrossRef]
- Rouilly, A.; Saadaoui, N.; Fares, K.; Pintiaux, T. (Eds.) Characterization of date palm lignocellulosic by-products and self-bonded composite materials. In Proceedings of the International Conference on Bio-based Materials and Composites (ICBMC’12), Marrakech, Morocco, 22–24 February 2012. [Google Scholar]
- Mirmehdi, S.M.; Zeinaly, F.; Dabbagh, F. Date palm wood flour as filler of linear low-density polyethylene. Compos. Part B Eng. 2014, 56, 137–141. [Google Scholar] [CrossRef]
- Sbiai, A.; Maazouz, A.; Fleury, E.; Souterneau, H.; Kaddami, H. Short date palm tree fibers/polyepoxy composites prepared using RTM process: Effect of tempo mediated oxidation of the fibers. BioResources 2010, 5, 672–689. [Google Scholar]
- Nasser, R.A.; Salem, M.Z.M.; Hiziroglu, S.; Al-Mefarrej, H.A.; Mohareb, A.S.; Alam, M.; Aref, I.M. Chemical Analysis of Different Parts of Date Palm (Phoenix dactylifera L.) Using Ultimate, Proximate and Thermo-Gravimetric Techniques for Energy Production. Energies 2016, 9, 374. [Google Scholar] [CrossRef] [Green Version]
- Nasser, R.A.; Al-Mefarrej, H.A. Midribs of date palm as a raw material for wood-cement composite industry in Saudi Arabia. World Appl. Sci. J. 2011, 15, 1651–1658. [Google Scholar]
- Nasser, R.A.-S. An Evaluation of the Use of Midribs from Common Date Palm Cultivars Grown in Saudi Arabia for Energy Production. BioResources 2014, 9, 4343–4357. [Google Scholar] [CrossRef]
- Riahi, K.; Mammou, A.B.; Thayer, B.B. Date-palm fibers media filters as a potential technology for tertiary domestic wastewater treatment. J. Hazard. Mater. 2009, 161, 608–613. [Google Scholar] [CrossRef]
- Kriker, A.; Debicki, G.; Bali, A.; Khenfer, M.; Chabannet, M. Mechanical properties of date palm fibres and concrete reinforced with date palm fibres in hot-dry climate. Cem. Concr. Compos. 2005, 27, 554–564. [Google Scholar] [CrossRef]
- Taallah, B.; Guettala, A.; Guettala, S.; Kriker, A. Mechanical properties and hygroscopicity behavior of compressed earth block filled by date palm fibers. Constr. Build. Mater. 2014, 59, 161–168. [Google Scholar] [CrossRef]
- Tioua, T.; Kriker, A.; Barluenga, G.; Palomar, I. Influence of date palm fiber and shrinkage reducing admixture on self-compacting concrete performance at early age in hot-dry environment. Constr. Build. Mater. 2017, 154, 721–733. [Google Scholar] [CrossRef]
- Mahdi, E.; Ochoa, D.; Vaziri, A.; Eltai, E. Energy absorption capability of date palm leaf fiber reinforced epoxy composites rectangular tubes. Compos. Struct. 2019, 224, 111004. [Google Scholar] [CrossRef]
- Djoudi, A.; Khenfer, M.; Bali, A.; Kadri, E.; Debicki, G. Performance of date palm fibres reinforced plaster concrete. Int. J. Phys. Sci. 2012, 7, 2845–2853. [Google Scholar] [CrossRef]
- Djoudi, A.; Khenfer, M.M.; Bali, A.; Bouziani, T. Effect of the addition of date palm fibers on thermal properties of plaster concrete: Experimental study and modeling. J. Adhes. Sci. Technol. 2014, 28, 2100–2111. [Google Scholar] [CrossRef]
- Benmansour, N.; Agoudjil, B.; Gherabli, A.; Kareche, A.; Boudenne, A. Thermal and mechanical performance of natural mortar reinforced with date palm fibers for use as insulating materials in building. Energy Build. 2014, 81, 98–104. [Google Scholar] [CrossRef]
- Boukhattem, L.; Boumhaout, M.; Hamdi, H.; Benhamou, B.; Nouh, F.A. Moisture content influence on the thermal conductivity of insulating building materials made from date palm fibers mesh. Constr. Build. Mater. 2017, 148, 811–823. [Google Scholar] [CrossRef]
- Boumhaout, M.; Boukhattem, L.; Hamdi, H.; Benhamou, B.; Nouh, F.A. Thermomechanical characterization of a bio-composite building material: Mortar reinforced with date palm fibers mesh. Constr. Build. Mater. 2017, 135, 241–250. [Google Scholar] [CrossRef]
- Haba, B.; Agoudjil, B.; Boudenne, A.; Benzarti, K. Hygric properties and thermal conductivity of a new insulation material for building based on date palm concrete. Constr. Build. Mater. 2017, 154, 963–971. [Google Scholar] [CrossRef]
- Benaniba, S.; Driss, Z.; Djendel, M.; Raouache, E.; Boubaaya, R. Thermo-mechanical characterization of a bio-composite mortar reinforced with date palm fiber. J. Eng. Fibers Fabr. 2020, 15, 1–9. [Google Scholar] [CrossRef]
- Alatshan, F.; Altlomate, A.M.; Mashiri, F.; Alamin, W. Effect of date palm fibers on the mechanical properties of concrete. Int. J. Sustain. Build. Technol. Urban Dev. 2017, 68–80. [Google Scholar] [CrossRef]
- Al-Rifaie, W.N.; Al-Niami, M. Mechanical performance of date palm fibre-reinforced gypsums. Innov. Infrastruct. Solutions 2016, 1, 18. [Google Scholar] [CrossRef] [Green Version]
- Braiek, A.; Karkri, M.; Adili, A.; Ibos, L.; Ben Nasrallah, S. Estimation of the thermophysical properties of date palm fibers/gypsum composite for use as insulating materials in building. Energy Build. 2017, 140, 268–279. [Google Scholar] [CrossRef]
- Chikhi, M.; Agoudjil, B.; Boudenne, A.; Gherabli, A. Experimental investigation of new biocomposite with low cost for thermal insulation. Energy Build. 2013, 66, 267–273. [Google Scholar] [CrossRef]
- Chikhi, M. Young’s modulus and thermophysical performances of bio-sourced materials based on date palm fibers. Energy Build. 2016, 129, 589–597. [Google Scholar] [CrossRef]
- Mekhermeche, A.; Kriker, A.; Dahmani, S. Contribution to the study of thermal properties of clay bricks reinforced by date palm fiber. AIP Conf. Proc. 2016, 1758, 030004. [Google Scholar] [CrossRef]
- Hakkoum, S.; Kriker, A.; Mekhermeche, A. Thermal characteristics of Model houses Manufactured by date palm fiber reinforced earth bricks in desert regions of Ouargla Algeria. Energy Procedia 2017, 119, 662–669. [Google Scholar] [CrossRef]
- Chaib, H.; Kriker, A.; Mekhermeche, A. Thermal Study of Earth Bricks Reinforced by Date palm Fibers. Energy Procedia 2015, 74, 919–925. [Google Scholar] [CrossRef] [Green Version]
Origin | Fibre Name | Chemical Composition (wt %) | Diameter (µm) | Density (g/cm3) | Tensile Strength (MPa) | Tensile Modulus (GPa) | Elongation at Break (%) | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
Cellulose | Hemicellulose | Lignin | Pectin | Wax | |||||||
Tree | Softwood | 30–60 | 20–30 | 21–37 | - | - | 20 | - | |||
Hardwood | 31–64 | 25–40 | 14–34 | - | - | 33 | - | - | - | - | |
Leaf | Sisal | 60.0–78.0 | 10.0–14.2 | 8.0–14.0 | 10.0 | 2.0 | 1.33–1.5 | 363–700 | 9.0–38 | 2.0–7.0 | |
Pineapple | 70–84 | - | 5–12 | - | - | 20–80 | 1.44–1.56 | 413–1627 | 60–82 | - | |
Abaca | 56–63 | 20–25 | 7–13 | 1 | 3 | 17–21.4 | 1.5 | 400–980 | 6.2–20 | 1.0–10 | |
Curauá | 70.7–73.6 | 9.9 | 7.5–11.1 | - | - | 7–10 | 1.4 | 87–1150 | 11.8–96 | 1.3–4.9 | |
Banana [42] | 53.5–67.6 | 10–28.6 | 5–15.4 | - | - | 12–30 | 1.3–1.5 | 355–500 | 12–33.8 | 1.5–9 | |
Corn husk | 50–55 | 39.4 | 7.5 | - | - | 130–140 | 0.34 | 150–175 | 4.0–5.5 | -- | |
Seed | Coconut Coir | 32–43.8 | 0.15–20 | 40–45.8 | 3–4 | - | 10–460 | 1.15–1.46 | 95–230 | 2.8–6 | 15–51.4 |
Cotton | 82.7–90.0 | 5.7 | <2.0 | <1.0 | 0.6 | 10–45 | 1.5–1.6 | 287–800 | 5.5–12.6 | 3–10 | |
Bast | Jute | 59.0–71.5 | 13.6–20.4 | 11.8–13.0 | 0.2–0.4 | 0.5 | 20–200 | 1.3–1.49 | 320–800 | 8–78 | 1–1.8 |
Kenaf | 31–72 | 20.3–21.5 | 8–19 | 3–5 | - | - | 1.24–1.4 | 223–930 | 14.5–53 | 1.5–2.7 | |
Flax | 62.0–72.0 | 18.6–20.6 | 2.0–5.0 | 2.3 | 1.5–1.7 | 12–600 | 1.4–1.5 | 343–2000 | 27.6–103 | 1.2–3.3 | |
Hemp | 68.0–74.4 | 15.0–22.4 | 3.7–10 | 0.9 | 0.8 | 25–500 | 1.4–1.5 | 270–900 | 23.5–90 | 1–3.5 | |
Baggase | 32.0–55.2 | 16.8 | 19.0–5.3 | - | - | 10–300 | 1.25–1.3 | 222–290 | 17–27.1 | 1.1 | |
Coconut | 36–43 | 0.15–0.25 | 41–45 | 3–4 | - | 100–450 | - | 131–175 | 4–13 | - | |
Corn cob | 26.1 | 45.9 | 11.3 | - | - | - | - | - | - | - | |
Grass | Bamboo | 26.0–65.0 | 30.0 | 5.0–31.0 | - | - | 25–40 | 0.6–1.1 | 140–800 | 11–32 | 2.5–3.7 |
Elephant Grass | - | - | - | - | - | <17 | 2.5–2.59 | 2000–3500 | 70–76 | 1.8–4.8 |
References | Natural Fiber | Method of Treatment | Outcome |
---|---|---|---|
Khan et al. [61] | Coconut Fibers | Soaked a hard skin (husk) in water and embedded the matured coconut to it; this allows decomposition of soft materials around the fibers before extracting the coconut fiber | No outcome reported |
Kesikidou and Stefanidou [62] | Jute, Coconut, Kelp | Soaked the fibers in water for 24 h before adding to the composites | Reduced absorption of mixing water by the fibers |
Castillo-Lara et al. [63] | Henequen fibers | NaOH aqueous solution at 2% concentration at 25 °C fir 1 hr at 550 rpm using mechanical stirrer. After which the fiber was washed with water and oven dried for 24 h | Improved tensile strength and tensile absorbed energy |
Zhang et al. [64] and Marvila et al. [65] | Jute (Zhang), acai (Marvila) | Soaked in 5% NaOH solution for 24 h and then washed | Impurities, wax, and oil residues removed, improved roughness of the fiber |
Boumaaza et al. [66] | Sisal, flax, and jute | Soaked the fibers in NaOH at different concentrations for 12 h, afterwards the fiber was washed, and oven dried for 2h at 40 °C | Improved flexural strength, modulus, and displacement |
Zhou et al. [67] | Hemp | Soaked about 100 g of fiber into 2% Ca(OH)2 concentration for 14 h at 20 °C, after which the fiber was washed with water and air dried for 48 h at 20 °C | Enhanced surface roughness and adhesion, improved strength, and ductility |
Grubeša et al. [68] | Hemp | Applied different treatments using 2.5% and 5% NaOH, and 2% Na2SO3 for 1 hr at 95 °C. After which the fiber was washed with water and oven-dried for 24 h at 70 °C | improved bending and mechanical performance, fire resistance, and lowered degradation temperature |
Lazorenko et al. [69] | Flax tows fibers | Soaked fibers in 5% NaOH solution at 25 °C for 1 hr, and ultrasonicate for 0.5 hr. afterwards the fiber was washed with deionized water and then dried at 60 °C for 12 h | Reduced balling, enhanced flexural strength and bonding |
de Azevedo et al. [70] | Curauá Fiber | Soaked in 5% NaOH for 0.5 h, then neutralized using HCl solution and washed with water | Enhances the durability and removes impurities in the fiber, improved mechanical compression and tensile strengths of the composite |
Tragoonwichian et al. [71] | Sisal | Treated the fiber using 2%, 4% and 6% NaOH concentration for 1, 5 and 24 h. afterwards the fiber was used with water and oven dried at 110 °C for 2 h. The treated fiber was further soaked for 2 h in silane solution. After which the fiber was washed, and oven dried at 110 °C for 2 h | Change in morphology, hydrophilicity, and chemical groups of the finer. Improved fiber adhesion and improved mechanical strengths of the composites |
Santos et al. [72] | Piassava Fibers | Used two methods for treatment: (1) stirred the fiber in hot water at 75 °C for up to 24 h, then air dried at 168 ± 2 h. (2) soaked the fiber in 2% NaOH or Ca(OH)2 solutions for up to 400 min, after which the fiber was washed and air dried for 48 h | Both methods removed impurities from the fiber. Treatment using alkaline solutions improved the properties of the fiber more |
References | Natural Fiber | Concentration of NaOH | Outcomes |
---|---|---|---|
Kim and Netravali [73] | Sisal | 2% for 2 h | Improved tensile strength (21.5%), and Tensile modulus (35%) |
Mwaikambo and Ansell [74] | Hemp | 0.24% for 48 h | Improved tensile strength, elastic modulus and failure strain by 80.6%, 54.8% and 2.4%, respectively |
Zhang et al. [75] | Sisal | 5% for 2 h | Improved elastic modulus and tensile strength by 38% and 31%, respectively |
Rout et al. [76] | Coir | 2% at 300 °C for 1 hr | Improved flexural and tensile strengths by 15% and 26%, respectively |
Sreekumar et al. [77] | Sisal | 5% for 0.5 h | Improved tensile (36%) and flexural strengths (53%), and elastic modulus (21%) |
Dong et al. [78] | Coir | 2% at 70 °C for 1 hr | Improved flexural strength, tensile strength and elastic modulus by 25%, 5% and 1.5%, respectively |
Mwaikambo and Ansell [79] | Sisal | 0.16% for 48 h | Improved elastic modulus and tensile strength by 53% and 64%, respectively. |
Tragoonwichian et al. [71] | Sisal | 2%, 4% and 6% for 1 hr, 5 hr and 24 h | Decreased tensile strength by 10%. Enhanced flexural strength, flexural modulus and and elastic modulus by 11%, 10% and 42%, respectively |
Species | Local Name | Location Found |
---|---|---|
Phoenix Atlantica | Cape Verde Island date palm | Cape Verde |
Phoenix Canariensis | Canary Island date palm | Canary Island, Australia, Bermuda, Spain, Italy |
Phoenix Acaulis | Stemless date palm | Northern India, Nepal, Bhutan |
Phoenix Andamanensis | Andaman Island date palm | Myanmar |
Phoenix Caespitosa | Date palm | Saudi Arabia, Oman, Somalia, Djibouti, Yemen |
Phoenix Dactylifera L. | Date palm | Arabian Peninsula, California, USA, Pakistan, Spain, North Africa, West Africa, India, Mauritius, Fiji, Australia, Spain, Iran, India, Elsalvador |
Phoenix Pusilla | Ceylon date palm | India, Sri Lanka |
Phoenix Loureiroi | Mountain date palm | Himalayas, India, China, Indochina, Philippines |
Phoenix Paludosa | Mangrove date palm | India, Andaman, Indochuna, Sumatra |
Phoenix Reclinata | Senegal date palm | Arabian Peninsula, Africa, Comoros, Madagascar |
Phoenix Roebelenii | Pygmy date palm | China, North Ido-China |
Phoenix Rupicola | Cliff date palm | India, Bhutan, Andaman Islands |
Phoenix Theophrasti | Cretan date palm | Turkey, Greek Islands |
Phoenix Sylvestris | Indian date palm | Myanmar, Indian Subcontinent, Southern China |
Rank | Country | Production (tons) | Rank | Country | Production (tons) |
---|---|---|---|---|---|
1 | Egypt | 1,603,762 | 11 | Libya | 174,583 |
2 | Saudi Arabia | 1,539,756 | 12 | China | 162,041 |
3 | Iran | 1.307,908 | 13 | Morocco | 129,562 |
4 | Algeria | 1,136,025 | 14 | Kuwait | 87,391 |
5 | Iraq | 639,315 | 15 | Yemen | 47,615 |
6 | Pakistan | 483,071 | 16 | Israel | 43,967 |
7 | Sudan | 438,700 | 17 | USA | 39,300 |
8 | Oman | 372,572 | 18 | Turkey | 38,535 |
9 | United Arab Emirate | 323,478 | 19 | Qatar | 29,404 |
10 | Tunisia | 288,700 | 20 | Jordan | 25,222 |
Source Region | DPF Type | Cellulose (%) | Hemicellulose (%) | Lignin (%) | Ash (%) | Wax (%) | Moisture Content (%) | Reference |
---|---|---|---|---|---|---|---|---|
- | Mesh | 46 | - | 20 | - | - | [148,150,151] | |
Algeria | Mesh | 43 ± 2 | 8 ± 2 | 35 ± 5 | 1.2 ± 0.3 | 9–10 | [56] | |
Morocco | Mesh | 50.6 ± 1.3 | 8.1 ± 0.3 | 31.9 ± 1.3 | 6.8 ± 0.2 | 0.4 ± 0.1 | 9.1 ± 0.9 | [152,153] |
Morocco | Leaflets | 29.7 ± 1.3 | 23.3 ± 1.2 | 11.6 ± 1.3 | 9.2 ± 0.4 | 6.8 ± 0.7 | 5.9 ± 0.7 | [152,153] |
Morocco | Leaf Sheath | 34 ± 0.7 | 28.9 ± 1.8 | 18.2 ± 0.7 | 12.3 ± 0.2 | 0.5 ± 0.1 | 8.8 ± 1.1 | [152,153] |
Morocco | Rachis | 39.8 ± 0.9 | 31.4 ± 3.2 | 14 ± 0.9 | 9.2 ± 0.1 | 1 ± 0.2 | 7.5 ± 1.4 | [152,153] |
Iran | Leaflet | 40.21 | 12.8 | 32.2 | 10.54 | - | - | [154] |
Iran | Rachis | 38.26 | 28.17 | 22.53 | 5.96 | - | - | [154] |
Morocco | Leaflet | 54.75 | 15.3 | 20 | 1.75 | [155] | ||
Saudi Arabia | Leaflet | 47.14 | 36.73 | 16.13 | - | - | - | [156] |
Saudi Arabia | Rachis | 45.16 | 28.68 | 28.16 | - | - | - | [156] |
Saudi Arabia | Leaflet | 46.41 | 25.89 | - | 7.91 | - | - | [157] |
Saudi Arabia | Frond base | 40.74 ± 1.9 | 33.84 ± 2.7 | 25.45 ± 2.6 | 7.64 ± 2.0 | - | - | [158] |
Leaflet | 46.14 ± 2.4 | 24.59 ± 2.0 | 29.27 ± 3.3 | 3.40 ± 0.6 | - | - |
Source Region | DPF Type | Length | Diameter (mm) | Spe. Density (kg/m3) | Condition | Tensile Strength (MPa) | Modulus of Elasticity (GPa) | Elongation (%) | Reference |
---|---|---|---|---|---|---|---|---|---|
Tunisia | Mesh | 100 | 0.2–0.8 | - | Dry | 72.34 ± 18 | 3.15 ± 1.5 | 8.7 ± 2.2 | [159] |
Wet | 74.34 ± 15 | 2.3 ± 2 | 9.5 ± 2.5 | ||||||
Algeria | Mesh | 100 | 0.1–0.8 | 1300–1450 | Dry | 170 ± 40 | 4.74 ± 2 | 416 ± 3 | [55,160,161,162] |
Wet | 175 ± 30 | 3.78 ± 2 | 17.4 ± 2 | [160,162] | |||||
Algeria | Mesh | 20 | 0.1–0.8 | 1300–1450 | Dry | 290 ± 20 | 5.25 ± 3 | 11 ± 2 | [55,160,161,162] |
Wet | 300 ± 20 | 3.55 ± 2 | 12 ± 2 | [160,162] | |||||
Algeria | Mesh | 100 | 1300–1450 | Dry | 88.15 ± 20 | 3.50 ± 1.2 | 11.1 ± 2.5 | [160] | |
Wet | 90 ± 18 | 3.10 ± 1.5 | 12 ± 3 | [160] | |||||
Algeria | Mesh | 100 | 0.1–0.8 | 1300–1450 | Dry | 72.34 ± 18 | 3.15 ± 1.5 | 8.7 ± 2.2 | [160] |
Wet | 74.34 ± 15 | 2.30 ± 2 | 9.5 ± 2.5 | [160] | |||||
Algeria | Mesh | 100 | 0.1–0.8 | 1300–1450 | Dry | 71.15 ± 16 | 2.50 ± 1 | 7.5 ± 2.3 | [160] |
Wet | 73.19 ± 13 | 2.10 ± 1 | 8.5± 2.7 | [160] | |||||
Qatar | Leaf | - | - | 900 | Dry | 100 | 6.2 | 1.4 | [163] |
Algeria | Mesh | 10–40 | 0.1–1 | 1089 | Dry | 107.36 | 2.57 | 4.50 | [164,165] |
Lebanon | Leaf | - | 0.2–0.3 | 600–800 (bulk) | 90–110 | 4.5–6.5 | 1.5–2 | [60] | |
Morocco | Mesh | 0.389 | 979 | Dry | 12.9 ± 0.5 | 1.26 ± 0.34 | - | [152,153] | |
Morocco | Leaflets | 0.374 | 1011 | Dry | 8.4 ± 2.7 | 0.93 ± 0.4 | - | [152,153] | |
Morocco | Leaf Sheath | 0.354 | 881 | Dry | 6.1 ± 1.5 | 0.43 ± 0.13 | - | [152,153] | |
Morocco | Rachis | 0.426 | 984 | Dry | 8.5 ± 2.9 | 0.93 ± 0.25 | - | [152,153] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adamu, M.; Alanazi, F.; Ibrahim, Y.E.; Alanazi, H.; Khed, V.C. A Comprehensive Review on Sustainable Natural Fiber in Cementitious Composites: The Date Palm Fiber Case. Sustainability 2022, 14, 6691. https://doi.org/10.3390/su14116691
Adamu M, Alanazi F, Ibrahim YE, Alanazi H, Khed VC. A Comprehensive Review on Sustainable Natural Fiber in Cementitious Composites: The Date Palm Fiber Case. Sustainability. 2022; 14(11):6691. https://doi.org/10.3390/su14116691
Chicago/Turabian StyleAdamu, Musa, Fayez Alanazi, Yasser E. Ibrahim, Hani Alanazi, and Veerendrakumar C. Khed. 2022. "A Comprehensive Review on Sustainable Natural Fiber in Cementitious Composites: The Date Palm Fiber Case" Sustainability 14, no. 11: 6691. https://doi.org/10.3390/su14116691