An Empirical Study of Passengers’ Perceived Satisfaction with Monorail Service Quality: Case of Kuala Lumpur, Malaysia
Abstract
:1. Introduction
References | [3] | [5] | [20] | [51] | [52] | [53] | [54] | [55] | [56] | [57] | [58] | [59] | [60] | [61] | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mode of Public Transportation | Bus and Railway | Bus, Tram, Train and Metro | Railway | Bus and Mini Bus | Monorail | Bus | Bus | Bus | Public Transport | Bus | Railway | Railway | Tramway, Metro & Commuter rail | Metro | |
Service Attributes | Frequency | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | |||
Network coverage | √ | √ | √ | √ | √ | ||||||||||
Service provision hours | √ | √ | √ | √ | |||||||||||
Station parking | √ | √ | √ | ||||||||||||
Accessibility | √ | √ | √ | √ | √ | √ | √ | ||||||||
Easy of transfer/Distance | √ | √ | √ | ||||||||||||
Ticket price | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | ||||
Ticket selling network | √ | √ | √ | √ | √ | √ | |||||||||
Type of tickets/Passes | √ | √ | √ | ||||||||||||
On-board information | √ | √ | √ | √ | √ | √ | √ | √ | √ | ||||||
Information at station | √ | √ | √ | √ | √ | √ | √ | ||||||||
Punctuality | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | ||||
Access time | √ | √ | √ | √ | √ | √ | √ | ||||||||
Travel speed | √ | √ | √ | √ | √ | √ | |||||||||
Waiting time | √ | √ | √ | √ | |||||||||||
Driver and personnel’s behaviour | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | |||||
Customer service | √ | √ | √ | ||||||||||||
Cleanliness | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | ||||
Comfort | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | |||
Seating capacity | √ | √ | √ | √ | √ | √ | √ | √ | |||||||
Quality of vehicles | √ | √ | √ | √ | √ | ||||||||||
Temperature | √ | √ | √ | √ | √ | ||||||||||
Waiting condition | √ | √ | √ | √ | |||||||||||
On-board safety | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | ||||
Safety at station | √ | √ | √ | √ | √ | √ | √ |
2. The Case Study
3. Research Methodology
3.1. Questionnaire Design
3.2. Samples and Data Collection
3.3. Tool and Procedure for Data Analysis
4. Results
4.1. Exploratory Factor Analysis
4.2. Spearman’s Correlation Analysis
4.3. Artificial Neural Network Model
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hussain, B.; Zefreh, M.M.; Torok, A. Designing the Appropriate Data Collection Method for Public Transport Passenger Satisfaction Analysis. Int. J. Traffic Transp. Eng. 2018, 8, 177–183. [Google Scholar] [CrossRef]
- Borhan, M.N.; Syamsunur, D.; Mohd Akhir, N.; Mat Yazid, M.R.; Ismail, A.; Rahmat, R.A. Predicting the Use of Public Transportation: A Case Study from Putrajaya, Malaysia. Sci. World J. 2014, 2014, 9. [Google Scholar] [CrossRef] [Green Version]
- Irtema, H.I.M.; Ismail, A.; Borhan, M.N.; Das, A.M.; Alshetwi, A.B.Z. Case Study of the Behavioural Intentions of Public Transportation Passengers in Kuala Lumpur. Case Stud. Transp. Policy 2018, 6, 462–474. [Google Scholar] [CrossRef]
- Redman, L.; Friman, M.; Tommy, G.; Hartig, T. Quality Attributes of Public Transport That Attract Car Users—A Research Review. Transp. Policy J. 2013, 25, 119–127. [Google Scholar] [CrossRef]
- Mouwen, A. Drivers of Customer Satisfaction with Public Transport Services. Transp. Res. Part A Policy Pract. 2015, 78, 1–20. [Google Scholar] [CrossRef]
- Wall, G.; Olaniyan, B.; Woods, L.; Musselwhite, C. Encouraging Sustainable Modal Shift—An Evaluation of the Portsmouth Big Green Commuter Challenge. Case Stud. Transp. Policy 2017, 5, 105–111. [Google Scholar] [CrossRef] [Green Version]
- Replogle, M.; Fulton, L. A Global High Shift Scenario: Impacts and Potential for More Public Transport, Walking, and Cycling with Lower Car Use; 2014. Available online: https://itdpdotorg.wpengine.com/wp-content/uploads/2014/09/A-Global-High-Shift-Scenario_WEB1.pdf (accessed on 5 February 2022).
- Lai, W.T.; Chen, C.F. Behavioral Intentions of Public Transit Passengers-The Roles of Service Quality, Perceived Value, Satisfaction and Involvement. Transp. Policy 2011, 18, 318–325. [Google Scholar] [CrossRef]
- Chowdhury, S. Users’ Willingness to Ride an Integrated Public-Transport Service: A Literature Review. Transp. Policy 2016, 48, 183–195. [Google Scholar] [CrossRef]
- Thøgersen, J. Promoting Public Transport as a Subscription Service: Effects of a Free Month Travel Card. Transp. Policy 2009, 16, 335–343. [Google Scholar] [CrossRef]
- Jain, S.; Aggarwal, P.; Kumar, P.; Singhal, S.; Sharma, P. Identifying Public Preferences Using Multi-Criteria Decision Making for Assessing the Shift of Urban Commuters from Private to Public Transport: A Case Study of Delhi. Transp. Res. Part F Traffic Psychol. Behav. 2014, 24, 60–70. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.H.; Chung, J.H.; Park, S.; Choi, K. Analysis of User Satisfaction to Promote Public Transportation: A Pattern-Recognition Approach Focusing on out-of-Vehicle Time. Int. J. Sustain. Transp. 2017, 11, 582–592. [Google Scholar] [CrossRef]
- van Lierop, D.; Badami, M.G.; El-Geneidy, A.M. What Influences Satisfaction and Loyalty in Public Transport? A Review of the Literature. Transp. Rev. 2018, 38, 52–72. [Google Scholar] [CrossRef]
- Kwan, S.C.; Sutan, R.; Hashim, J.H. Trip Characteristics as the Determinants of Intention to Shift to Rail Transport among Private Motor Vehicle Users in Kuala Lumpur, Malaysia. Sustain. Cities Soc. 2018, 36, 319–326. [Google Scholar] [CrossRef] [Green Version]
- Mohamad Zulkifli, S.N.A.; Kadar Hamsa, A.A.; Noor, N.M.; Ibrahim, M. Evaluation of Land Use Density, Diversity and Ridership of Rail Based Public Transportation System. Transp. Res. Procedia 2017, 25, 5266–5281. [Google Scholar] [CrossRef]
- Borhan, M.N.; Ibrahim, A.N.H.; Syamsunur, D.; Rahmat, R.A. Why Public Bus Is a Less Attractive Mode of Transport: A Case Study of Putrajaya, Malaysia. Period. Polytech. Transp. Eng. 2019, 47, 82–90. [Google Scholar] [CrossRef] [Green Version]
- Belwal, R. Public Transportation in Oman: A Strategic Analysis. Adv. Transp. Stud. 2017, 42, 99–116. [Google Scholar] [CrossRef]
- Ibrahim, A.N.H.; Borhan, M.N.; Yusoff, N.I.; Ismail, A. Rail-Based Public Transport Service Quality and User Satisfaction-A Literature Review. Promet-Traffic Transp. 2020, 32, 423–435. [Google Scholar] [CrossRef]
- Borhan, M.N.; Mohd Akhir, N.; Ismail, A.O.K.; Rahmat, R.A.A. Pemodelan Hubungan Antara Kualiti Perkhidmatan, Kesan Alam Sekitar, Sikap Dan Keinginan Untuk Menggunakan Park-and-Ride. J. Kejuruter. 2015, 27, 63–70. [Google Scholar] [CrossRef]
- Shen, W.; Xiao, W.; Wang, X. Passenger Satisfaction Evaluation Model for Urban Rail Transit: A Structural Equation Modeling Based on Partial Least Squares. Transp. Policy 2016, 46, 20–31. [Google Scholar] [CrossRef]
- Yilmaz, V.; Ari, E. The Effects of Service Quality, Image, and Customer Satisfaction on Customer Complaints and Loyalty in High-Speed Rail Service in Turkey: A Proposal of the Structural Equation Model. Transp. A Transp. Sci. 2017, 13, 67–90. [Google Scholar] [CrossRef]
- Yuan, Y.; Yang, M.; Wu, J.; Rasouli, S.; Lei, D. Assessing Bus Transit Service from the Perspective of Elderly Passengers in Harbin, China. Int. J. Sustain. Transp. 2019, 13, 761–776. [Google Scholar] [CrossRef]
- Lien, C.H.; Wu, J.J.; Chen, Y.H.; Wang, C.J. Trust Transfer and the Effect of Service Quality on Trust in the Healthcare Industry. Manag. Serv. Qual. 2014, 24, 399–416. [Google Scholar] [CrossRef]
- de Oña, J.; Estévez, E.; de Oña, R. Perception of Public Transport Quality of Service among Regular Private Vehicle Users in Madrid, Spain. Transp. Res. Rec. 2020, 2674, 213–224. [Google Scholar] [CrossRef]
- Taqdees, F.; Sahahab Alam, M.; Shabbir, A. Hospital Healthcare Service Quality, Patient Satisfaction and Patient Loyalty: An Investigation in Context of Private Healthcare Systems of Pakistan. Int. J. Qual. Reliab. Manag. 2017, 35, 1195–1214. [Google Scholar]
- Sulu, D.; Arasli, H.; Saydam, M.B. Air-Travelers’ Perceptions of Service Quality during the COVID-19 Pandemic: Evidence from TripAdvisor.Com. Sustainability 2022, 14, 435. [Google Scholar] [CrossRef]
- Chonsalasin, D.; Jomnonkwao, S.; Ratanavaraha, V. Key Determinants of Airline Loyalty Modeling in Thailand. Sustainability 2020, 12, 4164. [Google Scholar] [CrossRef]
- Ali, F.; Dey, B.L.; Filieri, R. An Assessment of Service Quality and Resulting Customer Satisfaction in Pakistan International Airlines: Findings from Foreigners and Overseas Pakistani Customers. Int. J. Qual. Reliab. Manag. 2015, 32, 486–502. [Google Scholar] [CrossRef]
- Radojevic, T.; Stanisic, N.; Stanic, N.; Davidson, R. The Effects of Traveling for Business on Customer Satisfaction with Hotel Services. Tour. Manag. 2018, 67, 326–341. [Google Scholar] [CrossRef]
- Tefera, O.; Migiro, S. The Relationship between Demographic and Tripographic Factors and Customers’ Expectation, Perception and Service Quality: A Case of Star Rated Hotel Guests in Ethiopia. Afr. J. Hosp. Tour. Leis. 2017, 6, 1–20. [Google Scholar]
- Gunarathne, U. Relationship between Service Quality and Customer Satisfaction in Sri Lankan Hotel Industry. Int. J. Sci. Res. Publ. 2014, 4, 2250–3153. [Google Scholar]
- Arasli, H.; Saydam, M.B.; Kilic, H. Cruise Travelers’ Service Perceptions: A Critical Content Analysis. Sustainability 2020, 12, 6702. [Google Scholar] [CrossRef]
- Zhang, C.; Liu, Y.; Lu, W.; Xiao, G. Evaluating Passenger Satisfaction Index Based on PLS-SEM Model: Evidence from Chinese Public Transport Service. Transp. Res. Part A Policy Pract. 2019, 120, 149–164. [Google Scholar] [CrossRef]
- Tiglao, N.C.C.; De Veyra, J.M.; Tolentino, N.J.Y.; Tacderas, M.A.Y. The Perception of Service Quality among Paratransit Users in Metro Manila Using Structural Equations Modelling (SEM) Approach. Res. Transp. Econ. 2020, 83, 100955. [Google Scholar] [CrossRef]
- Chuenyindee, T.; Ong, A.K.S.; Ramos, J.P.; Prasetyo, Y.T.; Nadlifatin, R.; Kurata, Y.B.; Sittiwatethanasiri, T. Public Utility Vehicle Service Quality and Customer Satisfaction in the Philippines during the COVID-19 Pandemic. Util. Policy 2022, 75, 101336. [Google Scholar] [CrossRef] [PubMed]
- Wonglakorn, N.; Ratanavaraha, V.; Karoonsoontawong, A.; Jomnonkwao, S. Exploring Passenger Loyalty and Related Factors for Urban Railways in Thailand. Sustainability 2021, 13, 5517. [Google Scholar] [CrossRef]
- Jomnonkwao, S.; Champahom, T.; Ratanavaraha, V. Methodologies for Determining the Service Quality of the Intercity Rail Service Based on Users’ Perceptions and Expectations in Thailand. Sustainability 2020, 12, 4259. [Google Scholar] [CrossRef]
- Joewono, T.B.; Kubota, H. Paratransit Service in Indonesia: User Satisfaction and Future Choice. Transp. Plan. Technol. 2008, 31, 325–345. [Google Scholar] [CrossRef]
- Jannah, E.N.; Ibrahim, A.N.H.; Borhan, M.N. Public Transportation in Jabodetabek: Performance Satisfaction Analysis. IOP Conf. Ser. Mater. Sci. Eng. 2020, 930, 012069. [Google Scholar] [CrossRef]
- Ibrahim, A.N.H.; Borhan, M.N.; Mat Yazid, M.R.; Rahmat, R.A.; Yukawa, S. Factors Influencing Passengers’ Satisfaction with the Light Rail Transit Service in Alpha Cities: Evidence from Kuala Lumpur, Malaysia Using Structural Equation Modelling. Mathematics 2021, 9, 1954. [Google Scholar] [CrossRef]
- Ibrahim, A.N.H.; Borhan, M.N.; Yusoff, N.I.; Ismail, A.; Mat Yazid, M.R.; Mhd Yunin, N.A.; Yukawa, S. Gender and Age Do Matter: Exploring the Effect of Passengers ’ Gender and Age on the Perception of Light Rail Transit Service Quality in Kuala Lumpur, Malaysia. Sustainability 2021, 13, 990. [Google Scholar] [CrossRef]
- Ngah, R.; Putit, L.; Mat, A.; Abdullah, J.; Ab Majid, R. Moderating Effect of Service Quality on Public Transport Travel Behaviour and Antecedents. Plan. Malays. 2020, 18, 80–91. [Google Scholar] [CrossRef]
- de Oña, J.; Estévez, E.; de Oña, R. Public Transport Users versus Private Vehicle Users: Differences about Quality of Service, Satisfaction and Attitudes toward Public Transport in Madrid (Spain). Travel Behav. Soc. 2021, 23, 76–85. [Google Scholar] [CrossRef]
- Alonso, B.; Barreda, R.; Dell’Olio, L.; Ibeas, A. Modelling User Perception of Taxi Service Quality. Transp. Policy 2018, 63, 157–164. [Google Scholar] [CrossRef]
- Dell’Olio, L.; Ibeas, A.; Cecín, P. Modelling User Perception of Bus Transit Quality. Transp. Policy 2010, 17, 388–397. [Google Scholar] [CrossRef]
- Allen, J.; Eboli, L.; Mazzulla, G.; de Dios Ortúzar, J. Effect of Critical Incidents on Public Transport Satisfaction and Loyalty: An Ordinal Probit SEM-MIMIC Approach. Transportation (Amst). 2020, 47, 827–863. [Google Scholar] [CrossRef]
- Díez-Mesa, F.; de Oña, R.; de Oña, J. Bayesian Networks and Structural Equation Modelling to Develop Service Quality Models: Metro of Seville Case Study. Transp. Res. Part A Policy Pract. 2018, 118, 1–13. [Google Scholar] [CrossRef]
- Abbas, M.; Avineri, E.; Fries, R.; Ishak, S.; Jha, M.; Kikuchi, S.; Liu, F.; Praveen, E.; Qi, Y.; Sanford-Bernhardt, K.; et al. Thoughts on the Future of Artificial Intelligence and Transportation. Transp. Res. Circ. 2012, E-C168, 137–144. [Google Scholar]
- Garrido, C.; de Oña, R.; de Oña, J. Neural Networks for Analyzing Service Quality in Public Transportation. Expert Syst. Appl. 2014, 41, 6830–6838. [Google Scholar] [CrossRef]
- Leong, L.; Hew, T.; Ooi, K.; Dwivedi, Y.K. Predicting Trust in Online Advertising with an SEM-Artificial Neural Network Approach. Expert Syst. Appl. 2020, 162, 113849. [Google Scholar] [CrossRef]
- Githui, J.N.; Okamura, T.; Nakamura, F. The Structure of Users ’ Satisfaction on Urban Public Transport Service in Developing Country: The Case of Nairobi. J. East. Asia Soc. Transp. Stud. 2010, 8, 1288–1300. [Google Scholar] [CrossRef]
- Das, A.M.; Ladin, M.A.; Ismail, A.; Rahmat, R.O.K. Consumers Satisfaction of Public Transport Monorail User in Kuala Lumpur. J. Eng. Sci. Technol. 2013, 8, 272–283. [Google Scholar]
- de Oña, J.; de Oña, R.; Eboli, L.; Mazzulla, G. Perceived Service Quality in Bus Transit Service: A Structural Equation Approach. Transp. Policy 2013, 29, 219–226. [Google Scholar] [CrossRef]
- de Oña, R.; Eboli, L.; Mazzulla, G. Key Factors Affecting Rail Service Quality in the Northern Italy: A Decision Tree Approach. Transport 2014, 29, 75–83. [Google Scholar] [CrossRef] [Green Version]
- Grujičić, D.; Ivanović, I.; Jović, J.; Đorić, V. Customer Perception of Service Quality in Public Transport. Transport 2014, 29, 285–295. [Google Scholar] [CrossRef] [Green Version]
- Susilo, Y.O.; Cats, O. Exploring Key Determinants of Travel Satisfaction for Multi-Modal Trips by Different Traveler Groups. Transp. Res. Part A Policy Pract. 2014, 67, 366–380. [Google Scholar] [CrossRef]
- Nwachukwu, A.A. Assessment of Passenger Satisfaction with Intra-City Public Bus Transport Services in Abuja, Nigeria. J. Public Transp. 2014, 17, 99–119. [Google Scholar] [CrossRef]
- de Oña, J.; de Oña, R.; Eboli, L.; Mazzulla, G. Heterogeneity in Perceptions of Service Quality among Groups of Railway Passengers. Int. J. Sustain. Transp. 2015, 9, 612–626. [Google Scholar] [CrossRef]
- Eboli, L.; Fu, Y.; Mazzulla, G. Multilevel Comprehensive Evaluation of the Railway Service Quality. Procedia Eng. 2016, 137, 21–30. [Google Scholar] [CrossRef] [Green Version]
- Machado-León, J.L.; de Oña, R.; Baouni, T.; de Oña, J. Railway Transit Services in Algiers: Priority Improvement Actions Based on Users Perceptions. Transp. Policy 2017, 53, 175–185. [Google Scholar] [CrossRef]
- Yanık, S.; Aktas, E.; Topcu, Y.I. Traveler Satisfaction in Rapid Rail Systems: The Case of Istanbul Metro. Int. J. Sustain. Transp. 2017, 11, 642–658. [Google Scholar] [CrossRef]
- Mohd Masirin, M.I.; Salin, A.M.; Zainorabidin, A.; Martin, D.; Samsuddin, N. Review on Malaysian Rail Transit Operation and Management System: Issues and Solution in Integration. IOP Conf. Ser. Mater. Sci. Eng. 2017, 226, 012029. [Google Scholar] [CrossRef] [Green Version]
- Kuo, C.W.; Tang, M.L. Relationship among Service Quality, Corporate Image, Customer Satisfaction and Behaviroal Intention for the Elderly in High Speed Rail Service. J. Adv. Transp. 2013, 47, 512–525. [Google Scholar] [CrossRef]
- Ibrahim, A.N.H.; Borhan, M.N.; Rahmat, R.A.O.K. Understanding Users’ Intention to Use Park-and-Ride Facilities in Malaysia: The Role of Trust as a Novel Construct in the Theory of Planned Behaviour. Sustainability 2020, 12, 2484. [Google Scholar] [CrossRef] [Green Version]
- Borhan, M.N.; Ibrahim, A.N.H.; Aziz, A.; Yazid, M.R.M. The Relationship between the Demographic, Personal, and Social Factors of Malaysian Motorcyclists and Risk Taking Behavior at Signalized Intersections. Accid. Anal. Prev. 2018, 121, 94–100. [Google Scholar] [CrossRef] [PubMed]
- Nguyen-Phuoc, D.Q.; Su, D.N.; Tran, P.T.K.; Le, D.T.T.; Johnson, L.W. Factors Influencing Customer’s Loyalty towards Ride-Hailing Taxi Services–A Case Study of Vietnam. Transp. Res. Part A Policy Pract. 2020, 134, 96–112. [Google Scholar] [CrossRef]
- Nikolaou, P.; Basbas, S.; Politis, I.; Borg, G. Trip and Personal Characteristics towards the Intention to Cycle in Larnaca, Cyprus: An EFA-SEM Approach. Sustainability 2020, 12, 4250. [Google Scholar] [CrossRef]
- Morton, C.; Caulfield, B.; Anable, J. Customer Perceptions of Quality of Service in Public Transport: Evidence for Bus Transit in Scotland. Case Stud. Transp. Policy 2016, 4, 199–207. [Google Scholar] [CrossRef]
- Obsie, A.; Woldeamanuel, M.; Woldetensae, B. Service Quality of Addis Ababa Light Rail Transit: Passengers’ Views and Perspectives. Urban Rail Transit 2020, 6, 231–243. [Google Scholar] [CrossRef]
- Kaiser, H.F. The Application of Electronic Computers to Factor Analysis. Educ. Psychol. Meas. 1960, 20, 141–151. [Google Scholar] [CrossRef]
- Maskey, R.; Fei, J.; Nguyen, H.O. Use of Exploratory Factor Analysis in Maritime Research. Asian J. Shipp. Logist. 2018, 34, 91–111. [Google Scholar] [CrossRef]
- Uca, S.; Altintas, V.; Tuzunkan, D.; Toanoglou, M. A Study on the Effects of Demographic Factors on Hotel Selection Process. Int. J. Tour. Sci. 2017, 17, 231–246. [Google Scholar] [CrossRef]
- Field, A. Discovering Statistics Using SPSS Statistics, 3rd ed.; SAGE Publications Ltd.: Thousand Oaks, CA, USA, 2009; ISBN 9781847879073. [Google Scholar]
- Hair, J.F.; Hult, G.T.M.; Ringle, C.M.; Sarstedt, M. A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM); SAGE Publications, Inc.: Thousand Oaks, CA, USA, 2014. [Google Scholar]
- Leong, L.; Hew, T.; Ooi, K.; Tan, G.W. Predicting Actual Spending in Online Group Buying-An Artificial Neural Network Approach. Electron. Commer. Res. Appl. 2019, 38, 100898. [Google Scholar] [CrossRef]
- Leong, L.; Hew, T.; Lee, V.; Ooi, K. An SEM–Artificial-Neural-Network Analysis of the Relationships between SERVPERF, Customer Satisfaction and Loyalty among Low-Cost and Full-Service Airline. Expert Syst. Appl. 2015, 42, 6620–6634. [Google Scholar] [CrossRef]
- Leong, L.; Hew, T.; Ooi, K.; Chong, A.Y. Predicting the Antecedents of Trust in Social Commerce–A Hybrid Structural Equation Modeling with Neural Network Approach. J. Bus. Res. 2020, 110, 24–40. [Google Scholar] [CrossRef]
- Shahzad, F.; Xiu, G.; Aamir, M.; Khan, S.; Shahbaz, M. Predicting the Adoption of a Mobile Government Security Response System from the User ’ s Perspective: An Application of the Artificial Neural Network Approach. Technol. Soc. 2020, 62, 101278. [Google Scholar] [CrossRef]
- Sharma, S.K.; Gaur, A.; Saddikuti, V.; Rastogi, A. Structural Equation Model (SEM)-Neural Network (NN) Model for Predicting Quality Determinants of e-Learning Management Systems. Behav. Inf. Technol. 2017, 36, 1053–1066. [Google Scholar] [CrossRef]
- Veerasamy, R.; Rajak, H.; Jain, A.; Sivadasan, S.; Varghese, C.P.; Agrawal, R.K. Validation of QSAR Models-Strategies and Importance. Int. J. Drug Des. Discov. 2011, 2, 511–519. [Google Scholar]
- Alkawsi, G.A.; Ali, N.; Mustafa, A.S.; Baashar, Y.; Alhussian, H.; Alkahtani, A.; Tiong, S.K.; Ekanayake, J. A Hybrid SEM-Neural Network Method for Identifying Acceptance Factors of the Smart Meters in Malaysia: Challenges Perspective. Alex. Eng. J. 2021, 60, 227–240. [Google Scholar] [CrossRef]
- Chong, A.Y.L. Predicting M-Commerce Adoption Determinants: A Neural Network Approach. Expert Syst. Appl. 2013, 40, 523–530. [Google Scholar] [CrossRef]
- Chong, A.Y.L. A Two-Staged SEM-Neural Network Approach for Understanding and Predicting the Determinants of m-Commerce Adoption. Expert Syst. Appl. 2013, 40, 1240–1247. [Google Scholar] [CrossRef]
- Sim, J.J.; Tan, G.W.H.; Wong, J.C.J.; Ooi, K.B.; Hew, T.S. Understanding and Predicting the Motivators of Mobile Music Acceptance-A Multi-Stage MRA-Artificial Neural Network Approach. Telemat. Inform. 2014, 31, 569–584. [Google Scholar] [CrossRef]
- de Oña, R.; Machado, J.L.; de Oña, J. Perceived Service Quality, Customer Satisfaction, and Behavioral Intentions. Transp. Res. Rec. J. Transp. Res. Board 2015, 2538, 76–85. [Google Scholar] [CrossRef]
- de Oña, J.; de Oña, R.; Calvo, F.J. A Classification Tree Approach to Identify Key Factors of Transit Service Quality. Expert Syst. Appl. 2012, 39, 11164–11171. [Google Scholar] [CrossRef]
- Li, L.; Cao, M.; Bai, Y.; Song, Z. Analysis of Public Transportation Competitiveness Based on Potential Passenger Travel Intentions: Case Study in Shanghai, China. Transp. Res. Rec. 2019, 2673, 823–832. [Google Scholar] [CrossRef]
- Gao, L.; Yu, Y.; Liang, W. Public Transit Customer Satisfaction Dimensions Discovery from Online Reviews. Urban Rail Transit 2016, 2, 146–152. [Google Scholar] [CrossRef] [Green Version]
- Geetika, S.N. Determinants of Customer Satisfaction on Service Quality: A Study of Railway Platforms in India. J. Public Transp. 2010, 13, 97–113. [Google Scholar] [CrossRef] [Green Version]
- Ibrahim, A.N.H.; Borhan, M.N. The Interrelationship Between Perceived Quality, Perceived Value and User Satisfaction Towards Behavioral Intention in Public Transportation: A Review of the Evidence. Int. J. Adv. Sci. Eng. Inf. Technol. 2020, 10, 2048–2056. [Google Scholar] [CrossRef]
- Borhan, M.N.; Ibrahim, A.N.H.; Miskeen, M.A.A. Extending the Theory of Planned Behaviour to Predict the Intention to Take the New High-Speed Rail for Intercity Travel in Libya: Assessment of the Influence of Novelty Seeking, Trust and External Influence. Transp. Res. Part A Policy Pract. 2019, 130, 373–384. [Google Scholar] [CrossRef]
Construct | Number of Items | Cronbach’s Alpha (α) |
---|---|---|
Signage (SG) | 5 | 0.841 |
Comfort (CF) | 5 | 0.901 |
Speediness (SN) | 4 | 0.896 |
Safety (ST) | 8 | 0.813 |
Ticketing service (TS) | 6 | 0.809 |
Facilities (FT) | 7 | 0.801 |
Staff service (SS) | 4 | 0.931 |
Provision of Information (PI) | 4 | 0.830 |
Perceived Satisfaction (PS) | 4 | 0.870 |
Variable | Classification | Frequency (n) | Percentage (%) |
---|---|---|---|
Gender | Male | 212 | 50.8 |
Female | 205 | 49.2 | |
Age (Years) | Less than 20 | 38 | 9.1 |
21–30 | 182 | 43.6 | |
31–40 | 156 | 37.4 | |
41–50 | 36 | 8.6 | |
More than 50 | 5 | 1.2 | |
Education background | Primary school | 5 | 1.2 |
Secondary school | 30 | 7.2 | |
College | 68 | 16.3 | |
University degree | 311 | 74.6 | |
Others | 3 | 0.7 | |
Employment status | Full time | 233 | 55.9 |
Part time | 23 | 5.5 | |
Unemployed | 24 | 5.8 | |
Student | 135 | 32.4 | |
Others | 2 | 0.5 | |
Monthly income (MYR) MYR1 ≈ USD0.24 | Less than 2000 | 122 | 29.3 |
2001–4000 | 72 | 17.3 | |
4001–6000 | 121 | 29 | |
6001–8000 | 20 | 4.8 | |
More than 8000 | 4 | 1 | |
Private | 78 | 18.7 | |
Driving licence ownership | Yes | 356 | 85.4 |
No | 61 | 14.6 | |
Car ownership | 0 | 116 | 27.8 |
1 | 140 | 33.6 | |
2 | 97 | 23.3 | |
More than 3 | 64 | 15.3 |
Factor/Item | EFA | |||
---|---|---|---|---|
Loading Factor | Eigenvalue | Explained Variance | Cronbach’s Alpha | |
Facilities (FT) | 23.182 | 38.450 | 0.948 | |
Suitable location for vending machines | 0.752 | |||
Suitable location for the waiting seats | 0.795 | |||
The compatibility of announcement sound level | 0.800 | |||
Comfortable waiting seats | 0.755 | |||
Comfortable armrest and ring set in the train | 0.731 | |||
Mobile signal strength at the stations | 0.704 | |||
Mobile signal strength on the train | 0.581 | |||
Staff service (SS) | 2.262 | 11.689 | 0.912 | |
Staff appearance | 0.677 | |||
Staff attitude | 0.752 | |||
Staff efficiency in resolving passengers’ problems | 0.753 | |||
Response time of call centre during service hours | 0.762 | |||
Provision of information (PI) | 2.105 | 5.260 | 0.930 | |
Publicity of the provided monorail service | 0.595 | |||
The efficiency of service interruption announcement | 0.560 | |||
Provision of information on the monorail service at the stations | 0.531 | |||
Provision of information on the monorail services in the mass | 0.543 | |||
Ticketing service (TS) | 1.706 | 3.967 | 0.913 | |
Types of the ticket offered | 0.616 | |||
Number of ticket vending machines | 0.637 | |||
Clarity of instruction on using the ticket vending machines | 0.610 | |||
Self-vending ticket machine works well | 0.551 | |||
Speed of ticket purchase process | 0.589 | |||
The convenience of money changing at the station | 0.621 | |||
Signage (SG) | 1.645 | 3.774 | 0.915 | |
Signage for the location of the monorail station | 0.537 | |||
Provision of information at the station | 0.527 | |||
Signage for automatic gates at the station | 0.539 | |||
Clarity of the signage for direction | 0.512 | |||
Speediness (SN) | 1.458 | 3.390 | 0.921 | |
Punctuality of train arrival | 0.666 | |||
Acceptable train dwell time | 0.614 | |||
Acceptable departure interval | 0.664 | |||
Acceptable service time | 0.617 | |||
Comfort (CF) | 1.175 | 2.733 | 0.922 | |
Level of lighting at the station | 0.632 | |||
Appropriate ventilation and temperature at the station | 0.674 | |||
Cleanliness at the station | 0.709 | |||
Appropriate ventilation and temperature in the train | 0.739 | |||
Cleanliness on the train | 0.663 | |||
Safety (ST) | 1.035 | 2.407 | 0.923 | |
Safety at the station | 0.518 | |||
Safety on the train | 0.567 | |||
Safety during the travel | 0.713 | |||
Provision of security alarm facilities | 0.710 | |||
The behaviour of other passengers | 0.773 | |||
Advance door closing announcement | 0.540 | |||
KMO = 0.969, χ2 = 17,018.015, ρ < 0.000 | ||||
Total of variance explained = 71.670 |
Factor | SG | CF | SN | ST | TS | FT | SS | PI | PS |
---|---|---|---|---|---|---|---|---|---|
Signage (SG) | 1.000 | ||||||||
Comfort (CF) | 0.723 ** | 1.000 | |||||||
Speediness (SN) | 0.716 ** | 0.720 ** | 1.000 | ||||||
Safety (ST) | 0.654 ** | 0.673 ** | 0.729 ** | 1.000 | |||||
Ticketing service (TS) | 0.744 ** | 0.706 ** | 0.731 ** | 0.748 ** | 1.000 | ||||
Facilities (FT) | 0.641 ** | 0.670 ** | 0.635 ** | 0.564 ** | 0.681 ** | 1.000 | |||
Staff service (SS) | 0.630 ** | 0.592 ** | 0.606 ** | 0.638 ** | 0.655 ** | 0.612 ** | 1.000 | ||
Provision of Information (PI) | 0.669 ** | 0.674 ** | 0.640 ** | 0.613 ** | 0.700 ** | 0.732 ** | 0.718 ** | 1.000 | |
Perceived Satisfaction (PS) | 0.721 ** | 0.688 ** | 0.687 ** | 0.635 ** | 0.711 ** | 0.722 ** | 0.671 ** | 0.770 ** | 1.000 |
ANN Network | Training | Testing | ||||||
---|---|---|---|---|---|---|---|---|
N | SSE | MSE | RMSE | N | SSE | MSE | RMSE | |
ANN1 | 372 | 4.674 | 0.013 | 0.112 | 45 | 0.650 | 0.014 | 0.120 |
ANN2 | 375 | 4.053 | 0.011 | 0.104 | 42 | 0.442 | 0.011 | 0.103 |
ANN3 | 374 | 4.128 | 0.011 | 0.105 | 43 | 0.456 | 0.011 | 0.103 |
ANN4 | 363 | 3.840 | 0.011 | 0.103 | 54 | 0.689 | 0.013 | 0.113 |
ANN5 | 365 | 4.522 | 0.012 | 0.111 | 52 | 0.402 | 0.008 | 0.088 |
ANN6 | 377 | 4.349 | 0.012 | 0.107 | 40 | 0.298 | 0.007 | 0.086 |
ANN7 | 372 | 3.908 | 0.011 | 0.102 | 45 | 0.656 | 0.015 | 0.121 |
ANN8 | 376 | 5.030 | 0.013 | 0.116 | 41 | 0.144 | 0.004 | 0.059 |
ANN9 | 369 | 4.726 | 0.013 | 0.113 | 48 | 0.667 | 0.014 | 0.118 |
ANN10 | 377 | 3.750 | 0.010 | 0.100 | 40 | 0.842 | 0.021 | 0.145 |
4.298 | 0.012 | 0.107 | 0.525 | 0.012 | 0.106 | |||
SD | 0.430 | 0.001 | 0.005 | SD | 0.212 | 0.005 | 0.024 |
ANN Network | Relative Importance | |||||||
---|---|---|---|---|---|---|---|---|
SG | CF | SN | ST | TS | FT | SS | PI | |
ANN1 | 0.122 | 0.053 | 0.124 | 0.024 | 0.089 | 0.196 | 0.136 | 0.256 |
ANN2 | 0.181 | 0.075 | 0.069 | 0.002 | 0.063 | 0.207 | 0.134 | 0.269 |
ANN3 | 0.074 | 0.091 | 0.130 | 0.055 | 0.090 | 0.174 | 0.075 | 0.311 |
ANN4 | 0.172 | 0.035 | 0.091 | 0.006 | 0.077 | 0.213 | 0.109 | 0.297 |
ANN5 | 0.160 | 0.133 | 0.115 | 0.035 | 0.136 | 0.156 | 0.043 | 0.223 |
ANN6 | 0.127 | 0.061 | 0.131 | 0.005 | 0.090 | 0.209 | 0.117 | 0.259 |
ANN7 | 0.164 | 0.071 | 0.057 | 0.012 | 0.086 | 0.193 | 0.149 | 0.267 |
ANN8 | 0.138 | 0.140 | 0.137 | 0.093 | 0.096 | 0.185 | 0.086 | 0.124 |
ANN9 | 0.116 | 0.075 | 0.087 | 0.058 | 0.093 | 0.184 | 0.111 | 0.275 |
ANN10 | 0.167 | 0.065 | 0.076 | 0.014 | 0.149 | 0.164 | 0.123 | 0.243 |
Average of relative importance | 0.142 | 0.080 | 0.102 | 0.031 | 0.097 | 0.188 | 0.108 | 0.252 |
Normalised relative importance (%) | 56.3 | 31.6 | 40.2 | 12.1 | 38.4 | 74.5 | 42.9 | 100.0 |
Rank | 3 | 7 | 5 | 8 | 6 | 2 | 4 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ibrahim, A.N.H.; Borhan, M.N.; Osman, M.H.; Khairuddin, F.H.; Zakaria, N.M. An Empirical Study of Passengers’ Perceived Satisfaction with Monorail Service Quality: Case of Kuala Lumpur, Malaysia. Sustainability 2022, 14, 6496. https://doi.org/10.3390/su14116496
Ibrahim ANH, Borhan MN, Osman MH, Khairuddin FH, Zakaria NM. An Empirical Study of Passengers’ Perceived Satisfaction with Monorail Service Quality: Case of Kuala Lumpur, Malaysia. Sustainability. 2022; 14(11):6496. https://doi.org/10.3390/su14116496
Chicago/Turabian StyleIbrahim, Ahmad Nazrul Hakimi, Muhamad Nazri Borhan, Mohd Haniff Osman, Faridah Hanim Khairuddin, and Nur Mustakiza Zakaria. 2022. "An Empirical Study of Passengers’ Perceived Satisfaction with Monorail Service Quality: Case of Kuala Lumpur, Malaysia" Sustainability 14, no. 11: 6496. https://doi.org/10.3390/su14116496
APA StyleIbrahim, A. N. H., Borhan, M. N., Osman, M. H., Khairuddin, F. H., & Zakaria, N. M. (2022). An Empirical Study of Passengers’ Perceived Satisfaction with Monorail Service Quality: Case of Kuala Lumpur, Malaysia. Sustainability, 14(11), 6496. https://doi.org/10.3390/su14116496