The Effects of the Use of Algae and Jatropha Biofuels on Aircraft Engine Exhaust Emissions in Cruise Phase
Abstract
:1. Introduction
2. The Research Object
3. Determination of the Effect of Fuel Change on Engine Performance and Emission Indices
4. The Flight Route Adopted to Determine Emissions in Cruise Phase
5. Determination of Pollutant Emissions
6. Conclusions
- −
- An increase in fuel consumption by 11.2% for algae fuel and by 7.5% for jatropha fuel;
- −
- A reduction inCO2 emissions by 5.84% for algae fuel and by 8.9% for jatropha fuel;
- −
- A reduction in NOx emissions by 44.4% for algae fuel and 15.5% for jatropha fuel;
- −
- A reduction in HC emissions by 31.6% for algae fuel and practically negligible HC emission for jatropha fuel;
- −
- A reduction in CO emissions by 49.1% for algae fuel and an increase in CO emissions by 131.5% for jatropha fuel.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
Cum [J/(kg⋅K)] | exhaust specific heat |
Ch [kg/h] | fuel consumption |
Ct [kg] | total fuel consumption |
EI [kg/kg] | emission index of a particular pollutant |
E [kg] | emission of a particular pollutant |
IATA | International Air Transport Association |
ICAO | International Civil Aviation Organization |
K [N] | thrust |
l [-] | number of engines |
[kg/s] | mass flow |
[-] | efficiency of combustion chamber |
SFC [kg/(N∙s)] | specific fuel consumption |
T* [K] | total temperature |
t [s, h] | flight time |
LHV [J/(kg⋅K)] | lower heating value |
[-] | relative fuel consumption |
References
- Nava, C.R.; Meleo, L.; Cassetta, E.; Morelli, G. The impact of the EU-ETS on the aviation sector: Competitive effects of abatement efforts by airlines. Transp. Res. Part A Policy Pract. 2018, 113, 20–34. [Google Scholar] [CrossRef] [Green Version]
- Tyner, W.E. Policy Update: Biofuels: The future is in the air. Biofuels 2012, 3, 519–520. [Google Scholar] [CrossRef]
- Lee, D.S.; Fahey, D.W.; Forster, P.M.; Newton, P.J.; Wit, R.C.N.; Lim, L.L.; Owen, B.; Sausen, R. Aviation and global climate change in the 21st century. Atmos. Environ. 2009, 43, 3520–3537. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- ICAO. Board a Sustainable Future: 2016 Environmental Report. 2016. Available online: https://www.icao.int/environmental-protection/Pages/ENV2016.aspx (accessed on 2 April 2022).
- IPCC. Aviation and the Global Atmosphere: A Special Report of the Intergovernmental Panel on Climate Change. 1999. Available online: https://archive.ipcc.ch/ipccreports/sres/aviation/index.php?idp=0 (accessed on 2 April 2022).
- Kim, B.Y.; Fleming, G.G.; Lee, J.J.; Waitz, I.A.; Clarke, J.-P.; Balasubramanian, S.; Malwitz, A.; Klima, K.; Locke, M.; Holsclaw, C.A.; et al. System for Assessing Aviation’s Global Emissions (SAGE). Part 1: Model Description and Inventory Results. Transp. Res. Part D Transp. Environ. 2007, 12, 325–346. [Google Scholar] [CrossRef]
- EUROCONTROL. European Aviation in 2040—Challenges of Growth. 2018. Available online: www.eurocontrol.int/sites/default/files/content/documents/official-documents/reports/challenges-of-growth-2018.pdf (accessed on 2 April 2022).
- EUROCONTROL. Aviation Outlook 2050, Main Report, April 2022. Available online: https://www.eurocontrol.int/publication/eurocontrol-aviation-outlook-2050 (accessed on 2 April 2022).
- ICAO. Environmental Report—Aviation and Environment. 2019. Available online: https://www.icao.int/environmental-protection/Documents/ICAO-ENV-Report2019-F1-WEB%20.pdf (accessed on 2 April 2022).
- European Commission. Reducing Emissions from Aviation. Available online: https://ec.europa.eu/clima/eu-action/transport-emissions/reducing-emissions-aviation_en (accessed on 2 April 2022).
- EASA. The European Commission presents a new Aviation Strategy for Europe. Available online: https://www.easa.europa.eu/newsroom-and-events/news/european-commission-presents-new-aviation-strategy-europe (accessed on 2 April 2022).
- EASA. The Journey towards Zero Emission Aviation. Available online: https://www.easa.europa.eu/light/environment (accessed on 2 April 2022).
- Orkisz, M.; Kuźniar, M. 3E—Anew paradigm for the development of civil aviation. Combust. Engines 2020, 181, 3–10. [Google Scholar] [CrossRef]
- Doff-Sotta, M.; Cannon, M.; Bacic, M. Optimal energy management for hybrid electric aircraft. IFAC-PapersOnLine 2020, 53, 6043–6049. [Google Scholar] [CrossRef]
- Donateo, T.; Spedicanto, L. Fuel Economy of Hybrid Electric Flight. Appl. Energy 2017, 206, 723–738. [Google Scholar] [CrossRef]
- Pawlak, M.; Kuźniar, M.; Majka, A.R. Determination of the flight trajectory in terms of emission and fuel consumption minimization. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 2022, 236, 341–351. [Google Scholar] [CrossRef]
- Jakubowski, R. Study of bypass ratio increasing possibility for turbofan engine and turbofan with inter turbine. J. KONES 2019, 26, 61–68. [Google Scholar] [CrossRef]
- Andoga, R.; Főző, L.; Schrötter, M.; Szabo, S. The Use of Ethanol as an Alternative Fuel for Small Turbojet Engines. Sustainability 2021, 13, 2541. [Google Scholar] [CrossRef]
- Hassan, T.H.; Sobaih, A.E.E.; Salem, A.E. Factors Affecting the Rate of Fuel Consumption in Aircrafts. Sustainability 2021, 13, 8066. [Google Scholar] [CrossRef]
- Oliviera, J.; Brójo, F. Simulation of the Combustion of Bio-Derived Fuels in a CFM56-3 Combustor. 2017. In Proceedings of the International Conference on Sustainable and Renewable Energy Engineering, Hiroshima, Japan, 10–12 May 2017. [Google Scholar] [CrossRef]
- Czarnigowski, J.; Jakliński, P. An experimental investigation of the impact of added HHO gas on automotive emissions under idle conditions. Int. J. Hydrogen Energy 2020, 45, 13119–13128. [Google Scholar] [CrossRef]
- Yusaf, T.; Fernandes, L.; Abu Talib, A.R.; Altarazi, Y.S.M.; Alrefae, W.; Kadirgama, K.; Ramasamy, D.; Jayasuriya, A.; Brown, G.; Mamat, R.; et al. Sustainable Aviation—Hydrogen Is the Future. Sustainability 2022, 14, 548. [Google Scholar] [CrossRef]
- U.S. Department of Energy. 2016 Billion-Ton Report: Algae Resources—Energy Efficiency & Renewable Energy. 2016. Available online: https://www.energy.gov/sites/prod/files/2016/07/f33/algae_research_factsheet_bt16.pdf (accessed on 2 April 2022).
- Sudhakar, M.P.; Viswanaathan, S. Algae as a Sustainable and Renewable Bioresource for Bio-Fuel Production. In New Future Developments in Microbial Biotechnology and Bioengineering; Elsevier: Amsterdam, The Netherlands, 2019; pp. 77–84. [Google Scholar] [CrossRef]
- Sivakumar, D.; Vankeswaram, S.K.; Sakthikumar, R.; Raghunandan, B.N.; Hu, J.T.C.; Sinha, A.K. An experimental study on jatropha-derived alternative aviation fuel sprays from simplex swirl atomizer. Fuel 2016, 179, 36–44. [Google Scholar] [CrossRef]
- Ranucci, C.R.; Alves, H.J.; Monteiro, M.R.; Kugelmeier, C.L.; Bariccati, R.A.; de Oliveira, C.R.; da Silva, E.A. Potential alternative aviation fuel from jatropha (Jatropha curcas L.), babassu (Orbignya phalerata) and palm kernel (Elaeis guineensis) as blends with Jet-A1 kerosene. J. Clean Prod. 2018, 185, 860–869. [Google Scholar] [CrossRef]
- Du, X.; Li, D.; Xin, H.; Zhou, W.; Yang, R.; Zhou, K.; Hu, C. The conversion of jatropha oil into jet fuel on NiMo/Al-MCM-41 catalyst: Intrinsic synergic effects between Ni and Mo. Energy Technol. 2019, 7, 1800809. [Google Scholar] [CrossRef]
- Alherbawi, M.; McKay, G.; Mackey, H.R.; Al-Ansari, T. Jatropha curcas for jet biofuel production: Current status and future prospects. Renew. Sustain. Energy Rev. 2021, 135, 110396. [Google Scholar] [CrossRef]
- Pawlak, M. Effect of Energy Consumption Reduction on the Decrease of CO2 Emissions during the Aircraft’s Flight. Energies 2021, 14, 2638. [Google Scholar] [CrossRef]
- Pawlak, M.; Majka, A.; Kuzniar, M.; Pawluczy, J. Model of Emission of Exhaust Compounds of Jet Aircraft in Cruise Phase Enabling Trajectory Optimization. Transport 2020, 35, 87–97. [Google Scholar] [CrossRef] [Green Version]
- Łapucha, R. Komory Spalania Silników Turbinowo-Odrzutowych (Combustion Chambes of Turbojet Engines); Wydawnictwa Naukowe Instytutu Lotnictwa: Warszawa, Poland, 2004; ISSN 83-915995-8-2. (In Polish) [Google Scholar]
- Airbus A340-200/300. Available online: https://skybrary.aero/aircraft/a342 (accessed on 2 April 2022).
- Airbus A340. Available online: https://pl.wikipedia.org/wiki/Airbus_A340#/media/Plik:South_African_AW_A340-600_ZS-SNE.jpg (accessed on 2 April 2022).
- Solmaz, H.; Yamik, H.; Uyumaz, A.; Polat, S.; Yilmaz, E. An Experimental Study On The Effects Of Diesel And Jet-A1 Fuel Blends On Combustion, Engine Performance And Exhaust Emissions In A Direct Injection Diesel Engine. J. Therm. Sci. Technol. 2016, 36, 51–60. [Google Scholar]
- ICAO Emission Databank. Available online: https://www.easa.europa.eu/easa-and-you/environment/icao-aircraft-engine-emissions-databank (accessed on 2 April 2022).
- Schaefer, M.; Bartosch, S. Overview on Fuel Flow Correlation Methods for the Calculation of NOx, CO and HC Emissions and Their Implementation Into Aircraft Performance Software; Technical Report IB-325-11-13; DLR: Cologne, Germany, 2013. [Google Scholar]
Fuel Type | LHV [MJ/kg] | Density [kg/m3] |
---|---|---|
JetA1 | 42.9 | 775 |
jatropha | 39.5 | 839 |
algae | 38.2 | 842 |
Seating Capacity | Length [m] | Wingspan [m] | Engines Type | Thrust [kN] | MTOW [kg] | Maximum Payload [kg] | Fuel Mass [kg] | Aircraft Range [km] | Maximum Speed [km/h] |
---|---|---|---|---|---|---|---|---|---|
210–250 | 59.39 | 60.3 | 4× Snecma CFM56-5C | 4 × 140 | 207,000 | 51,000 | 110,400 | 12,400 | 914 |
Fuel Type | Ch [kg/s] | Ch [kg/h] |
---|---|---|
JetA1 | 0.30 | 1095.45 |
jatropha | 0.33 | 1189.74 |
algae | 0.34 | 1230.23 |
Fuel Type | EICO2 [kg/kg] | EINOx [kg/kg] | EIHC [kg/kg] | EICO [kg/kg] |
---|---|---|---|---|
JetA1 | 3.155 | 0.016 | 1.49 × 10−4 | 0.003 |
jatropha | 2.672 | 0.013 | 4.17 × 10−6 | 0.006 |
algae | 2.672 | 0.008 | 9.17 × 10−5 | 0.001 |
Fuel Type | ECO2 [kg] | ENOx [kg] | EHC [kg] | ECO [kg] | Ct [kg] |
---|---|---|---|---|---|
JetA1 | 130,411.60 | 661.36 | 6.16 | 115.74 | 41,334.89 |
algae | 122,791.80 | 367.58 | 4.21 | 58.97 | 45,946.92 |
Difference [kg] | 7619.79 | 293.78 | 1.95 | 56.77 | −4612.03 |
Difference [%] | 5.84 | 44.42 | 31.60 | 49.05 | −11.16 |
Fuel Type | ECO2 [kg] | ENOx [kg] | EHC [kg] | ECO [kg] | Ct [kg] |
---|---|---|---|---|---|
JetA1 | 130,411.58 | 661.36 | 6.16 | 115.74 | 41,334.89 |
jatropha | 118,750.53 | 558.61 | 0.19 | 267.98 | 44,434.74 |
Difference [kg] | 11,661.04 | 102.75 | 5.97 | −152.24 | −3099.85 |
Difference [%] | 8.94 | 15.54 | 96.99 | −131.54 | −7.50 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pawlak, M.; Kuźniar, M. The Effects of the Use of Algae and Jatropha Biofuels on Aircraft Engine Exhaust Emissions in Cruise Phase. Sustainability 2022, 14, 6488. https://doi.org/10.3390/su14116488
Pawlak M, Kuźniar M. The Effects of the Use of Algae and Jatropha Biofuels on Aircraft Engine Exhaust Emissions in Cruise Phase. Sustainability. 2022; 14(11):6488. https://doi.org/10.3390/su14116488
Chicago/Turabian StylePawlak, Małgorzata, and Michał Kuźniar. 2022. "The Effects of the Use of Algae and Jatropha Biofuels on Aircraft Engine Exhaust Emissions in Cruise Phase" Sustainability 14, no. 11: 6488. https://doi.org/10.3390/su14116488