International Migration Drivers: Economic, Environmental, Social, and Political Effects
Abstract
:1. Introduction
2. Literature Review
3. Materials and Methods
Variable | Indicator | Source |
---|---|---|
Net migration | Mig | Eurostat [78] |
Indicators of the economic development | ||
GDP per capita | GDP | World Development Indicators [79] |
GNI per capita | GNI | |
Indicators of the social development | ||
Unemployment | Un | World Development Indicators [79] |
Gross Average Monthly Wages by Indicator, Country and Year | Wag | |
Indicators of the ecological development | ||
CO2 per capita | CO2 | Sustainable Development Index [80] |
Material Footprint per capita | FP | |
Indicators of political levels of countries’ development | ||
Control of Corruption | CC | World Government Indicators [81] |
Political Stability and Absence of Violence/Terrorism | PS |
4. Results
5. Discussion and Conclusions
- Goal 8 “Decent Work and Economic Growth” (creating new jobs, declining unemployment rate, increasing average wages, etc.);
- Goal 10 “Reduced Inequality” (decreasing inequality in all spheres);
- Goal 13 “Climate Action” (diminishing CO2 emissions, improving education on climate mitigation’s ways and etc.);
- Goal 16 “Peace, Justice and Strong Institutions” (declining corruption, developing transparent institutions, etc.).
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- International Migrant Stock 2019: Wall Chart. Available online: https://reliefweb.int/report/world/international-migrant-stock-2019-wall-chart (accessed on 12 December 2021).
- Database Eurostat. Available online: https://ec.europa.eu/eurostat/data/database (accessed on 6 January 2022).
- Westin, C. Young people of migrant origin in Sweden. Int. Migr. Rev. 2003, 37, 987–1010. [Google Scholar] [CrossRef]
- Suciu, M.C.; Florea, C.A. An empirical study on the migration among young skilled and creative people. Amfiteatru Econ. J. 2017, 19, 727–741. [Google Scholar]
- Borjas, G.J. Immigration and Economic Growth (No. w25836). National Bureau of Economic Research, 2019. Available online: https://www.nber.org/system/files/working_papers/w25836/w25836.pdf (accessed on 3 February 2022).
- Umit, G.; Yaliniz, M. Immigration and Economic Growth in Europe and Their Spatial Allocation. Actual Probl. Econ. 2013, 150, 373–380. [Google Scholar]
- Harshad, D. Elementary investigation on Division of Labour—Part 2. Financ. Mark. Inst. Risks 2018, 2, 39–56. [Google Scholar] [CrossRef]
- Piper, N. Migration and the SDGs. Glob. Soc. Policy 2017, 17, 231–238. [Google Scholar] [CrossRef]
- Tulloch, O.; Machingura, F.; Melamed, C. Health, Migration and the 2030 Agenda for Sustainable Development. 2016. Available online: https://www.sloga-platform.org/wp-content/uploads/2020/06/Migration-and-the-2030-Agenda-for-Sustainable-Development.pdf#page=27 (accessed on 22 March 2022).
- Mitra, R.; Singh, P. SDG implementation: A policy analysis of internal migration in India. In Sustainable Development Goals and Migration; Routledge: New Delhi, India, 2021; pp. 68–83. [Google Scholar]
- Pan, Y.; Zhu, J.; Zhao, Z.; Li, Z.; Wu, J. The dual effects of population migration on the achievement of sustainable development goals in Tibet, China. Environ. Dev. Sustain. 2022, 3, 1–17. [Google Scholar] [CrossRef]
- Bas, İ.M. The Sustainable Development Goals (SDGs) and Migrants/Migration. In Refugee Crisis in International Policy—Volume III; Transnational Press: London, UK, 2022; pp. 59–75. [Google Scholar]
- Faggian, A.; Rajbhandari, I.; Dotzel, K.R. The interregional migration of human capital and its regional consequences: A review. Reg. Stud. 2017, 51, 128–143. [Google Scholar] [CrossRef]
- Calcagnini, G.; Marin, G.; Perugini, F. Labour flexibility, internal migration and productivity in Italian regions. Struct. Change Econ. Dyn. 2021, 57, 308–320. [Google Scholar] [CrossRef]
- Bilan, Y.; Rubanov, P.; Vasilyeva, T.; Lyeonov, S. The Influence of Industry 4.0 on Financial Services: Determinants of Alternative Finance Development. [Wpływ przemysłu 4.0 na usługi finansowe: Determinanty rozwoju alternatywnych finansów]. Pol. J. Manag. Stud. 2019, 19, 70–93. [Google Scholar] [CrossRef]
- Brimah, B.A.; Wahid, D.O.; Ayodeji, G.B.; Musa, I. Knowledge Management and its Effects on Financial Performance: Evidence from Dangote Flour Mills, Ilorin. Financ. Mark. Inst. Risks 2020, 4, 34–42. [Google Scholar] [CrossRef]
- Dzwigol, H.; Dzwigol–Barosz, M.; Kwilinski, A. Formation of Global Competitive Enterprise Environment Based on Industry 4.0 Concept. Int. J. Entrep. 2020, 24, 1–5. [Google Scholar]
- Dzwigol, H.; Dzwigol-Barosz, M.; Miskiewicz, R.; Kwilinski, A. Manager Competency Assessment Model in the Conditions of Industry 4.0. Entrep. Sustain. Issues 2020, 7, 2630–2644. [Google Scholar] [CrossRef]
- Dzwigol, H.; Dzwigol-Barosz, M. Sustainable Development of the Company on the Basis of Expert Assessment of the Investment Strategy. Acad. Strateg. Manag. J. 2020, 19, 1–7. [Google Scholar]
- Kuzior, A.; Kwilinski, A.; Tkachenko, T. Sustainable Development of Organizations Based on the Combinatorial Model of Artificial Intelligence. Entrep. Sustain. 2019, 7, 1353–1376. [Google Scholar] [CrossRef]
- Kuzior, A.; Kwilinski, A.; Tkachenko, T. Transparent Cognitive Technologies to Ensure Sustainable Society Development. J. Secur. Sustain. Issues 2019, 9, 561–570. [Google Scholar] [CrossRef]
- Tkachenko, V.; Kwilinski, A.; Klymchuk, M.; Tkachenko, I. The Economic-Mathematical Development of Buildings Construction Model Optimization on the Basis of Digital Economy. Manag. Syst. Prod. Eng. 2019, 27, 119–123. [Google Scholar] [CrossRef] [Green Version]
- Kwilinski, A.; Volynets, R.; Berdnik, I.; Holovko, M.; Berzin, P. E-Commerce: Concept and Legal Regulation in Modern Economic Conditions. J. Leg. Ethical Regul. Issues 2019, 22, 1–6. [Google Scholar]
- Miśkiewicz, R.; Wolniak, R. Practical Application of the Industry 4.0 Concept in a Steel Company. Sustainability 2020, 12, 5776. [Google Scholar] [CrossRef]
- Saługa, P.W.; Szczepańska-Woszczyna, K.; Miśkiewicz, R.; Chłąd, M. Cost of Equity of Coal-Fired Power Generation Projects in Poland: Its Importance for the Management of Decision-Making Process. Energies 2020, 13, 4833. [Google Scholar] [CrossRef]
- Key Migration Terms. International Organization for Migration. Available online: https://www.iom.int/key-migration-terms (accessed on 3 February 2022).
- George, T.; Hugo, G. The Transnational Migration Strategies of Chinese and Indian Students in Australia. Popul. Space Place 2017, 23, e2038. [Google Scholar] [CrossRef] [Green Version]
- Bondarenko, A.; Zakharkina, L.; Syhyda, L.; Saher, L. The Economic and Marketing Attractiveness of Countries: Measurement and Positioning in Terms of Economic Security. Int. J. Sustain. Dev. Plan. 2020, 15, 439–449. [Google Scholar] [CrossRef]
- Durand, J.; Douglas, S.M. Debacles on the Border: Five Decades of Fact-Free Immigration Policy. ANNALS Am. Acad. Polit. Soc. Sci. 2019, 684, 6–20. [Google Scholar] [CrossRef]
- Roland, B.; Rubens, A.; Eberle, P. Soft Skills and Job Opportunities of Migrants: Systemic Relationships in the Labour Market. Bus. Ethics Leadersh. 2017, 1, 5–21. [Google Scholar] [CrossRef]
- Docquier, F.; Ruyssen, I.; Schiff, M.W. International Migration: Pacifier or Trigger for Military Conflicts? J. Dev. Stud. 2017, 54, 1657–1679. [Google Scholar] [CrossRef]
- Narayan, S.S. Population Growths and Socio-Economic Development: An Analysis of Mettu Town of Ethiopia. SocioEcon. Chall. 2019, 3, 52–63. [Google Scholar] [CrossRef]
- Gunja, S.; King, R. Gendering International Student Migration: An Indian Case-Study. J. Ethn. Migr. Stud. 2017, 43, 1308–1324. [Google Scholar] [CrossRef]
- Melitz, J.; Toubal, F. Native Language, Spoken Language, Translation and Trade. J. Int. Econ. 2014, 93, 351–363. [Google Scholar] [CrossRef] [Green Version]
- Gordon, R.; Strielkowski, W.; Yu, B.; Yu, T. Migrant Remittances and Their Impact on the Economic Development of the Baltic States. Geogr. Pannonica 2018, 22, 165–175. [Google Scholar] [CrossRef]
- Bilan, Y.; Strielkowski, W. Migration in Post-Transition Economies: Immigration Surplus in Visegrad Group Countries. Int. J. Trade Glob. Mark. 2016, 9, 182. [Google Scholar] [CrossRef]
- Heidi, L.T. International Migration and FDI: Can Migrant Networks Foster Investments toward Origin Countries? Honor. Proj. 2019, 141. Available online: https://digitalcommons.iwu.edu/econ_honproj/141 (accessed on 3 January 2022).
- Dalevska, N.; Khobta, V.; Kwilinski, A.; Kravchenko, S. A Model for Estimating Social and Economic Indicators of Sustainable Development. Entrep. Sustain. Issues 2019, 6, 1839–1860. [Google Scholar] [CrossRef]
- Kharazishvili, Y.; Grishnova, O.; Kamińska, B. Standards of living in Ukraine, Georgia, and Poland: Identification and strategic planning. Virtual Econ. 2019, 2, 7–36. [Google Scholar] [CrossRef] [Green Version]
- Nagy, B.; Lívia, K. The Examination of Appearance of Income Inequality in Scientific Databases with Content Analysis. Bus. Ethics Leadersh. 2018, 2, 35–45. [Google Scholar] [CrossRef]
- Lewis, J.; Swannell, M. The Macroeconomic Determinants of Migration; Working Paper No. 729; Bank of England: London, UK, 25 May 2018. [Google Scholar] [CrossRef]
- Tanrikulu, F. Impact of International Migration on Patents, Innovation, Economy and Business Strategy. In Strategic Outlook for Innovative Work Behaviours; Springer: Berlin/Heidelberg, Germany, 2020; pp. 221–234. [Google Scholar]
- Campos, R.G.; Timini, J. An Estimation of the Effects of Brexit on Trade and Migration (31 May 2019). Banco de Espana Occasional Paper No. 1912. Available online: https://ssrn.com/abstract=3396986 (accessed on 6 January 2022).
- Berthou, A.; Haincourt, S.; Serve, M.E.; Estrada, A.; Roth, M.; Kadow, A. Assessing the Macroeconomic Impact of Brexit through Trade and Migration Channels. Available online: https://papers.ssrn.com/sol3/papers.ctfm?abstract_id=3523738 (accessed on 9 January 2022).
- The Model. NIESR. Available online: https://nimodel.niesr.ac.uk/ (accessed on 3 February 2022).
- Song, C.; Shi, S.; Chen, J.; Nijkamp, P.; Li, X. The Influence of Emigration on Tourism Outward Foreign Direct Investment: Evidence from China. J. Travel Res. 2019, 59, 631–641. [Google Scholar] [CrossRef]
- Tong Sarah, Y. Ethnic Networks in FDI and the Impact of Institutional Development. Rev. Dev. Econ. 2005, 9, 563–580. [Google Scholar] [CrossRef]
- Kahanec, M.; Pytliková, M.; Zimmermann, K.F. The Free Movement of Workers in an Enlarged European Union: Institutional Underpinnings of Economic Adjustment; Springer: Berlin/Heidelberg, Germany, 2016; Available online: https://link.springer.com/chapter/10.1007/978-3-662-45320-9_1 (accessed on 6 January 2022).
- Boubtane, E.; Jean-Christophe, D.; Christophe, R. Immigration and Economic Growth in the OECD Countries 1986–2006. Oxf. Econ. Pap. 2016, 68, 340–360. [Google Scholar] [CrossRef]
- Sysoyeva, L.; Kleinschmidt, H. Corruption and Migration Policy. EU Crisis Management Revisited. SocioEcon. Chall. 2017, 1, 48–53. [Google Scholar] [CrossRef] [Green Version]
- Alessandro, B.C.; Rossinelli, D. Fake News, Immigration, and Opinion Polarization. SocioEcon. Chall. 2017, 1, 59–72. [Google Scholar] [CrossRef] [Green Version]
- Iqbal, K.; Peng, H.; Hafeez, M. Khurshaid Analyzing the Effect of ICT on Migration and Economic Growth in Belt and Road (BRI) Countries. J. Int. Migr. Integr. 2019, 21, 307–318. [Google Scholar] [CrossRef]
- Arif, I. The determinants of international migration: Unbundling the role of economic, political, and social institutions. World Econ. 2020, 43, 1699–1729. [Google Scholar] [CrossRef]
- Shin, G. Direct and indirect impacts of liberal immigration policies on the inflow of multinationals in the US Economics Discussion Papers, No 2019-42. Kiel Institute for the World Economy, 2019. Available online: http://www.economics-ejournal.org/economics/discussionpapers/2019-42 (accessed on 6 February 2022).
- Alola, A.A. Carbon emissions and the trilemma of trade policy, migration policy and health care in the US. Carbon Manag. 2019, 10, 209–218. [Google Scholar] [CrossRef]
- Adedoyin, F.F.; Bello, A.A.; Abubakar, I.F.; Agabo, T.J. How does governance factors influence the trade impact of migration and capital flows in the EU? J. Public Aff. 2020, 21, e2207. [Google Scholar] [CrossRef]
- Fong, E.; Shibuya, K.; Chen, X. Migration among East and Southeast Asian Economies. Int. Migr. 2020, 58, 69–84. [Google Scholar] [CrossRef]
- Liang, S.; Yang, X.; Qi, J.; Wang, Y.; Xie, W.; Muttarak, R.; Guan, D. CO2 Emissions Embodied in International Migration from 1995 to 2015. Environ. Sci. Technol. 2020, 54, 12530–12538. [Google Scholar] [CrossRef]
- Mulholland, S.E.; Hernández-Julián, R. Does economic freedom lead to selective migration by education? J. Reg. Anal. Policy 2019, 43, 65–87. [Google Scholar]
- Sinoi, E.-A. The nexus between migration, innovation and economic development in EU-28. Ann. Univ. Oradea Econ. Sci. Ser. 2019, 28, 423–433. [Google Scholar]
- Price, C.E.; Feldmeyer, B. The Environmental Impact of Immigration: An Analysis of the Effects of Immigrant Concentration on Air Pollution Levels. Popul. Res. Policy Rev. 2011, 31, 119–140. [Google Scholar] [CrossRef]
- Hien, D.T.; Docquier, F.; Parsons, C.; Peri, G. Migration and Development: Dissecting the Anatomy of the Mobility Transition. J. Dev. Econ. 2018, 132, 88–101. [Google Scholar] [CrossRef] [Green Version]
- Jover, J.; Díaz-Parra, I. Who is the city for? overtourism, lifestyle migration and social sustainability. Tour. Geogr. 2022, 24, 9–32. [Google Scholar] [CrossRef]
- Paniagua, J.; Peiró-Palomino, J.; Picazo-Tadeo, A.J. Asylum migration in OECD countries: In search of lost well-being. Soc. Indic. Res. 2021, 153, 1109–1137. [Google Scholar] [CrossRef]
- Oliinyk, O.; Bilan, Y.; Mishchuk, H.; Akimov, O.; Vasa, L. The impact of migration of highly skilled workers on the country’s competitiveness and economic growth. Montenegrin J. Econ. 2021, 17, 7–19. [Google Scholar] [CrossRef]
- Liu, X.; Dong, X.; Li, S.; Ding, Y.; Zhang, M. Air pollution and high human capital population migration: An empirical study based on 35 major cities in china. Sustain. Prod. Consum. 2021, 27, 643–652. [Google Scholar] [CrossRef]
- Germani, A.R.; Scaramozzino, P.; Castaldo, A.; Talamo, G. Does air pollution influence internal migration? An empirical investigation on italian provinces. Environ. Sci. Policy 2021, 120, 11–20. [Google Scholar] [CrossRef]
- Zhang, T.; Song, Y.; Yang, J. Relationships between urbanization and CO2 emissions in china: An empirical analysis of population migration. PLoS ONE 2021, 16, e0256335. [Google Scholar] [CrossRef]
- Makieła, Z.J.; Kinelski, G.; Stęchły, J.; Raczek, M.; Wrana, K.; Michałek, J. Tools for Network Smart City Management—The Case Study of Potential Possibility of Managing Energy and Associated Emissions in Metropolitan Areas. Energies 2022, 15, 2316. [Google Scholar] [CrossRef]
- Czarnecka, M.; Kinelski, G.; Stefańska, M.; Grzesiak, M.; Budka, B. Social Media Engagement in Shaping Green Energy Business Models. Energies 2022, 15, 1727. [Google Scholar] [CrossRef]
- Drożdż, W.; Kinelski, G.; Czarnecka, M.; Wójcik-Jurkiewicz, M.; Maroušková, A.; Zych, G. Determinants of Decarbonization—How to Realize Sustainable and Low Carbon Cities? Energies 2021, 14, 2640. [Google Scholar] [CrossRef]
- Dacko-Pikiewicz, Z. Building a family business brand in the context of the concept of stakeholder-oriented value. Forum Sci. Oecon. 2019, 7, 37–51. [Google Scholar]
- Hussain, H.I.; Haseeb, M.; Kamarudin, F.; Dacko-Pikiewicz, Z.; Szczepańska-Woszczyna, K. The Role of Globalization, Economic Growth and Natural Resources on the Ecological Footprint in Thailand: Evidence from Nonlinear Causal Estimations. Processes 2021, 9, 1103. [Google Scholar] [CrossRef]
- Hussain, H.I.; Szczepańska-Woszczyna, K.; Kamarudin, F.; Anwar, N.A.M.; Saudi, M.H.M. Unboxing the black box on the dimensions of social globalisation and the efficiency of microfinance institutions in Asia. Oecon. Copernic. 2021, 12, 557–592. [Google Scholar] [CrossRef]
- Drożdż, W.; Mróz-Malik, O.; Kopiczko, M. The Future of the Polish Energy Mix in the Context of Social Expectations. Energies 2021, 14, 5341. [Google Scholar] [CrossRef]
- Özden, Ç.; Christopher, R.P.; Maurice, S.; Terrie, L.W. Where on Earth Is Everybody? The Evolution of Global Bilateral Migration 1960–2000. World Bank Econ. Rev. 2011, 25, 12–56. [Google Scholar] [CrossRef] [Green Version]
- Levin, A.; Lin, C.-F.; Chu, C.-S.J. Unit Root Tests in Panel Data: Asymptotic and Finite-Sample Properties. J. Econom. 2002, 108, 1–24. [Google Scholar] [CrossRef]
- Eurostat. Net Migration Plus Statistical Adjustment. Available online: https://ec.europa.eu/eurostat/databrowser/view/urt_gind3/default/table?lang=en (accessed on 15 December 2021).
- World Data Bank. World Development Indicators. Available online: https://databank.worldbank.org/data/reports.aspx?source=2&series=NY.GDP.PCAP.CD&country=# (accessed on 3 January 2022).
- Sustainable Development Index. Available online: https://www.sdgindex.org (accessed on 15 December 2021).
- World Bank. World Government Indicators. Available online: http://info.worldbank.org/governance/wgi/index.asp (accessed on 3 January 2022).
- Bove, V.; Leandro, E. Migration, Diversity, and Economic Growth. World Dev. 2017, 89, 227–239. [Google Scholar] [CrossRef]
- Pedroni, P. Critical Values for Cointegration Tests in Heterogeneous Panels with Multiple Regressors. Oxf. Bull. Econ. Stat. 1999, 61, 653–670. [Google Scholar] [CrossRef]
- O’Brien, R.M. A caution regarding rules of thumb for variance inflation factors. Qual. Quant. 2007, 41, 673–690. [Google Scholar] [CrossRef]
- Pedroni, P. Purchasing Power Parity Tests in Cointegrated Panels. Rev. Econ. Stat. 2001, 83, 727–731. [Google Scholar] [CrossRef] [Green Version]
- Pedroni, P. Panel Cointegration. Asymptotic and Finite Sample Properties of Pooled Time Series Tests with an Application to the PPP Hypothesis. Econom. Theory 2004, 20, 597–625. [Google Scholar] [CrossRef] [Green Version]
- Dumitrescu, E.I.; Christophe, H. Testing for Granger Non-Causality in Heterogeneous Panels. Econ. Model. 2012, 29, 1450–1460. [Google Scholar] [CrossRef] [Green Version]
Determinants | Author | Country, Period | Methodology | Variable | Results |
---|---|---|---|---|---|
Ed | Iqbal K. et al. [52] | BRI, 2000–2017 | Panel unit root tests, FMOLS and Granger causality test | M, TR, GDP, FDI | FDI↔GDP; TR↔GDP; FDI↔M |
Ed, Sd | Borjas G.J. [5] | USA, 1960–2017 | OLS | IM, Education | IM↔GDP Education↔ IM |
Ed, Sd, Pd | Arif I. [53] | 195, 1990–2000 | OLS and PPML estimators | EFW, PI, GDP, Sv, Tv | EFW, GDP, Sv, Tv⟶M; PI and M are neutral to each other |
Ed, Sd, Pd | Shin, G. [54] | USA, 1970–2016 | Johnsen co-integration test, ECM, Granger causality tests | FDI, IP, LV | FDI does not Granger-cause IP; FDI does not Granger-cause LC |
Ed, Sd, Ecd | Andrew A. Alola [55] | USA, 1990–2018 | ARDL | M, GDP, RE, H, CO2 | M and CO2, RE and GDP are positively related; H “-“⟶CO2 |
Ed, Pd | Adedoyin F.F. et al. [56] | EU23, 1998–2017 23 European countries | GMM model | TR, GDP, M, FDI, ROL, GOE, COC, RQI, VOA, PSI | M, GOE, RQI have negative effect on TRO, |
Ed, Sd, Pd | Fong E. et al. [57] | East and Southeast Asia, 2005–2010 183 Metropolitan Statistical Areas of USA | Binomial regression analysis OLS | M, GDP, Un, PSMSA, CO, NO2, O3, SO2 | GDP⟶M; PS⟶M; Un⟶M MSA does not contribute to CO, NO2, O3, SO2 |
Ed, Ecd | Liang L. [58] | World, 1995–2015 | SDA with the EE-MRIO model | M, CO2 | M⟶CO2 |
Ed, Sd, Pd | Mulholland S.E. [59] | USA, 1995–2000 | SDM, MCMC | M, EG, W, EF, Ssec | EF, EG, W and Ssec⟶M |
Ed, Sd | Sinoi E.-A. [60] | EU-28, 2003–2012 | Non spatial fixed effects models, spatial Durbin models | M, Ird, Ied | Education↔M↔Ird↔Ied |
Ecd | Price, C.E. et al. [61] | USA, 2000–2006 | OLS | MSA, CO, NO2, O3, SO2 | MSA does not contribute to CO, NO2, O3, SO2 |
Country | Variables | Mean | Std. Dev. | CV | Min | Max |
---|---|---|---|---|---|---|
(A) | Mig | −1655.158 | 18,921.68 | 11.4319 | −77,944 | 79,193 |
GDP | 13,843.67 | 5674.304 | 0.409884 | 3297.35 | 27,483.34 | |
GNI | 13,174.54 | 5497.425 | 0.417276 | 3210 | 24,620 | |
UN | 9.716184 | 4.220301 | 0.434358 | 2.4 | 19.9 | |
Wag | 1055.803 | 500.0619 | 0.473632 | 254.8 | 2663.65 | |
CO2 | 9.2325 | 2.485094 | 0.269168 | 5.4 | 16.5 | |
FP | 18.94675 | 6.974668 | 0.368119 | 9.02 | 35.33 | |
CC | 0.5153289 | 0.3200867 | 0.621131 | −0.01 | 1.51 | |
PS | 0.79875 | 0.232283 | 0.290808 | 0.15 | 1.3 | |
(B) | Mig | 3591.841 | 38,619.43 | 10.75199 | −165,941 | 181,634 |
GDP | 2942.808 | 2034.009 | 0.69118 | 354 | 8318.51 | |
GNI | 2844.035 | 1926.607 | 0.67742 | 380 | 7600 | |
UN | 7.334211 | 2.092743 | 0.28534 | 3.41 | 11.94 | |
Wag | 259.5111 | 157.6029 | 0.607307 | 32.8 | 658.09 | |
CO2 | 5.095517 | 0.958245 | 0.188056 | 3.93 | 7.84 | |
FP | 7.105333 | 3.112552 | 0.438059 | 1.52 | 11.98 | |
CC | −0.7554386 | 0.2161107 | 0.28607 | −1.13 | −0.19 | |
PS | −0.2389474 | 0.5982853 | 2.50384 | −2.02 | 0.69 |
Mig | GDP | GNI | Un | Wages | CC | FP | CO2 | PS | VIF | |
---|---|---|---|---|---|---|---|---|---|---|
(A) | ||||||||||
Mig | 1.0000 | 27.12 | ||||||||
GDP | 0.1126 | 1.0000 | 33.99 | |||||||
GNI | 0.1473 | 0.9666 | 1.0000 | 1.36 | ||||||
Un | −0.1070 | −0.3470 | −0.3392 | 1.0000 | 20.35 | |||||
Wages | 0.1554 | 0.9347 | 0.9684 | −0.3061 | 1.0000 | 2.53 | ||||
CC | 0.1274 | 0.7370 | 0.7905 | −0.4131 | 0.8078 | 1.0000 | 1.95 | |||
FP | 0.1356 | 0.2355 | 0.3451 | 0.1298 | 0.4562 | 0.2311 | 1.0000 | 4.24 | ||
CO2 | 0.0134 | 0.6534 | 0.5401 | −0.3495 | 0.4817 | 0.4271 | 0.2364 | 1.0000 | 1.71 | |
PS | −0.2024 | 0.3928 | 0.3769 | −0.4350 | 0.3407 | 0.5420 | 0.2564 | 0.3642 | 1.0000 | 27.12 |
(B) | ||||||||||
Mig | 1.0000 | 72.44 | ||||||||
GDP | 0.7368 | 1.0000 | 33.73 | |||||||
GNI | 0.7351 | 0.9711 | 1.0000 | 3.25 | ||||||
Un | −0.0791 | −0.1479 | −0.1409 | 1.0000 | 30.98 | |||||
Wages | 0.7161 | 0.9501 | 0.9459 | −0.3267 | 1.0000 | 4.72 | ||||
CC | −0.2770 | −0.3194 | −0.3321 | −0.5931 | −0.1559 | 1.0000 | 2.12 | |||
FP | 0.0956 | 0.2111 | 0.3265 | 0.1223 | 0.3586 | 0.1867 | 1.0000 | 2.28 | ||
CO2 | 0.2450 | 0.4560 | 0.3596 | 0.5095 | 0.2135 | −0.5752 | 0.2341 | 1.0000 | 1.85 | |
PS | −0.2326 | −0.0343 | −0.1545 | −0.3916 | −0.0470 | 0.2408 | 0.2135 | −0.0570 | 1.0000 | 72.44 |
Variables | (A) | (B) | ||||
---|---|---|---|---|---|---|
GDP | 3.29 | – | – | 2.09 | – | – |
GNI | – | 3.25 | – | – | 1.91 | – |
UN | 1.34 | 1.34 | 1.35 | 3.11 | 3.04 | 3.24 |
Wag | – | – | 3.30 | – | – | 1.80 |
CO2 | 1.89 | 1.53 | 1.43 | 2.48 | 2.12 | 2.01 |
FP | 2.02 | 1.34 | 1.63 | 1.56 | 2.31 | 1.59 |
CC | 2.86 | 3.45 | 3.85 | 2.12 | 2.20 | 2.06 |
PS | 1.59 | 1.61 | 1.65 | 1.32 | 1.43 | 1.37 |
Variables | Test Statistics | (A) | (B) | ||
---|---|---|---|---|---|
Level | First Difference | Level | First Difference | ||
Mig | Statistic | 2.0928 | 9.1396 | 0.6062 | 4.2014 |
p-value | 0.0182 ** | 0.0000 * | 0.2722 | 0.0000 * | |
GDP | Statistic | −0.3252 | 9.1396 | −0.5437 | 4.2014 |
p-value | 0.6275 | 0.0000 * | 0.7067 | 0.0000 * | |
GNI | Statistic | −0.4418 | 4.2014 | −0.3778 | 1.3657 |
p-value | 0.6707 | 0.0000 * | 0.6472 | 0.0460 ** | |
UN | Statistic | 2.1809 | 5.8842 | 0.7573 | 4.6834 |
p-value | 0.0146 ** | 0.0000 * | 0.2244 | 0.0000 * | |
Wag | Statistic | 0.3987 | 8.5939 | −1.0076 | 6.5783 |
p-value | 0.3451 | 0.0000 * | 0.8432 | 0.0000 * | |
CO2 | Statistic | −1.36867 | −4.82513 | −1.26748 | −3.40512 |
p-value | 0.0856 | 0.0000 * | 0.1025 | 0.0003 * | |
FP | Statistic | −0.88218 | −5.27678 | −0.13335 | −4.32615 |
p-value | 0.1888 | 0.0000 * | 0.447 | 0.0000 * | |
CC | Statistic | −0.6419 | 5.9282 | −0.3937 | 2.5846 |
p-value | 0.7395 | 0.0000 * | 0.6531 | 0.0049 * | |
PS | Statistic | 6.3927 | 19.4374 | 4.6076 | 4.8753 |
p-value | 0.0000 * | 0.0000 * | 0.0000 * | 0.0049 * |
Dimension | Test Statistics | (A) | (B) | ||
---|---|---|---|---|---|
Statistics | Prob | Statistics | Prob | ||
Within-dimension | panel v-statistic | −1.791 | 0.963 | −1.261 | 0.896 |
panel rho-statistic | 2.158 | 0.984 | 0.877 | 0.809 | |
panel PP-statistic | −1.36 | (0.033) ** | −11.540 | (0.000) * | |
panel ADF-statistic | −1.874 | (0.0304) ** | −1.742 | (0.041) ** | |
(weighted statistic) | |||||
panel v-statistic | −1.540 | 0.938 | −1.781 | 0.962 | |
panel rho-statistic | 2.233 | 0.987 | 0.776 | 0.781 | |
panel PP-statistic | −1.975 | (0.024) ** | −9.314 | (0.000) * | |
panel ADF-statistic | −1.950 | (0.025) ** | −2.228 | (0.012) ** | |
Between-dimension | group rho-statistic | 3.437 | 0.999 | 1.200 | 0.885 |
group PP–statistic | −2.242 | (0.012) ** | −12.070 | (0.000) * | |
group ADF-statistic | −1.908 | (0.028) ** | −2.794 | (0.002) * |
ADF t-Statistics | (A) | (B) | ||
Statistics | Prob | Statistics | Prob | |
−4.03497 | (0.000) * | −4.54900 | (0.000) * |
Variables | FMOLS | DOLS | |||||
---|---|---|---|---|---|---|---|
(A) | |||||||
Dependent | Independent | Long-Run Coefficient, Prob | Long-Run Coefficient, Prob | Long-Run Coefficient, Prob | Long-Run Coefficient, Prob | Long-Run Coefficient, Prob | Long-Run Coefficient, Prob |
Mig | GDP | 0.08 (0.044) ** | – | – | 0.13 (0.085) *** | – | – |
GNI | – | 0.03 (0.065) *** | – | – | 0.06 (0.099) *** | – | |
UN | −0.17 (0.059) *** | −0.18 (0.040) ** | −0.18 (0.043) ** | −0.23 (0.014) ** | −0.26 (0.006) * | −0.26 (0.006) * | |
Wag | – | – | 0.08 (0.087) *** | – | – | −0.05 (0.467) | |
CO2 | −0.04 (0.034) ** | −0.06 (0.021) ** | −0.04 (0.014) ** | −0.02 (0.071) *** | −0.02 (0.074) *** | −0.03 (0.085) *** | |
FP | 0.01 (0.136) | 0.02 (0.246) | 0.01 (0.446) | 0.01 (0.236) | 0.02 (0.159) | 0.02 (0.323) | |
CC | 0.05 (0.686) | 0.07 (0.544) | 0.138 (0.250) | −0.04 (0.737) | −0.02 (0.985) | 0.06 (0.572) | |
PS | 0.05 (0.469) | 0.04 (0.471) | 0.06 (0.368) | 0.06 (0.318) | 0.07 (0.317) | 0.07 (0.277) | |
R-squared | 0.68 | 0.68 | 0.67 | 0.66 | 0.65 | 0.66 | |
(B) | |||||||
Dependent | Independent | Long-run coefficient, Prob | Long-run coefficient, Prob | Long-run coefficient, Prob | Long-run coefficient, Prob | Long-run coefficient, Prob | Long-run coefficient, Prob |
Mig | GDP | 0.40 (0.033) ** | – | – | 0.44 (0.049) ** | – | – |
GNI | – | 0.33 (0.053) ** | – | – | 0.34 (0.087) *** | – | |
UN | 0.21 (0.362) | 0.14 (0.497) | 0.31 (0.011) ** | 0.07 (0.78) | 0.02 (0.933) | 0.06 (0.787) | |
Wag | – | – | 0.23 (0.132) | – | – | 0.44 (0.011) ** | |
CO2 | −0.29 (0.309) | −0.13 (0.415) | −0.18 (0.000) * | −0.35 (0.297) | −0.12 (0.526) | −0.17 (0.386) | |
FP | −0.01 (0.005) * | −0.01(0.021) ** | −0.13 (0.562) | −0.06 (0.124) | −0.03 (0.235) | −0.04 (0.323) | |
CC | −0.07 (0.325) | −0.09 (0.273) | −0.05 (0.816) | −0.05 (0.493) | −0.06 (0.443) | −0.04 (0.590) | |
PS | −0.21 (0.379) | −0.357 (0.079) ** | −0.41 (0.000) * | −0.146 (0.597) | −0.291 (0.222) | −0.36 (0.097) *** | |
R-squared | 0.37 | 0.29 | 0.40 | 0.42 | 0.36 | 0.44 |
Hypothesis | (A) | ||||
W-stat | Z-stat | Prob. | Result | Conclusion | |
Mig→GDP | 4.22 | 1.75 | 0.079 *** | Yes | Unidirectional causality from Mig to GDP |
GDP→Mig | 1.12 | −1.22 | 0.220 | No | |
Mig→GNI | 2.89 | 0.47 | 0.632 | No | No causality between Mig and GNI |
GNI→Mig | 2.02 | −0.36 | 0.717 | No | |
Mig→UN | 4.11 | 1.64 | 0.099 *** | Yes | Unidirectional causality from Mig to UN |
UN→Mig | 2.31 | −0.08 | 0.935 | No | |
Mig→ Wag | 3.56 | 1.12 | 0.260 | No | Unidirectional causality from Wag to Mig |
Wag→Mig | 0.68 | −1.64 | 0.099 *** | Yes | |
Mig→CO2 | 3.62 | 1.17 | 0.239 | No | Unidirectional causality from CO2 to Mig |
CO2→Mig | 2.52 | 0.12 | 0.903 | No | |
Mig→FP | 1.15 | 1.34 | 0.439 | No | No causality between Mig and FP |
FP→Mig | 2.33 | −1.23 | 0.221 | No | |
Mig→CC | 3.22 | 0.78 | 0.429 | No | No causality between Mig and CC |
CC→Mig | 3.61 | 1.17 | 0.241 | No | |
Mig→PS | 1.59 | −0.77 | 0.437 | No | No causality between Mig and PS |
PS→Mig | 0.76 | −1.57 | 0.116 | No | |
(B) | |||||
W-stat | Z-stat | Prob. | Result | Conclusion | |
Mig→GDP | 1.89 | −0.29 | 0.765 | No | No causality between Mig and GDP |
GDP→Mig | 1.39 | −0.59 | 0.553 | No | |
Mig→GNI | 1.17 | −0.72 | 0.471 | No | No causality between Mig and GNI |
GNI→Mig | 2.83 | 0.25 | 0.796 | No | |
Mig→UN | 1.59 | −0.47 | 0.635 | No | No causality between Mig and UN |
UN→Mig | 2.61 | 0.12 | 0.900 | No | |
Mig→Wag | 2.54 | 0.08 | 0.929 | No | No causality between Mig and Wag |
Wag→Mig | 1.67 | −0.42 | 0.667 | No | |
Mig→CO2 | 3.58 | 0.70 | 0.483 | No | Unidirectional causality from CO2 to Mig |
CO2→Mig | 8.05 | 3.33 | 0.000 * | Yes | |
Mig→FP | 3.58 | 0.70 | 0.483 | No | No causality between FP to Mig |
FP→Mig | 2.63 | 0.07 | 0.879 | No | |
Mig→CC | 0.74 | −0.97 | 0.328 | No | No causality between Mig and CC |
CC→Mig | 1.22 | −0.69 | 0.489 | No | |
Mig→PS | 3.45 | 0.62 | 0.534 | No | No causality between Mig and PS |
PS→Mig | 3.97 | 0.92 | 0.352 | No |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kwilinski, A.; Lyulyov, O.; Pimonenko, T.; Dzwigol, H.; Abazov, R.; Pudryk, D. International Migration Drivers: Economic, Environmental, Social, and Political Effects. Sustainability 2022, 14, 6413. https://doi.org/10.3390/su14116413
Kwilinski A, Lyulyov O, Pimonenko T, Dzwigol H, Abazov R, Pudryk D. International Migration Drivers: Economic, Environmental, Social, and Political Effects. Sustainability. 2022; 14(11):6413. https://doi.org/10.3390/su14116413
Chicago/Turabian StyleKwilinski, Aleksy, Oleksii Lyulyov, Tetyana Pimonenko, Henryk Dzwigol, Rafis Abazov, and Denys Pudryk. 2022. "International Migration Drivers: Economic, Environmental, Social, and Political Effects" Sustainability 14, no. 11: 6413. https://doi.org/10.3390/su14116413