Heterogeneity of Spatial-Temporal Distribution of Nitrogen in the Karst Rocky Desertification Soils and Its Implications for Ecosystem Service Support of the Desertification Control—A Literature Review
Abstract
:1. Introduction
2. Literature Review
2.1. Data Collection Process
2.2. Data Analysis and Methods
2.3. Literature Distribution Analysis
2.3.1. Literature Types, Numbers and Countries Distribution
2.3.2. Analysis of Author Cooperation
2.3.3. Keyword Co-Occurrence Analysis
3. Main Progress and Achievements
3.1. Heterogeneity of Spatial-Temporal Distribution of Soil Nitrogen Forms
3.1.1. Temporal Heterogeneity
3.1.2. The Changing Characteristics of Space
3.2. RSN Provides Service Support to Ecosystem
3.2.1. Soil Quality Service Support
3.2.2. Service Support for Ecological Product Quality
3.2.3. Plant Diversity Service Support
4. Key Issues to Be Addressed
4.1. Aiming at the Problem of Unclear SN Sources in Karst Areas and Considering the Particularity of Karst Environment, a Comprehensive N Source Assessment Mechanism Should Be Established
4.2. In View of the Unclear Rules of N Migration in Karst Areas, the Process and Rules of SN Migration Were Explored, and the Whereabouts and Leaching Risk of SN after Migration Were Evaluated
4.3. The Aim Is to Solve the Problem of Unclear SN Form Occurrence in Karst Rocky Desertification Ecosystem
4.4. According to the Unclear Spatio-Temporal Heterogeneity of SN since the Control of Karst Rocky Desertification, We Selected the Time scale of Drought and Rainy Season and the Typical Spatial Scale to Carry out the Research on SN Support to ES
4.5. In View of the Lack of N Management in Karst Rocky Desertification Soil, How to Develop N Requirements and Management Technologies for Different Karst Ecosystems, and Form an Evaluation System for Sustainable N Management
4.6. For the Impact of N on Product Quality in Karst Soil, Further Research Is Needed on How to Comprehensively Evaluate N on Ecological Product Quality through the Key Link of N Cycle
4.7. The Overall Problem of SN Cycling in Karst Rocky Desertification Is That There Is No Complete and Applicable Research Model to Strengthen SN Cycling in Rocky Desertification Areas
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Batjes, N.H. Total carbon and nitrogen in the soils of the world. Eur. J. Soil Sci. 1996, 47, 151–163. [Google Scholar] [CrossRef]
- Schulten, H.R.; Schnitzer, M. The chemistry of soil organic nitrogen: A review. Biol. Fertil. Soils 1997, 26, 1–15. [Google Scholar] [CrossRef]
- Mokhele, B.; Zhan, X.J.; Yang, G.Z.; Zhang, X.L. Review: Nitrogen assimilation in crop plants and its affecting factors. Can. J. Plant Sci. 2012, 92, 399–405. [Google Scholar] [CrossRef]
- Nasholm, T.; Ekblad, A.; Nordin, A.; Giesler, R.; Hogberg, M.; Hogberg, P. Boreal forest plants take up organic nitrogen. Nature 1998, 392, 914–916. [Google Scholar] [CrossRef]
- Gutiérrez, R.A. Systems biology for enhanced plant nitrogen nutrition. Science 2012, 336, 1673–1675. [Google Scholar] [CrossRef]
- DeVries, S.L.; Zhang, P.F. Antibiotics and the terrestrial nitrogen cycle: A review. Curr. Pollut. Rep. 2016, 2, 51–67. [Google Scholar] [CrossRef] [Green Version]
- Vitousek, P.M.; Howarth, R.W. Nitrogen limitation on land and in the sea: How can it occur? Biogeochemistry 1991, 13, 87–115. [Google Scholar] [CrossRef]
- Fageria, N.K.; Baligar, V.C. Improving nutrient use efficiency of annual crops in Brazilian acid soils for sustainable crop production. Commun. Soil Sci. Plant Anal. 2001, 32, 1303–1319. [Google Scholar] [CrossRef]
- Erisman, J.W.; Sutton, M.A.; Galloway, J.; Klimont, Z.; Winiwarter, W. How a century of ammonia synthesis changed the world. Nat. Geosci. 2008, 1, 636–639. [Google Scholar] [CrossRef]
- Geng, Z.C.; Jiang, L.; Li, S.S. Profile distribution of soil organic carbon and nitrogen in the middle part of Qilian Mountains. J. Appl. Ecol. 2011, 22, 665–672. [Google Scholar]
- Yang, M.D. On the vulnerability of karst environment. Yunnan Geogr. Environ. Res. 1990, 2, 21–29. [Google Scholar]
- Hao, Z.; Yang, G.; Sun, X.M.; Wen, X.F.; Xiong, B.L. Determining Nitrogen and Carbon Footprints to Reveal Regional Gross Primary Productivity and Differentiation Characteristics in Karst and Non-Karst Watersheds. China J. Clean Prod. 2019, 227, 1149–1160. [Google Scholar] [CrossRef]
- Xiong, K.N.; Zhu, D.Y.; Peng, T.; Yu, L.F.; Xue, J.H.; Li, P. Research on Ecological Industry Technology and Demonstration of Comprehensive Control of Rocky Desertification in Karst Plateau. J. Acta Ecol. Sin. 2016, 36, 7109–7113. [Google Scholar] [CrossRef]
- Fu, B.J.; Zhou, G.Y.; Bai, Y.F.; Song, C.C.; Liu, J.Y.; Zhang, H.Y.; Lv, Y.H.; Zheng, H.; Xie, G.D. Service functions and ecological security of major terrestrial ecosystems in China. Adv. Earth Sci. 2009, 24, 571–576. [Google Scholar]
- Yan, W.H.; Zhou, Q.W.; Peng, D.W.; Luo, Y.Z.; Chen, M.; Lu, Y. Response of surface-soil quality to secondary succession in karst areas in Southwest China: Case study on a limestone slope. Ecol. Eng. 2022, 178, 106581. [Google Scholar] [CrossRef]
- Liu, C.; Liu, Y.; Guo, K.; Qiao, X.; Zhao, H.; Wang, S.; Zhang, L.; Cai, X. Effects of nitrogen, phosphorus and potassium addition on the productivity of a karst grassland: Plant functional group and community perspectives. Ecol. Eng. 2018, 117, 84–95. [Google Scholar] [CrossRef]
- Pan, F.J.; Liang, Y.M.; Wang, K.L.; Zhang, W. Responses of Fine Root Functional Traits to Soil Nutrient Limitations in a Karst Ecosystem of Southwest China. Forests 2018, 9, 743. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y. Research on the restoration mechanism of arbor, shrub and grass in karst rocky desertification and high-efficiency characteristic forest industry model. Ph.D. Thesis, Guizhou Normal University, Guizhou, China, 2020. [Google Scholar] [CrossRef]
- Milne, G. Normal Erosion as a Factor in Soil Profile Development. Nature 1936, 138, 548–549. [Google Scholar] [CrossRef]
- Falagas, M.E.; Karavasiou, A.I.; Bliziotis, I.A. A bibliometric analysis of global trends of research productivity in tropical medicine. Acta Trop. 2006, 99, 155–159. [Google Scholar] [CrossRef]
- Vergidis, P.I.; Karavasiou, A.I.; Paraschakis, K.; Bliziotis, I.A.; Falagas, M.E. Bibliometric analysis of global trends for research productivity in microbiology. Eur. J. Clin. Microbiol. Infect. Dis. 2005, 24, 342–346. [Google Scholar] [CrossRef]
- Li, C.; Ji, X.H.; Luo, X.G. Phytoremediation of Heavy Metal Pollution: A Bibliometric and Scientometric Analysis from 1989 to 2018. Int. J. Environ. Res. Public Health 2019, 16, 4755. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, L.; Fan, Z.H.; Xiong, K.N.; Shen, H.T.; Guo, Q.Q.; Dan, W.H.; Li, R. Current situation and prospects of the studies of ecological industries and ecological products in eco-fragile areas. Environ. Res. 2021, 201, 111613. [Google Scholar] [CrossRef]
- Falagas, M.E.; Pitsouni, E.I.; Malietzis, G.A.; Pappas, G. Comparison of PubMed, Scopus, Web of Science, and Google Scholar: Strengths and weaknesses. FASEB J. 2008, 22, 338–342. [Google Scholar] [CrossRef] [PubMed]
- Kulkarni, A.V.; Aziz, B.; Shams, I.; Busse, J.W. Comparisons of citations in Web of Science, Scopus, and Google Scholar for articles published in general medical journals. JAMA 2009, 302, 1092–1096. [Google Scholar] [CrossRef] [PubMed]
- López-Illescas, C.; de Moya-Anegón, F.; Moed, H.F. Coverage and citation impact of oncological journals in the Web of Science and Scopus. J. Informetr. 2008, 2, 304–316. [Google Scholar] [CrossRef]
- Burnham, J.F. Scopus database: A review. Biomed. Digit. Libr. 2006, 3, 1. [Google Scholar] [CrossRef] [Green Version]
- Xiao, X.; Chen, J.; Liao, X.; Liu, J.; Wang, D.; Li, J.; Yan, Q. Ecological stoichiometry of Cinnamomum migao leaf litter and soil nutrients under nitrogen deposition in a karst region. Ecosphere 2021, 12, e03738. [Google Scholar] [CrossRef]
- Wen, X.; Lyu, S.; Zhang, X.; Li, S.; Guo, Q. Vegetation recovery alters soil N status in subtropical karst plateau area: Evidence from natural abundance δ15N and δ18O. Plant Soil 2021, 460, 609–623. [Google Scholar] [CrossRef]
- Tan, Q.; Si, J.; He, Y.; Yang, Y.; Shen, K.; Xia, T.; Kang, L.; Fang, Z.; Wu, B.; Guo, Y.; et al. Improvement of karst soil nutrients by arbuscular mycorrhizal fungi through promoting nutrient release from the litter. Int. J. Phytoremediat. 2021, 23, 1244–1254. [Google Scholar] [CrossRef]
- Guan, H.L.; Fan, J.W.; Lu, X. Soil specific enzyme stoichiometry reflects nitrogen limitation of microorganisms under different types of vegetation restoration in the karst areas. Appl. Soil Ecol. 2022, 169, 104253. [Google Scholar] [CrossRef]
- Xiao, D.; He, X.; Zhang, W.; Hu, P.; Sun, M.; Wang, K. Comparison of bacterial and fungal diversity and network connectivity in karst and non-karst forests in southwest China. Sci. Total Environ. 2022, 822, 153179. [Google Scholar] [CrossRef] [PubMed]
- Guignard, M.S.; Leitch, A.R.; Acquisti, C.; Eizaguirre, C.; Elser, J.J.; Hessen, D.O.; Jeyasingh, P.D.; Neiman, M.; Richardson, A.E.; Soltis, P.S.; et al. Impacts of Nitrogen and Phosphorus: From Genomes to Natural Ecosystems and Agriculture. Front. Ecol. Evol. 2017, 5, 70. [Google Scholar] [CrossRef] [Green Version]
- Thomas, R.Q.; Brookshire, E.N.J.; Gerber, S. Nitrogen limitation on land: How can it occur in Earth system models. Glob. Chang. Biol. 2015, 21, 1777–1793. [Google Scholar] [CrossRef]
- Grant, M.J. Key words and their role in information retrieval. Heatlth Info. Libr. J. 2010, 27, 173–175. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Zhao, J.; Pan, F.; Li, D.; Chen, H.; Wang, K. Changes in nitrogen and phosphorus limitation during secondary succession in a karst region in southwest China. Plant Soil 2015, 391, 77–91. [Google Scholar] [CrossRef]
- LeBauer, D.S.; Treseder, K.K. Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology 2008, 89, 371–379. [Google Scholar] [CrossRef] [Green Version]
- Fay, P.A.; Prober, S.M.; Harpole, W.S.; Knops, J.M.H.; Bakker, J.D.; Borer, E.T.; Lind, E.M.; MacDougall, A.S.; Seabloom, E.W.; Wragg, P.D.; et al. Grassland productivity limited by multiple nutrients. Nat. Plants 2015, 1, 15080. [Google Scholar] [CrossRef]
- Xiao, K.C.; Li, D.J.; Wen, L.; Yang, L.Q.; Luo, P.; Chen, H.; Wang, K.L. Dynamics of soil nitrogen availability during post-agricultural succession in a karst region, southwest China. Geoderma 2018, 314, 184–189. [Google Scholar] [CrossRef]
- Wen, L.; Li, D.; Yang, L.; Luo, P.; Chen, H.; Xiao, K.; Song, T.; Zhang, W.; He, X.; Chen, H. Rapid recuperation of soil nitrogen following agricultural abandonment in a karst area, southwest China. Biogeochemistry 2016, 129, 341–354. [Google Scholar] [CrossRef]
- Xiao, S.S.; Ye, Y.Y.; Xiao, D.; Chen, W.R.; Wang, K.L. Effects of tillage on soil N availability, aggregate size, and microbial biomass in a subtropical karst region. Soil Tillage Res. 2019, 192, 187–195. [Google Scholar] [CrossRef]
- Xiao, K.C.; He, T.G.; Chen, H.; Peng, W.X.; Song, T.Q.; Wang, K.L.; Li, D. Impacts of vegetation restoration strategies on soil organic carbon and nitrogen dynamics in a karst area, southwest China. Ecol. Eng. 2017, 101, 247–254. [Google Scholar] [CrossRef]
- Yan, P.; Xiong, K.N.; Wang, H.S.; Tan, D.; Guo, J.; Xiao, J.; Li, K.P. Different grade rocky desertification in karst area of soil physical and chemical properties. Jiangsu Agri. Sci. 2016, 44, 322–327. [Google Scholar]
- Sheng, M.Y.; Xiong, K.N.; Cui, G.Y.; Liu, Y. Plant Diversity and Soil Physical and Chemical Properties in Karst Rocky Desertification Areas in Guizhou. Acta Ecol. Sinica 2015, 35, 434–448. [Google Scholar] [CrossRef] [Green Version]
- Hu, N. Effects of vegetation restoration on soil organic carbon, nitrogen accumulation and nitrogen mineralization in karst rocky desertification area. Ph.D. Thesis, Southwest University, Chongqing, China, 2015. [Google Scholar]
- Tong, X.W.; Brandt, M.; Yue, Y.M.; Ciais, P.; Jepsen, M.R.; Penuelas, J.; Wigneron, J.P.; Xiao, X.M.; Song, X.P.; Horion, S.; et al. Forest management in southern China generates short term extensive carbon sequestration. Nat. Commun. 2020, 11, 129. [Google Scholar] [CrossRef]
- Hu, P.; Zhao, Y.; Xiao, D.; Xu, Z.; Wang, K. Dynamics of soil nitrogen availability following vegetation restoration along a climatic gradient of a subtropical karst region in China. J. Soil Sediment 2021, 21, 2167–2178. [Google Scholar] [CrossRef]
- Thomas, E.; Kurien, V.T.; Shanthi Prabha, V.; Thomas, A.P. Monoculture vs. mixed-species plantation impact on the soil quality of an ecologically sensitive area. J. Agric. Environ. Int. Dev. 2020, 114, 41–62. [Google Scholar] [CrossRef]
- Matson, P.; Lohse, K.A.; Hall, S.J. The globalization of nitrogen deposition: Consequences for terrestrial ecosystems. AMBIO 2002, 31, 113–119. [Google Scholar] [CrossRef]
- Guo, B.; Kong, W.H.; Jiang, L.; Fan, Y.W. Temporal and spatial variation of ecosystem vulnerability and its driving mechanism in the Alpine ecological region of the Tibetan Plateau. Ecol. Sci. 2018, 5, 96–106. [Google Scholar] [CrossRef]
- Yang, X.; Guo, B.; Han, B.M.; Chen, S.T.; Yang, F.; Fan, Y.W.; He, T.L.; Liu, Y. Analysis of the Spatial-Temporal Evolution Patterns of NPP and Its Driving Mechanisms in the Qinghai-Tibet Plateau. Resour. Environ. Yangtze Basin 2019, 28, 3038–3050. [Google Scholar] [CrossRef]
- Huang, X.-L.; Chen, J.-Z.; Wang, D.; Deng, M.-M.; Wu, M.-Y.; Tong, B.-L.; Liu, J.-M. Simulated atmospheric nitrogen deposition inhibited the leaf litter decomposition of Cinnamomum migao H. W. Li in Southwest China. Sci. Rep. 2021, 11, 1748. [Google Scholar] [CrossRef]
- Li, X.L.; Chen, X.M.; Zhou, L.C.; Zhou, F.F. Variability of organic carbon and total nitrogen in karst soils of Guizhou Province. J. Nanjing Agric. Uni. 2010, 33, 75–80. [Google Scholar] [CrossRef]
- Zhang, D.Q. Nitrogen variation characteristics and ecological effects of karstic desertification soils in Guizhou. Master’s Thesis, Guizhou University, Guizhou, China, 2006. [Google Scholar]
- Zheng, H.; Su, Y.R.; He, X.Y.; Huang, D.Y.; Wu, J.S. Effects of land use practices on soil nutrients in karst peaks and valleys: An example from Dacai Village, Huanjiang County, Guangxi. Carsol. Sin. 2008, 27, 177–181. [Google Scholar] [CrossRef]
- Li, X.A.; Xiao, H.A.; Wu, J.S.; Su, Y.R. Huang Daoyou, Huang Min, Liu Shoulong, Peng Hongcui. Effects of different land use practices on soil organic carbon, total nitrogen, and microbial biomass carbon and nitrogen in karst areas. J. Appl. Ecol. 2006, 17, 1827–1831. [Google Scholar] [CrossRef]
- Volpi, I.; Bosco, S.; Ragaglini, G.; Laville, P.; Bonari, E. Tomato productivity and soil greenhouse gas emissions under reduced water and N fertilizers in a Mediterranean environment. Arc. Ecosyst. Environ. 2022, 326, 107819. [Google Scholar] [CrossRef]
- Wang, Y.H.; Hong, L.; Wang, Y.C.; Yang, Y.W.; Lin, L.W.; Ye, J.H.; Jia, X.L. Effects of soil nitrogen and ph in tea plantation soil on yield and quality of tea leaves. Allelopath. J. 2022, 55, 51–60. [Google Scholar] [CrossRef]
- Zeng, W.; Wang, Z.; Chen, X.; Yao, X.; Wang, W. Increased nitrogen availability alters soil carbon quality by regulating microbial r-K growth strategy, metabolic efficiency, and biomass in degraded temperate grasslands. Land Degrad. Dev. 2021, 32, 3550–3560. [Google Scholar] [CrossRef]
- He, K.; Huang, Y.; Qi, Y.; Sheng, Z.; Chen, H. Effects of nitrogen addition on vegetation and soil and its linkages to plant diversity and productivity in a semi-arid steppe. Sci. Total Environ. 2021, 778, 146299. [Google Scholar] [CrossRef]
- Butler, S.M.; Melillo, J.M.; Johnson, J.E.; Mohan, J.; Steudler, P.A.; Lux, H.; Burrows, E.; Smith, R.M.; Vario, C.L.; Scott, L.; et al. Soil warming alters nitrogen cycling in a New England forest: Implications for ecosystem function and structure. Oecologia 2012, 168, 819–828. [Google Scholar] [CrossRef] [Green Version]
- Blesh, J. Feedbacks between nitrogen fixation and soil organic matter increase ecosystem functions in diversified agroecosystems. Ecol. Appl. 2019, 29, e01986. [Google Scholar] [CrossRef]
- Mashaba-Munghemezulu, Z.; Chirima, G.J.; Munghemezulu, C. Modeling the Spatial Distribution of Soil Nitrogen Content at Smallholder Maize Farms Using Machine Learning Regression and Sentinel-2 Data. Sustainability 2021, 13, 11591. [Google Scholar] [CrossRef]
- Close, S.S.; Andrews, D.L.; Karlen, J.P. MitchellA comparison of soil quality indexing methods for vegetable production systems in Northern California Agriculture. Agric. Ecosyst. Environ. 2002, 90, 25–45. [Google Scholar]
- Doran, J.W.; Parkin, T.B. Defining and Assessing Soil Quality. In Defining Soil Quality for a Sustainable Environment; Doran, J.W., Coleman, D.C., Bezdicek, D.F., Stewart, B.A., Eds.; Wiley: Minneapolis, MN, USA, 2015; Volume 35, pp. 1–21. [Google Scholar] [CrossRef]
- Close, E.K.; Bünemann, G.; Bongiorno, Z.; Bai, R.E.; Creamer, G.; De Deyn, R.; de Goede, L.; Fleskens, V.; Geissen, T.W.; Kuyper, P.; et al. Brussaard Soil quality—A critical review. Soil Biol. Biochem. 2018, 120, 105–125. [Google Scholar] [CrossRef]
- Schwilch, G.; Lemann, T.; Berglund, Ö.; Camarotto, C.; Cerdà, A.; Daliakopolus, I.N.; Kohnová, S.; Krzeminska, D.; Marañón, T.; Valente, S.; et al. Assessing impacts of soil management measures on ecosystem services. Sustainability 2018, 10, 4416. [Google Scholar] [CrossRef] [Green Version]
- Raquel, L.S.; Mamen, C.P.; Joris, D.V. Participatory selection of soil quality indicators for monitoring the impacts of regenerative agriculture on ecosystem services. Ecosyst. Serv. 2020, 45, 101157. [Google Scholar] [CrossRef]
- Xia, G.; Cheng, L.; Lakso, A.; Goffinet, M. Effects of nitrogen supplyon source-sink balance and fruit size of “Gala” apple trees. J. Am. Soc. Hortic. Sci. 2009, 134, 126–133. [Google Scholar] [CrossRef] [Green Version]
- Fallahi, E.; Mohan, S.K. Influence of nitrogen and rootstock on treegrowth, precocity, fruit quality, leaf mineral nutrients, and fire blightin “scarlet Gala” apple. HortTechnology 2000, 10, 589–592. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.Q.; Song, M.L.; Wang, H.S.; Yin, Y.L.; Ma, Y.S. Effects of nitrogen addition on vegetation and nutrient quality of degraded alpine grassland. Acta Agrestia Sin. 2021, 29, 2742–2751. [Google Scholar] [CrossRef]
- Cardinale, B.J.; Duffy, J.E.; Gonzalez, A.; Hooper, D.U.; Perrings, C.; Venail, P.; Narwani, A.; Mace, G.M.; Tilman, D. A global synthesis reveals biodiversity loss as a major driver of ecosystem change. Nature 2012, 489, 59–67. [Google Scholar] [CrossRef]
- Zhang, M.; Liu, B.; Li, G.; Kuang, Y.; Yue, X.; Jiang, S.; Liu, J.; Wang, L. The relative and combined effects of herbivore assemblage and soil nitrogen on plant diversity. China-Chem. Life Sci. 2021, 65, 830–837. [Google Scholar] [CrossRef]
- Li, N.; Sun, Z.; Zhang, Y.; Liu, E.; Li, F.; Li, C.; Li, F. Contribution of carbon sources in sedimentary soils combining carbon and nitrogen isotope with stable isotope model. Sci. Agric. Sin. 2021, 54, 3057–3064. [Google Scholar] [CrossRef]
- Zhou, T.; Geng, Y.; Chen, J.; Sun, C.; Haase, D.; Lausch, A. Mapping of soil total nitrogen content in the middle reaches of the Heihe River Basin in China using multi-source remote sensing-derived variables. Remote Sens. 2019, 11, 2934. [Google Scholar] [CrossRef] [Green Version]
- Garnier, P.; Néel, C.; Mary, B.; Lafolie, F. Evaluation of a nitrogen transport and transformation model in a bare soil. Eur. J. Soil Sci. 2001, 52, 253–268. [Google Scholar] [CrossRef]
- Kanwar, R.S.; Johnson, H.P.; Baker, J.L. Comparison of simulated and measured losses in the effluent. Trans. ASAE 1983, 26, 1451–1457. [Google Scholar] [CrossRef]
- Skaggs, R.W.; Breve, M.A. Simulation of drainage water quality with DRAINMOD. Irrig. Drain. Syst. 1995, 9, 259–277. [Google Scholar] [CrossRef]
- Bergstrom, L.; Jonsson, H.; Torstensson, G. Simulation of nitrogen dynamics using the SOILN model. Fert. Res. 1991, 27, 181–188. [Google Scholar] [CrossRef]
- Knighton, R.E.; Wagenet, R.J. Simulation of solute transport using a CTMP. Water Reasor. Res. 1987, 28, 1917–1925. [Google Scholar] [CrossRef]
- Xing, Y.; Ma, X.H. Research progress on effect of nitrogen form on plant growth. J. Agric. Sci. Technol. 2015, 17, 109–117. [Google Scholar] [CrossRef]
- Deng, Y.; Wang, Z.; Lu, S.; Zhong, J.; Zhu, L.; Chen, F.; Wu, L. Soil quality assessment via the factor analysis of karst rocky desertification areas in Hunan, China. Soil Use Manag. 2022, 38, 248–261. [Google Scholar] [CrossRef]
- Yu, Y.; Wang, L.; Zhong, X.; Qin, S. Evaluation of soil quality of Chinese prickly ash artificial orchard at different altitudes in Guizhou Karst mountainous area. Acta Ecol. Sinica 2018, 38, 7850–7858. [Google Scholar] [CrossRef]
- Li, Y.; Gong, J.; Liu, J.; Hou, W.; Moroenyane, I.; Liu, Y.; Jin, J.; Liu, J.; Xiong, H.; Cheng, C.; et al. Effects of Different Land Use Types and Soil Depth on Soil Nutrients and Soil Bacterial Communities in a Karst Area, Southwest China. Soil Syst. 2022, 6, 20. [Google Scholar] [CrossRef]
- Wang, M.; Chen, H.; Zhang, W.; Wang, K. Influencing factors on soil nutrients at different scales in a karst area. Catena 2019, 175, 411–420. [Google Scholar] [CrossRef]
- Wang, Y.; Shahbaz, M.; Zhran, M.; Chen, A.; Zhu, Z.; Mohamed Galal, Y.G.; Ge, T.; Li, Y. Microbial resource limitation in aggregates in karst and non-karst soils. Agronomy 2021, 11, 1591. [Google Scholar] [CrossRef]
- Liu, L.; Zhu, N.; Zhou, G.; Dang, P.; Yang, X.; Qiu, L.; Huang, M.; Gong, Y.; Zhao, S.; Chen, J. Response of soil microbial community to plant composition changes in broad-leaved forests of the karst area in Mid-Subtropical China. PeerJ 2022, 10, e12739. [Google Scholar] [CrossRef]
- Shen, J.C.; Zhang, Z.H.; Liu, R.; Wang, Z.H. Ecological restoration of eroded karst utilizing pioneer moss and vascular plant species with selection based on vegetation diversity and underlying soil chemistry. Int. J. Phytoremediat. 2018, 20, 1369–1379. [Google Scholar] [CrossRef]
- Fan, F.J. Spatial variability characteristics of soil properties in typical slopes of southwest canyon type karst. Master’s Thesis, Jiangxi Agricultural University, Jiangxi, China, 2014. [Google Scholar]
- Qin, J.K.; Yin, X.H.; Lv, S.H.; Yang, C.L. Seasonal variation of soil nutrients in karst ecological reconstruction orchards. Soil Water Conserv. Res. 2010, 17, 101–105. [Google Scholar]
- Guo, B.; Chen, S.T.; Han, B.M.; Yang, X.; Fan, Y.W.; He, T.L.; Yang, W.N.; Jiang, L. Quantitative assessment of ecological vulnerability in the silk road economic belt. Resour. Environ. Yangtze Basin 2019, 28, 2601–2611. [Google Scholar] [CrossRef]
- JU, X.T.; Gu, B.J. Indicators of nitrogen management. J. Soil Sci. 2017, 54, 281–296. [Google Scholar] [CrossRef]
- Yang, Y.; Zhong, X.M.; Yan, Z.G.; Zhai, H. Effect of nitrogen morphology on fruit quality of Giant Peak grapes. J. Plant Nutr. Fertil. 2010, 16, 1037–1040. [Google Scholar] [CrossRef]
- Vitousek, P.M.; Aber, J.D.; Howarth, R.H.; Likens, G.E.; Matson, P.A.; Schindler, D.W.; Schlesinger, W.H.; Tilman, D.G. Human alteration of the global nitrogen cycle: Source and consequences. Ecol. Appl. 1997, 7, 737–750. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.T.; Guo, B.; Yang, F.; Han, B.M.; Fan, Y.W.; Yang, X.; He, T.L.; Liu, Y.; Yang, W.N. Temporal and spatial patterns of vegetation NPP and its response to climate change on the Tibetan Plateau from 2000 to 2015. J. Nat. Resour. 2020, 35, 2511–2527. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wan, P.; Xiong, K.; Zhang, L. Heterogeneity of Spatial-Temporal Distribution of Nitrogen in the Karst Rocky Desertification Soils and Its Implications for Ecosystem Service Support of the Desertification Control—A Literature Review. Sustainability 2022, 14, 6327. https://doi.org/10.3390/su14106327
Wan P, Xiong K, Zhang L. Heterogeneity of Spatial-Temporal Distribution of Nitrogen in the Karst Rocky Desertification Soils and Its Implications for Ecosystem Service Support of the Desertification Control—A Literature Review. Sustainability. 2022; 14(10):6327. https://doi.org/10.3390/su14106327
Chicago/Turabian StyleWan, Panteng, Kangning Xiong, and Le Zhang. 2022. "Heterogeneity of Spatial-Temporal Distribution of Nitrogen in the Karst Rocky Desertification Soils and Its Implications for Ecosystem Service Support of the Desertification Control—A Literature Review" Sustainability 14, no. 10: 6327. https://doi.org/10.3390/su14106327