Drought Risk Assessment of Sugarcane-Based Electricity Generation in the Rio dos Patos Basin, Brazil
Abstract
:1. Introduction
1.1. Drought Events in Brazil
1.2. Impacts on Electricity
2. Materials and Methods
2.1. Study Site
2.2. Sugarcane System Description
2.3. Risk Analysis Description
2.3.1. Agriculture Hazard Indicators
- (iv and v) The precipitation starts later or ends earlier than usual (analysed by counting the number of days);
- (vi) The length of the dry season is longer than usual;
- (vii) There are dry spells within the rainy season (total consecutive days with precipitation less than 2 mm);
- (viii) The precipitation is concentrated in time, as defined by the precipitation concentration index (PCI), developed by [39], which is a statistical measure of how concentrated in time the precipitation is;
- (iv) Air temperature reaches above 36 °C;
- (v) If the ecological river flow is jeopardised.
2.3.2. Industrial Hazard Indicators
2.3.3. Agriculture Exposure Indicators
- Areas that were not priority areas and where irrigation was not possible.
- Areas that were not priority areas and where irrigation was possible.
- Areas that were priority areas and where irrigation was not possible.
- Areas that were priority areas and where irrigation was possible.
Information | Dataset | Source |
---|---|---|
Hydrological boundaries and bodies | HMU boundaries | [25] |
Rivers and water bodies | ||
Sugarcane | Sugarcane fields in Goiás with information about the age of the sugarcane (Cansat) | [43,44] |
Sugarcane fields | Sugarcane mill through Embrapa Cerrados | |
Land use | Native vegetation, APPs, and ARLs | [45] |
Land-use cover | [46] (MapBiomas Project—a multiinstitutional initiative to generate annual land cover and use maps using automatic classification processes applied to satellite images. A complete description of the project can be found at http://mapbiomas.org, accessed on 15 July 2019) |
2.3.4. Industrial Exposure Indicators
2.3.5. Agriculture Vulnerability Indicators
2.3.6. Industrial Vulnerability Indicators
2.4. Risk Assessment
2.4.1. Hazard Estimation
Agriculture Hazard Estimation
- is the sum of all the weights.
- Wx is the corresponded weight for the criteria (see Table 4).
- PV is the precipitation volume.
- RD is the rain distribution.
- T is days with an air temperature higher than 36 °C.
- Q is the available water flow in rivers (its analysis is detailed in “Industrial Hazard Estimation” section below).
- CY is the impact on the crop yield.
- AP is agriculture planning.
Industrial Hazard Estimation
2.4.2. Exposure Estimation
2.4.3. Vulnerability Estimation
- LAC is the lack of adaptive capacity.
- LCC is the lack of coping capacity.
- SoS in the social susceptibility.
- ESR is the ecosystem’s susceptibility and robustness.
- Wts is the volume of fresh water per tonne of sugarcane process.
- Ets is kWh generated per tonne of sugarcane processed.
- WRts is the percentage of water recovered and reused from sugarcane.
- ERts is the kWh used per tonne of sugarcane processed.
- WL is the volume of water lost in the system.
- AD is the access to a dam to cover water requirements.
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
AD | Access to a dam |
APPs | Permanent preserve areas |
ARL | Legal reserve area |
CAR | Rural Environmental Register |
Erts | kWh used per tonne of sugarcane processed |
ESR | Ecosystem susceptibility and robustness |
Ets | kWh generated per tonne of sugarcane processed |
FC | Field capacity |
HMU | Hydrological management unit |
IPCC | Intergovernmental Panel on Climate Change |
LAC | Lack of adaptive capacity |
LCC | Lack of coping capacity |
PCI | Precipitation concentration index |
PWP | Permanent welting point |
SEMAD | Secretary of State for Environment and Sustainable Development |
SIN | National Interconnected System |
SoS | Social susceptibility |
SPI | Standard precipitation index |
SWC | Soil water content |
WL | Water lost in the industrial system |
WRts | Percentage of water recovered and reused from sugarcane |
Wts | Volume of fresh water per tonne of sugarcane process |
References
- Cunha, A.P.M.A.; Zeri, M.; Deusdará Leal, K.; Costa, L.; Cuartas, L.A.; Marengo, J.A.; Tomasella, J.; Vieira, R.M.; Barbosa, A.A.; Cunningham, C.; et al. Extreme Drought Events over Brazil from 2011 to 2019. Atmosphere 2019, 10, 642. [Google Scholar] [CrossRef] [Green Version]
- de Nys, E.; Engle, N.; Magalhães, A.R. (Eds.) Drought in Brazil: Proactive Management and Policy; CRC Press: Boca Raton, FL, USA, 2017; ISBN 9781498765664. [Google Scholar]
- Cunha, A.P.; Brito, S.S.; Neto, G.G.; Avalá, R.C. Drought Between 1963 and 2017 in the Federal District, Brazil. Anuário IGEO UFRJ 2018, 41, 487–498. [Google Scholar] [CrossRef]
- Semertzidis, T.; Spataru, C.; Bleischwitz, R. Cross-sectional Integration of the Water-energy Nexus in Brazil. J. Sustain. Dev. Energy Water Environ. Syst. 2017, 6, 114–128. [Google Scholar] [CrossRef] [Green Version]
- Instituto Brasileiro de Geografia e Estatística. A Geografia da Cana-de-Açúcar: Dinâmica Territorial da Produção Agropecuária; IBGE Instituto Brasileiro de Geografia e Estatística: Rio de Janeiro, Brazil, 2017; ISBN 9788524044434.
- Rodrigues, J.A.M.; Viola, M.R.; Alvarenga, L.A.; Mello, C.R.; Chou, S.C.; Oliveira, V.A.; Uddameri, V.; Morais, M.A.V. Climate change impacts under representative concentration pathway scenarios on streamflow and droughts of basins in the Brazilian Cerrado biome. Int. J. Climatol. 2020, 40, 2511–2526. [Google Scholar] [CrossRef]
- Oliveira, P.T.S.; Nearing, M.A.; Moran, M.S.; Goodrich, D.C.; Wendland, E.; Gupta, H.V. Trends in water balance components across the Brazilian Cerrado. Water Resour. Res. 2014, 50, 7100–7114. [Google Scholar] [CrossRef] [Green Version]
- Fernandes, G.; Lima Gomes, L.; Teixeira Brandão, L.E. Mitigating Hydrological Risk with Energy Derivatives. Energy Econ. 2019, 81, 528–535. [Google Scholar] [CrossRef]
- Freitas, M.A.V.; Soito, J.L.S. Vulnerability to climate change and water management: Hydropower generation in Brazil. In Proceedings of the 5th International Conference on River Basin Management, Mellieha, Malta, 7–9 September 2009; Brebbia, C.A., Ed.; WIT Press: Southampton, UK, 2009; pp. 217–226. [Google Scholar]
- Oliveira, C.; Zulanas, C.; Kashiwagi, D. A Long-term Solution to Overcome the Problems Caused by Droughts in the Brazilian Power Systems. Procedia Eng. 2016, 145, 948–955. [Google Scholar] [CrossRef] [Green Version]
- Paim, M.-A.; Dalmarco, A.R.; Yang, C.-H.; Salas, P.; Lindner, S.; Mercure, J.-F.; de Andrade Guerra, J.B.S.O.; Derani, C.; Bruce da Silva, T.; Viñuales, J.E. Evaluating regulatory strategies for mitigating hydrological risk in Brazil through diversification of its electricity mix. Energy Policy 2019, 128, 393–401. [Google Scholar] [CrossRef]
- Semertzidis, T.; Spataru, C.; Bleischwitz, R. The Nexus: Estimation of Water Consumption for Hydropower in Brazil. J. Sustain. Dev. Energy Water Environ. Syst. 2019, 7, 122–138. [Google Scholar] [CrossRef] [Green Version]
- Hunt, J.D.; Stilpen, D.; de Freitas, M.A.V. A review of the causes, impacts and solutions for electricity supply crises in Brazil. Renew. Sustain. Energy Rev. 2018, 88, 208–222. [Google Scholar] [CrossRef]
- Nobre, C.A.; Marengo, J.A.; Soares, W. Climate Change Risks in Brazil; Springer: Cham, Switzerland, 2019; ISBN 9783319928814. [Google Scholar]
- Laboratório Nacional de Biorrenováveis. Biomassa de Cana-de-Açúcar. Available online: https://lnbr.cnpem.br/biovalue/biomassas/palha-bagaco/ (accessed on 1 May 2022).
- de Souza, Z.J.; de Azevedo, P.F. Geração de energia elétrica excedente no setor sucroalcooleiro: Um estudo a partir das usinas paulistas. Rev. Econ. Sociol. Rural 2006, 44, 179–199. [Google Scholar] [CrossRef] [Green Version]
- Zullo, J.; Pereira, V.R.; Koga-Vicente, A. Sugar-energy sector vulnerability under CMIP5 projections in the Brazilian central-southern macro-region. Clim. Chang. 2018, 149, 489–502. [Google Scholar] [CrossRef]
- Scarpare, F.V.; Hernandes, T.A.D.; Ruiz-Corrêa, S.T.; Picoli, M.C.A.; Scanlon, B.R.; Chagas, M.F.; Duft, D.G.; Cardoso, T.d.F. Sugarcane land use and water resources assessment in the expansion area in Brazil. J. Clean. Prod. 2016, 133, 1318–1327. [Google Scholar] [CrossRef]
- de Arruda, M.R.; Giller, K.E.; Slingerland, M. Where is sugarcane cropping expanding in the brazilian cerrado, and why? A case study. An. Acad. Bras. Cienc. 2017, 89, 2485–2493. [Google Scholar] [CrossRef] [Green Version]
- Bufon, V.B.; Marcante, N.C.; Santos, J.M. Acúmulo e Partição de Biomassa da Cana-de-Açúcar Submetida a Diferentes Regimes Hídricos na Região do Cerrado. STAB 2016, 178–183. Available online: http://www.stab.org.br/congresso_nacional_stab/imagens/anais_congress_nacional_stab_2016.pdf (accessed on 15 July 2019).
- Oliveira Pires, M. Programas Agrícolas na Ocupação do Cerrado. Soc. E Cult. 2000, 3, 111–131. [Google Scholar]
- Jalles Machado, S.A. Annual & Sustainability Report; Jalles Machado S.A.: Goianésia, Brazil, 2021. [Google Scholar]
- Sistema Estadual de Geoinformação. Recursos Hídricos. Available online: http://www.sieg.go.gov.br/siegdownloads/ (accessed on 30 November 2018).
- Agência Nacional de Águas. Corpos Hídricos Superficiais: Base Hidrográfica Ottocodificada Multiescalas 2013—Rios. Available online: https://metadados.ana.gov.br/geonetwork/srv/pt/main.home?uuid=7bb15389-1016-4d5b-9480-5f1acdadd0f5 (accessed on 4 April 2018).
- Agência Nacional de Águas. Unidades de Planejamento Hídrico. Available online: http://metadados.ana.gov.br/geonetwork/srv/pt/main.home (accessed on 4 April 2018).
- DIVA—GIS. Download Data by Country: Brazil—Administrative Areas. Available online: https://www.diva-gis.org/gdata (accessed on 15 March 2018).
- Tomaz, W.L.; Serotini Gordono, F.; Piaudi da Silva, F.; Gomes de Castro, M.D.; Esperidiao, M. Cogeração de Energia a Partir do Bagaço da Cana-de-açucar: Esto de caso múltiplo no setor sucroalcoleiro. In Proceedings of the Encontro Internacional sobre Gestão Empresarial e Meio Ambiente, São Paulo, Brazil, 30 November–1 December 2015. [Google Scholar]
- Seabra, J.E.A.; Macedo, I.C.; Chum, H.L.; Faroni, C.E.; Sarto, C.A. Life cycle assessment of Brazilian sugarcane products: GHG emissions and energy use. Biofuels Bioprod. Bioref. 2011, 5, 519–532. [Google Scholar] [CrossRef]
- Parameswaran, B. Sugarcane Bagasse. In Biotechnology for Agro-Industrial Residues Utilisation; Singh nee’ Nigam, P., Pandey, A., Eds.; Springer: Dordrecht, The Netherlands, 2009; pp. 239–252. ISBN 978-1-4020-9941-0. [Google Scholar]
- Zaparolli, D. Paper from Cane Fiber and Leaves. Available online: https://revistapesquisa.fapesp.br/en/paper-from-cane-fiber-and-leaves/ (accessed on 6 May 2022).
- Silverio, J.d.M.; Da Silva, T.J.A.; Bonfim-Silva, E.M.; Iaia, A.M.; Duarte, T.F.; Pires, R.C.M. Drought tolerance of the sugar cane varieties during the initial development. Aust. J. Crop Sci. 2017, 11, 711–715. [Google Scholar] [CrossRef]
- Paolinelli, A.; Dourado Neto, D.; Mantovani, E.C. Diferentes Abordagens Sobre Agricultura Irrigada no Brasil: História, Política Pública, Economia e Recurso Hídrico; Universidade de São Paulo, Escola Superior de Agricultura Luiz de Queiroz: Piracicaba, Brazil, 2021; ISBN 9786587391113. [Google Scholar]
- Bordonal, R.d.O.; Carvalho, J.L.N.; Lal, R.; de Figueiredo, E.B.; de Oliveira, B.G.; La Scala, N. Sustainability of sugarcane production in Brazil. A review. Agron. Sustain. Dev. 2018, 38, 13. [Google Scholar] [CrossRef] [Green Version]
- Camelo de Souza, J.K.; De Oliveira Mesquita, F.; Dantas Neto, J.; Araújo de Souza, M.M.; de Azevedo Farias(None), C.H.; Mendes, H.C.; Mendes de Andrade Nunes, R. Fertirrigação com vinhaça na produção de cana-de-açúcar. Agropecuária Científica No Semiárido 2015, 11, 7–12. [Google Scholar]
- Forum Nacional Sucroenergético. Gestão dos Recursos Hídricos na Agroindústria Canaveira. União da Indústria de Cana-de-Açúcar. Brasilia. 2019. Available online: https://www.unica.com.br/wp-content/uploads/2019/06/Gestao-dos-Recursos-Hidricos.pdf (accessed on 17 March 2022).
- Di Donato, G.F.; Targa, M.d.S.; Da Almeida, A.A.S. Otimização do uso de recursos hídricos em uma usina de produção de etanol. Rev. Agro. Amb. 2021, 14, e006715. [Google Scholar] [CrossRef]
- McKee, T.B.; Doesken, N.J.; Kleist, J. Drought Monitoring with Multiple Timescales. In Proceedings of the Ninth Conference on Applied Climatology, Dallas, TX, USA, 15–20 January 1995; American Meteorological Society: Boston, MA, USA, 1995. [Google Scholar]
- McKee, T.B.; Doesken, N.J.; Kleist, J. The Relationship of Drought Frequency and Duration to Time Scale. In Proceedings of the Eighth Conference on Applied Climatology, Anaheim, CA, USA, 17–22 January 1993; American Meteorological Society: Boston, MA, USA, 1993. [Google Scholar]
- Oliver, J.E. Monthly Precipitation Distribution: A Comparative Index. Prof. Geogr. 1980, 32, 300–309. [Google Scholar] [CrossRef]
- van Loon, A.F. Hydrological drought explained. WIREs Water 2015, 2, 359–392. [Google Scholar] [CrossRef]
- Regulamento do Sistema de Outorga do di- reito de uso das águas de domínio do Estado de Goiás; Resolução N° 09, De 04 De Maio De 2005: Resolução N° 09, 2005; Gabinete do Conselho Estadual de Saneamento, Meio Ambiente e Recursos Hídricos: Goiânia, Brazil, 2005.
- Alterações na Vazão Alocável para Outorga em Cursos D’água sob Domínio do Estado de Goiás; Resolução N° 11, De 20 De Março De 2007: Resolução N° 11, 2007; Gabinete do Conselho Estadual de Saneamento, Meio Ambiente e Recursos Hídricos: Goiânia, Brazil, 2007.
- Rudorff, B.F.T.; Aguiar, D.A.; Silva, W.F.; Sugawara, L.M.; Adami, M.; Moreira, M.A. Studies on the Rapid Expansion of Sugarcane for Ethanol Production in São Paulo State (Brazil) Using Landsat Data. Remote Sens. 2010, 2, 1057–1076. [Google Scholar] [CrossRef] [Green Version]
- Agrosatelite. Sugarcane Harvested and Plantes Area between in Goiás; Agrosatelite: Florianópolis, Brazil, 2017. [Google Scholar]
- Sistema Nacional de Cadastro Ambiental Rural. Cadastro Ambiental Rural Goiás. Available online: https://www.car.gov.br/publico/municipios/downloads?sigla=GO (accessed on 1 March 2021).
- Projeto MapBiomas. Coleção 3.1 da Série Anual de Mapas de Cobertura e Uso de Solo do Brasil. Available online: https://mapbiomas.org/colecoes-mapbiomas-1?cama_set_language=pt-BR (accessed on 15 July 2019).
- NovaCana. Usinas de Açúcar e Álcool no Estado: Goiás. Available online: https://www.novacana.com/usinas_brasil/estados/goias (accessed on 1 March 2021).
- NovaCana. Ranking de Moagem: As Maiores Unidades de Processamento de Cana para Produção de Etanol e Açúcar. Available online: https://www.novacana.com/usinas_brasil/ranking/moagem (accessed on 1 March 2021).
- NovaCana. Levantamento da Cogeração de Energia no Brasil por Usina. Available online: https://www.novacana.com/n/cogeracao/mercado/levantamento-cogeracao-energia-brasil-usina-200315 (accessed on 15 April 2021).
- Field, C.B.; Barros, V.R. (Eds.) Climate Change 2014: Impacts, Adaptation and Vulnerability; Cambridge University Press: New York, NY, USA, 2014; ISBN 978-1-107-05807-1. [Google Scholar]
- Secretaria de Estado de Meio Ambiente e Desenvolvimento Sustentável; Rio dos Patos Q95 and allocated flow; Conselho Estadual de Política Ambiental: Goiás, Brazil, 2019.
Year | PCI |
---|---|
… | … |
2011 | 0.58 |
2012 | 0.58 |
2013 | 0.56 |
2014 | 0.57 |
2015 | 0.58 |
Standard deviation | 0.041 |
Quartile 1 | 0.52 |
−3 (Severe drought) | Higher than 0.64 |
−2 (Moderate drought) | 0.6–0.64 |
−1 (Mild drought) | 0.56–0.6 |
Normal values | 0.52–0.56 |
−1 | 0.48–0.52 |
−2 | 0.43–0.48 |
−3 | Less than 0 |
Indicator | Unit | Best-Case Scenario | Worst-Case Scenario |
---|---|---|---|
Volume of fresh water per tonne of sugarcane processed | m3/TSC | 0.50 | 2 |
kWh generated per tonne of sugarcane processed | kWh/TSC | 120 | 15 |
Percentage of water recovered and reused from sugarcane | Percentage | 100% | 0% |
kWh used per tonne of sugarcane processed | kWh/TSC | 12 | 30 |
Volume of water losses in the system | m3/TSC | 0.50 | 1 |
Access to a dam to cover the water needed for industrial purposes | Percentage | 100% | 0% |
Indicator | Group | Indicator Weight |
---|---|---|
Total precipitation (mm) | Rain volume | 3 |
Standard precipitation index (SPI) | ||
Precipitation concentration index | Rain distribution | 3 |
Length of the dry season (days) | ||
Total days under dry spells (days) | ||
Number of days T > 36 °C | Days with a maximum temperature higher than 36 °C | 1 |
Available river flow (m3/s) | River flow | 3 |
Crop yield (tonne/ha) | Crop yield | 3 |
Late start of rainy season (days) | Agricultural planning | 1 |
Early finish of rainy season (days) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Campos Zeballos, J.; Sebesvari, Z.; Rhyner, J.; Metz, M.; Bufon, V.B. Drought Risk Assessment of Sugarcane-Based Electricity Generation in the Rio dos Patos Basin, Brazil. Sustainability 2022, 14, 6219. https://doi.org/10.3390/su14106219
Campos Zeballos J, Sebesvari Z, Rhyner J, Metz M, Bufon VB. Drought Risk Assessment of Sugarcane-Based Electricity Generation in the Rio dos Patos Basin, Brazil. Sustainability. 2022; 14(10):6219. https://doi.org/10.3390/su14106219
Chicago/Turabian StyleCampos Zeballos, Jazmin, Zita Sebesvari, Jakob Rhyner, Markus Metz, and Vinicius Bof Bufon. 2022. "Drought Risk Assessment of Sugarcane-Based Electricity Generation in the Rio dos Patos Basin, Brazil" Sustainability 14, no. 10: 6219. https://doi.org/10.3390/su14106219