Floating Wetlands for Sustainable Drainage Wastewater Treatment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Setup and Experimental Work
2.2. Hydrological Wetland Balance
2.3. FWT Design Procedure
2.4. Pollutant’s Removal Efficiency
3. Results and Discussion
3.1. Pollutants Removal Efficiencies
3.2. Proposing FWT Design and Construction for the Studied Drain
3.3. Wetland Hydrology
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Gabr, M.E. Management of irrigation requirements using FAO-CROPWAT 8.0 model: A case study of Egypt. Model. Earth Syst. Environ. 2021, 1–16. [Google Scholar] [CrossRef]
- Gabr, M.E. Study of reclaimed water reuse standards and prospects in irrigation in Egypt. Port-Said Eng. Res. J. 2020, 24, 65–75. [Google Scholar] [CrossRef] [Green Version]
- Ministry of Water Resources and Irrigation (MWRI). Egypt’s Water Resources Plan for 2017–2037; Planning Sector, Ministry of Water Resources and Irrigation (MWRI): Giza, Egypt, 2017. Available online: https://www.mwri.gov.eg (accessed on 10 January 2022).
- Mustafa, H.M.; Hayder, G. Recent studies on applications of aquatic weed plants in phytoremediation of wastewater: A review article. Ain Shams Eng. J. 2020, 12, 355–365. [Google Scholar] [CrossRef]
- Gabr, M.E. Design methodology of a new surface flow constructed wetland system, case study: East South ELKantara Region North Sinai, Egypt. Port-Said Eng. Res. J. 2020, 24, 23–34. [Google Scholar] [CrossRef]
- Ministry of Water Resources and Irrigation (MRWI). Water for Future-National Water Plan for Egypt-2017; Planning Sector, Ministry of Water Resources and Irrigation: Giza, Egypt, 2005.
- Fabrice, R.; Amélie-Laure, L.D.; Hervé, A.; Jorge, G. Groundwater Contribution to Sewer Network Baseflow in an Urban Catchment-Case Study of Pin Sec Catchment, Nantes, France. Water 2020, 12, 689. [Google Scholar] [CrossRef] [Green Version]
- Gabr, M.E. Proposing a constructed wetland within the branch drains network to treat degraded drainage water in Tina Plain, North Sinai, Egypt. Arch. Agron. Soil Sci. 2020, 67, 1479–1494. [Google Scholar] [CrossRef]
- Gabr, M.E. Design methodology for sewage water treatment system comprised of Imhoff’s tank and a subsurface horizontal flow constructed wetland: A case study Dakhla Oasis, Egypt. J. Environ. Sci. Health Part A 2022, 57, 52–64. [Google Scholar] [CrossRef]
- Madleen, S.; Gabr, M.E.; Mohamed, M.; Hani, M. Random Forest modelling and evaluation of the performance of a full-scale subsurface constructed wetland plant in Egypt. Ain Shams Eng. J. 2022, 13, 101778. [Google Scholar]
- Heba, E.; Marwa, D.; Hala, E.; Fatma, G.A.; Ahlam, A.A.; Mariam, A.E.; Israa, A.K.; Esraa, A.E.; Fathy, E.; Hassan, E.; et al. Ecofriendly remediation technologies for wastewater contaminated with heavy metals with special focus on using water hyacinth and black tea wastes: A review. Environ. Monit. Assess. 2021, 193, 449. [Google Scholar] [CrossRef]
- Gabr, M.E. Modelling net irrigation water requirements using FAO-CROPWAT 8.0 and CLIMWAT 2.0: A case study of Tina Plain and East South ElKantara regions, North Sinai, Egypt. Arch. Agron. Soil Sci. 2021, 1–16. [Google Scholar] [CrossRef]
- Awad, A.; Luo, W.; Al-Ansari, N.; Elbeltagi, A.; El-Rawy, M.; Farres, H.N.; Gabr, M.E. Farmers’ awareness in the context of climate change: An underutilized way for ensuring sustainable farmland adaptation and surface water quality. Sustainability 2021, 13, 11802. [Google Scholar] [CrossRef]
- Kadlec, R.H.; Wallace, S. Treatment Wetlands, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2009. [Google Scholar]
- Alexandros, I.S. The role of constructed wetlands as green infrastructure for sustainable urban water management. Sustainability 2019, 11, 6981. [Google Scholar] [CrossRef] [Green Version]
- Arslan, M.; Afzal, M.; Anjum, N.A. Constructed and floating wetlands for sustainable water reclamation. Sustainability 2022, 14, 1268. [Google Scholar] [CrossRef]
- Reetika, S.; Deepak, G.; Gurudatta, S.; Virendra, K.M. Performance of horizontal flow constructed wetland for secondary treatment of domestic wastewater in a Remote Tribalarea of Central India. Sustain. Environ. Res. 2021, 31, 13. [Google Scholar]
- Prajapati, M.; van Bruggen, J.J.A.; Dalu, T.; Malla, R. Assessing the effectiveness of pollutant removal by macrophytes in a floating wetland for wastewater treatment. Appl. Water Sci. 2017, 7, 4801–4809. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Wang, W.; Xiong, J.; Li, L.; Zhao, B.; Sohail, I.; He, Z. A constructed wetland system with aquatic macrophytes for cleaning contaminated runoff/storm water from urban area in Florida. J. Environ. Manag. 2021, 280, 111794. [Google Scholar] [CrossRef]
- Gislayne, A.O.; Gustavo, S.C.; Carlos, A.L.; Naira, D.; Ênio, L.M.; Lucia, R.R. Floating treatment wetlands in domestic wastewater treatment as a decentralized sanitation alternative. Sci. Total Environ. 2021, 773, 145609. [Google Scholar] [CrossRef]
- White, S.A.; White, M.M. White floating treatment wetland aided remediation of nitrogen and phosphorus from simulated stormwater runoff. Ecol. Eng. 2013, 61, 207–215. [Google Scholar] [CrossRef]
- Van De Moortel, A.M.K.; Meers, N.D.; Tack, F.M.G. Effects of vegetation, season and temperature on the removal of pollutants in experimental floating treatment wetlands. Water Air Soil Pollut. 2010, 212, 281–297. [Google Scholar] [CrossRef] [Green Version]
- Zhou, X.H.; Wang, G.X.; Yang, F. Nitrogen removal from eutrophic river waters by using Rumex Acetosa cultivated in ecological floating beds. Fresenius Environ. Bull. 2012, 21, 1920–1928. [Google Scholar]
- Lynch, J.; Fox, L.J.; Owen, J.S.; Sample, D.J. Evaluation of commercial floating treatment wetland technologies for nutrient remediation of stormwater. Ecol. Eng. 2015, 75, 61–69. [Google Scholar] [CrossRef] [Green Version]
- George, P.; Ioanna, Z.; Helen, K.; Anna, M.; Georgios, B.; Vassilios, A.T.; Ioannis, N. Performance of pilot-scale constructed floating wetlands in the removal of nutrients and pesticides. Water Resour. Manag. 2022, 36, 399–416. [Google Scholar] [CrossRef]
- American Public Health Association (APHA). Standard Methods for Examination of Water and Wastewater, 23rd ed.; American Public Health Association (APHA): Washington, DC, USA, 2017.
- Egypt Decree No. 92/2013. For the Protection of the Nile River and its Waterways from Pollution, Decree of Minister of Water Resources and Irrigation No. 92 for Year 2013 for the Executive Regulation of Law 48/1982. 2013. Available online: https://www.mwri.gov.eg/index.php/ministry/ministry-17/12-1984 (accessed on 1 January 2022). (In Arabic)
- Egypt Decree No. 208/2018. For the Protection of the Nile River and Its Waterways from Pollution, Decree of the Minister of Water Resources and Irrigation for the Executive Regulation of Law 48/1982. 2018. Available online: https://www.mwri.gov.eg/index.php/ministry/ministry-17/12-1984 (accessed on 2 January 2022). (In Arabic)
- FAO. CROPWAT 8 Software by Land and Water Division. 2022. Available online: http://www.fao.org/land-water/databases-and-software/cropwat/en/ (accessed on 1 January 2022).
- FAO. Crop Evapotranspiration—Guidelines for Computing Crop Water Requirements–FAO Irrigation and Drainage Paper 56; Food and Agriculture Organization of the United Nations: Rome, Italy, 1998. [Google Scholar]
- Penman, H.L. Evaporation. An introductory survey. Neth. J. Agric. Sci. 1956, 4, 9–29. [Google Scholar] [CrossRef]
- Allen, R.G. Assessing integrity of weather data for use in reference evapotranspiration estimation. J. Irrig. Drain. Eng. 1996, 122, 97–106. [Google Scholar] [CrossRef]
- Rashed, A. Treatment of municipal pollution through re-engineered drains: A case study, Edfina Drain, West Nile Delta. In Proceedings of the 11th ICID (International Commission on Irrigation and Drainage), International Drainage Workshop (IDW), Cairo, Egypt, 22–24 September 2012. [Google Scholar]
- Chen, C.; Zhang, R.; Wang, L.; Wu, W.; Chen, Y. Removal of nitrogen from wastewater with perennial ryegrass/artificial aquatic mats biofilm combined system. J. Environ. Sci. 2013, 25, 670–676. [Google Scholar] [CrossRef]
- Van, A.J.; Buts, L.; Thoeye, C.; De Gueldre, G. Floating Plant Beds: BAT for CS Treatment? In Proceedings of the International Symposium on Wetland Pollutant Dynamics and Control, Ghent, Belgium, 4–8 September 2005. [Google Scholar]
- Weragoda, S.K.; Jinadasa, K.B.S.N.; Zhang, D.Q.; Gersberg, R.M.; Tan, S.K.; Tanaka, N.; Tanaka, N.W. Tropical application of floating treatment wetlands. Wetlands 2012, 32, 955–961. [Google Scholar] [CrossRef]
- Kansiim, F.; Oryem-Origa, H.; Rukwago, S. Comparative assessment of the value of Papyrus and Cocoyams for the restoration of the Nakivubo wetland in Kampala, Uganda. Phys. Chem. Earth 2005, 30, 698–705. [Google Scholar] [CrossRef]
- Zha, F.; Xi, S.; Yang, X.; Yang, W.; Li, J.; Gu, B.; He, Z. Purifying eutrophic river waters with integrated floating island systems. Ecol. Eng. 2012, 40, 53–60. [Google Scholar] [CrossRef]
- Li, H.; Zhao, H.P.; Hao, H.L.; Liang, J.; Zhao, F.L.; Xiang, L.C.; Yang, X.E.; He, Z.L.; Stoffella, P.J. Enhancement of nutrient removal from eutrophic water by a plant microorganisms combined system. Environ. Eng. Sci. 2011, 28, 543–554. [Google Scholar] [CrossRef]
- Kyambadde, J. Nitrogen and phosphorus removal in substrate-free pilot constructed wetlands with horizontal surface flow in Uganda. Water Air Soil Pollut. 2005, 165, 37–59. [Google Scholar] [CrossRef]
- USEPA. Primer for Municipal Wastewater Treatment Systems; EPA 832-R–04–001; US Environmental Protection Agency Municipal Support; Division Office of Wastewater Management Office of Water: Washington, DC, USA, 2012.
- Al-Gheethi, A.A.; Norli, I.; Efaq, A.; Bala, J.; Alamery, R. Solar disinfection and lime treatment processes for reduction of pathogenic bacteria in sewage treated effluents and biosolids before reuse for agriculture in Yemen. J. Water Reuse Desalination 2015, 5, 419–429. [Google Scholar] [CrossRef] [Green Version]
Water Quality Parameters | Number of Samples | Maximum Value | Minimum Value | Average | Standard Deviation | Egypt Decrees Limits [27,28] |
---|---|---|---|---|---|---|
Temperature (°C) | 33 | 30 | 17 | 23 | 4 | >7 |
pH | 33 | 8.8 | 7 | 7.5 | 0.4 | 6–9 |
EC (µs/cm) | 33 | 2900 | 1500 | 2067 | 435.4 | <3000 |
TDS (mg/L) | 33 | 1850 | 1006 | 1286 | 204.9 | <2000 |
BOD (mg/L) | 33 | 190 | 75 | 112 | 29 | <50 |
COD (mg/L) | 33 | 380 | 115 | 217 | 71 | - |
TSS (mg/L) | 33 | 310 | 120 | 207 | 47.6 | - |
TN (mg/L) | 33 | 38 | 13 | 22 | 6.3 | - |
TP (mg/L) | 33 | 6.2 | 1.5 | 4 | 1.3 | - |
Mansoura Station, Egypt | Latitude 31.05° | Longitude 31.38° E | Altitude 30 m | |||||
---|---|---|---|---|---|---|---|---|
Month | Minimum Temperature (°C) | Maximum Temperature (°C) | Relative Humidity (%) | Wind (Km/day) | Suns-hine Hours | Solar Radiation (MJ/m2/day) | Rainfall (mm) | ETo (mm/day) |
January | 7.0 | 19.5 | 67 | 112 | 6.2 | 11.4 | 10.0 | 1.82 |
February | 7.5 | 20.5 | 59 | 121 | 6.9 | 14.2 | 8.0 | 2.43 |
March | 9.3 | 23.2 | 61 | 147 | 7.8 | 18.1 | 6.0 | 3.32 |
April | 12.0 | 27.1 | 50 | 130 | 8.7 | 21.6 | 3.0 | 4.39 |
May | 15.6 | 33.2 | 44 | 130 | 9.6 | 24.1 | 4.0 | 5.64 |
June | 18.6 | 33.6 | 54 | 130 | 10.8 | 26.1 | 1.0 | 5.99 |
July | 20.5 | 32.6 | 61 | 112 | 10.5 | 25.5 | 0.0 | 5.61 |
August | 20.5 | 33.5 | 63 | 112 | 10.2 | 24.2 | 0.0 | 5.38 |
September | 19.0 | 32.5 | 60 | 95 | 9.4 | 21.0 | 0.0 | 4.54 |
October | 17.1 | 28.7 | 59 | 86 | 8.5 | 16.9 | 5.0 | 3.34 |
November | 14.0 | 25.8 | 62 | 95 | 7.3 | 13.0 | 6.0 | 2.47 |
December | 9.2 | 21.2 | 63 | 95 | 5.9 | 10.5 | 11.0 | 1.83 |
Average | 14.2 | 27.6 | 59 | 114 | 8.5 | 18.9 | 54 | 3.90 |
FWTs | Removal Rate (Mean ± Standard Deviation) (%) | ||||||
---|---|---|---|---|---|---|---|
BOD | COD | TN | TP | TDS | TSS | EC | |
(A) Eichhornia | 86 ± 5.8 a | 80 ± 7.3 a | 70 ± 19.8 a | 86 ± 10.2 a | 42.3 ± 10.4 a | 95 ± 2.8 a | 42 ± 10.3 b |
(B) Ceratophyllum | 76 ± 6.4 b | 61 ± 17 b | 70 ± 13.7 a | 83 ± 11 a | 36.6 ± 12.2 a | 87 ± 4.6 b | 37 ± 12.1 b |
(C) Pistia stratiotes | 82 ± 7.7 a | 78 ± 7.6 a | 97 ± 2.1 b | 89 ± 8.4 a | 44.1 ± 10.8 a | 91 ± 4.1 c | 44 ± 10.6 b |
(D) Nymphaea lotus | 84 ± 6.3 a | 79 ± 9.5 a | 97 ± 1.5 b | 96 ± 7.4 b | 39.7 ± 12 a | 94 ± 2.6 a | 40 ± 11.8 b |
Nymphaea lotus | |||||||||
---|---|---|---|---|---|---|---|---|---|
pH | Temperature °C | BOD (mg/L) | COD (mg/L) | TDS (mg/L) | TSS (mg/L) | TN (mg/L) | TP (mg/L) | EC (µs/cm) | |
pH | 1 | ||||||||
Temperature °C | −0.27 | 1 | |||||||
BOD (mg/L) | −0.10 | 0.59 | 1 | ||||||
COD (mg/L) | 0.00 | 0.51 | 0.67 | 1 | |||||
TDS (mg/L) | −0.09 | 0.45 | 0.31 | 0.40 | 1 | ||||
TSS (mg/L) | 0.16 | −0.17 | −0.21 | 0.02 | 0.32 | 1 | |||
TN (mg/L) | 0.13 | 0.38 | 0.31 | 0.14 | 0.37 | −0.06 | 1 | ||
TP (mg/L) | −0.02 | 0.22 | 0.46 | 0.12 | 0.15 | −0.13 | 0.17 | 1 | |
EC (µs/cm) | −0.01 | 0.40 | 0.37 | 0.20 | 0.14 | −0.28 | 0.50 | 0.16 | 1 |
Month | Qin (m3/day) | Rainfall (mm) | ETo (mm/day) | Infiltration Discharge (m3/day) | Q Rainfall (m3/day) | Q ETo (m3/day) | Qout (m3/day) | Water Losses Ratio (%) |
---|---|---|---|---|---|---|---|---|
January | 2950 | 10 | 1.82 | 187.5 | 33.3 | 18.2 | 2777.6 | 5.8 |
February | 3000 | 8 | 2.43 | 187.5 | 26.7 | 24.3 | 2814.8 | 6.2 |
March | 12,643 | 6 | 3.32 | 187.5 | 20.0 | 33.2 | 12,442.3 | 1.6 |
April | 16,229 | 3 | 4.39 | 187.5 | 10.0 | 43.9 | 16,007.6 | 1.4 |
May | 12,479 | 4 | 5.64 | 187.5 | 13.3 | 56.4 | 12,248.4 | 1.8 |
June | 19,337 | 1 | 5.99 | 187.5 | 3.3 | 59.9 | 19,092.9 | 1.3 |
July | 36,188 | 0 | 5.61 | 187.5 | 0.0 | 56.1 | 35,944.4 | 0.7 |
August | 38,003 | 0 | 5.38 | 187.5 | 0.0 | 53.8 | 37,761.7 | 0.6 |
September | 33,467 | 0 | 4.54 | 187.5 | 0.0 | 45.4 | 33,234.1 | 0.7 |
October | 19,959 | 5 | 3.34 | 187.5 | 16.7 | 33.4 | 19,754.7 | 1.0 |
November | 9577 | 6 | 2.47 | 187.5 | 20.0 | 24.7 | 9384.8 | 2.0 |
December | 7813 | 11 | 1.83 | 187.5 | 36.7 | 18.3 | 7643.8 | 2.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gabr, M.E.; Salem, M.; Mahanna, H.; Mossad, M. Floating Wetlands for Sustainable Drainage Wastewater Treatment. Sustainability 2022, 14, 6101. https://doi.org/10.3390/su14106101
Gabr ME, Salem M, Mahanna H, Mossad M. Floating Wetlands for Sustainable Drainage Wastewater Treatment. Sustainability. 2022; 14(10):6101. https://doi.org/10.3390/su14106101
Chicago/Turabian StyleGabr, Mohamed Elsayed, Madleen Salem, Hani Mahanna, and Mohamed Mossad. 2022. "Floating Wetlands for Sustainable Drainage Wastewater Treatment" Sustainability 14, no. 10: 6101. https://doi.org/10.3390/su14106101