Multi-Channel LED Luminaires: An Object-Oriented Approach for Retail Lighting Based on the SOR Framework
Abstract
:1. Introduction
2. Theory
2.1. SOR Framework
2.2. Generating the Target Spectrum
2.3. Object Gamut
3. Experiment
3.1. The Multichannel Luminaire
3.2. Selection of the Objects
3.3. Selection of the Spectra Used in the Experiment
3.4. Experiment
3.4.1. Experiment Setup
3.4.2. Experiment Procedure
4. Results
4.1. Null Condition Test
4.2. Interval Bias
4.3. Observer’s Choice of Attractiveness
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Appendix A
Objects | Number of Participants | Age | |||||
---|---|---|---|---|---|---|---|
Total | Female | Male | Min | Max | Mean | SD | |
Green Salad | 7 | 1 | 6 | 25 | 37 | 28.7 | 3.9 |
Butternut Squash | 7 | 1 | 6 | 25 | 37 | 28.7 | 3.9 |
Carrot | 7 | 1 | 6 | 25 | 37 | 28.7 | 3.9 |
Broccoli | 7 | 1 | 6 | 25 | 37 | 28.7 | 3.9 |
Seven Up | 7 | 1 | 6 | 25 | 37 | 28.7 | 3.9 |
Milka | 7 | 1 | 6 | 25 | 37 | 28.7 | 3.9 |
Orange | 18 | 5 | 13 | 20 | 37 | 25.3 | 4.4 |
Red Cabbage | 6 | 1 | 5 | 25 | 37 | 28.3 | 4 |
Pepsi | 7 | 1 | 6 | 25 | 37 | 28.7 | 3.9 |
Green Apple | 18 | 5 | 13 | 20 | 37 | 25.3 | 4.4 |
Tomato | 18 | 5 | 13 | 20 | 37 | 25.3 | 4.4 |
Yellow Banana | 40 | 19 | 21 | 10 | 64 | 38.6 | 16.4 |
References
- Petermans, A.; Kent, A. (Eds.) Retail Design A contextual lens. In Retail Design Theoretical Perspectives; Routledge: Abingdon, VA, USA, 2017; pp. 14–29. [Google Scholar]
- Quartier, K.; Vanrie, J.; van Cleempoel, K. As real as it gets: What role does lighting have on consumer’s perception of atmosphere, emotions and behaviour? J. Environ. Psychol. 2014, 39, 32–39. [Google Scholar] [CrossRef]
- Quartier, K. Retail Design What’s in the name? In Quartier, Katlijn; Petermans, A., Kent, A., Eds.; Routledge: London, UK, 2017; pp. 31–48. [Google Scholar]
- Schifferstein, H.; Fenko, A.; Desmet, P.; Labbe, D.; Martin, N. Influence of package design on the dynamics of multisensory and emotional food experience. Food Qual. Prefer. 2013, 27, 18–25. [Google Scholar] [CrossRef]
- Tantanatewin, W.; Inkarojrit, V. Effects of color and lighting on retail impression and identity. J. Environ. Psychol. 2016, 46, 197–205. [Google Scholar] [CrossRef]
- Schielke, T. Influence of Lighting Design on Marketing Communication. LEUKOS 2015, 11, 109–124. [Google Scholar] [CrossRef]
- Li, B.; Zhai, Q.; Hutchings, J.; Luo; Ying, F. Atmosphere perception of dynamic LED lighting over different hue ranges. Lighting Res. Technol. 2019, 51, 682–703. [Google Scholar] [CrossRef]
- Yang, F.L.; Cho, S.; Seo, H.-S. Effects of Light Color on Consumers’ Acceptability and Willingness to Eat Apples and Bell Peppers. J. Sens. Stud. 2016, 31, 3–11. [Google Scholar] [CrossRef]
- Royer, M. Show Me the Data: Characterizing the Performance of Color Tunable Light Sources–Illuminating Engineering Society. In Proceedings of the IES to Host Webinar on Color Tuning, Online, 4 June 2020. [Google Scholar]
- Wei, M.; Houser, K.; David, A.; Krames, M. Colour gamut size and shape influence colour preference. Lighting Res. Technol. 2017, 49, 992–1014. [Google Scholar] [CrossRef]
- Royer, M.P.; Houser, K.W.; David, A. Chroma Shift and Gamut Shape: Going beyond Average Color Fidelity and Gamut Area. LEUKOS 2018, 14, 149–165. [Google Scholar] [CrossRef]
- Garufo, G.; Lomberg, M. Objektbeleuchtung. German Patent DE102018130596A1, 4 June 2020. [Google Scholar]
- Houser, K. Light Sources That Increase Object Chroma When Dimmed. U.S. Patent US20210345461A1, 4 November 2021. [Google Scholar]
- Vick, K.J.; Allen, G.R.; Beers, W.W.; Vick, V.R. Enhanced Color-Preference Light Sources. EU Patent EP3044504B1, 20 July 2016. [Google Scholar]
- Fiore, A.M.; Kim, J. An integrative framework capturing experiential and utilitarian shopping experience. Int. J. Retail. Distrib. Manag. 2007, 35, 421–442. [Google Scholar] [CrossRef] [Green Version]
- Schielke, T.; Leudesdorff, M. Impact of lighting design on brand image for fashion retail stores. Lighting Res. Technol. 2014, 47, 672–692. [Google Scholar] [CrossRef]
- Sina, A.S.; Wu, J. The effects of retail environmental design elements in virtual reality (VR) fashion stores. Int. Rev. Retail. Distrib. Consum. Res. 2022. [Google Scholar] [CrossRef]
- Schüpbach, R.L.; Reisinger, M.; Schrader, B. Influence of lighting conditions on the appearance of typical interior materials. Color Res. Appl. 2015, 40, 50–61. [Google Scholar] [CrossRef]
- Szabó, F.; Kéri, R.; Schanda, J.; Csuti, P.; Wilm, A.; Baur, E. A study of preferred colour rendering of light sources: Shop lighting. Lighting Res. Technol. 2016, 48, 286–306. [Google Scholar] [CrossRef]
- Chakrabarti, M.; Thorseth, A.; Corell, D.D.; Dam-Hansen, C. A white–cyan-red LED system for low correlated colour temperature lighting. Lighting Res. Technol. 2017, 49, 343–356. [Google Scholar] [CrossRef]
- Smet, K.; Hanselaer, P. Memory and preferred colours and the colour rendition of white light sources. Lighting Res. Technol. 2016, 48, 393–411. [Google Scholar] [CrossRef]
- Teunissen, C.; Van Der Heijden, F.; Poort, S.; De Beer, E. Characterising user preference for white LED light sources with CIE colour rendering index combined with a relative gamut area index. Lighting Res. Technol. 2017, 49, 461–480. [Google Scholar] [CrossRef] [Green Version]
- Oberfeld, D.; Hecht, H.; Allendorf, U.; Wickelmaier, F. Ambient lighting modifies the flavor of wine. J. Sens. Stud. 2009, 24, 797–832. [Google Scholar] [CrossRef]
- Briand Decré, G.; Pras, B. Lighting and Perceived Temperature: Energy-Saving Levers to Improve Store Evaluations? Adv. Consum. Res. 2010, 37, 312–318. [Google Scholar]
- Kuijsters, A.A.; Redi, J.; De Ruyter, B.B.; Seuntiëns, P.P.; Heynderickx, I.I. Affective ambiences created with lighting for older people. Light. Res. Technol. 2015, 47, 859–875. [Google Scholar] [CrossRef] [Green Version]
- Masuda, O.; Nascimento, S.M.C. Best lighting for naturalness and preference. J. Vis. 2013, 13, 4. [Google Scholar] [CrossRef] [Green Version]
- Otterbring, T.; Löfgren, M.; Lestelius, M. Let There be Light! An Initial Exploratory Study of Whether Lighting Influences Consumer Evaluations of Packaged Food Products. J. Sens. Stud. 2014, 29, 294–300. [Google Scholar] [CrossRef]
- Wang, C. The enhancement of appetite through the use of colored light in case of a cake: Preliminary evidence from event-related potentials. Color Res. Appl. 2021, 46, 456–466. [Google Scholar] [CrossRef]
- Kang, S.Y.; Youni, N.; Yoon, H.C. The self-regulatory power of environmental lighting: The effect of illuminance and correlated color temperature. J. Environ. Psychol. 2019, 62, 30–41. [Google Scholar] [CrossRef]
- Areni, C.S.; Kim, D. The influence of in-store lighting on consumers’ examination of merchandise in a wine store. Int. J. Res. Mark. 1994, 11, 117–125. [Google Scholar] [CrossRef]
- Biswas, D.; Szocs, C.; Chacko, R.; Wansink, B. Shining Light on Atmospherics: How Ambient Light Influences Food Choices. J. Mark. Res. 2017, 54, 111–123. [Google Scholar] [CrossRef]
- Summers, T.A.; Hebert, P.R. Shedding some light on store atmospherics: Influence of illumination on consumer behavior. J. Bus. Res. 2001, 54, 145–150. [Google Scholar] [CrossRef]
- Khanh, T.; Bodrogi, P.; Vinh, Q.; Stojanovic, D. Colour preference, naturalness, vividness and colour quality metrics, Part 1: Experiments in a room. Lighting Res. Technol. 2017, 49, 697–713. [Google Scholar] [CrossRef]
- Tazehmahaleh, K.A.; Smet, K.; Hanselaer, P. Visualization of Lighting Quality and Object Appearance When Using Multichannel Light Sources. LEUKOS 2021, 18, 232–245. [Google Scholar] [CrossRef]
- Luo, M.R.; Cui, G.; Li, C. Uniform colour spaces based on CIECAM02 colour appearance model. Color Res. Appl. 2006, 31, 320–330. [Google Scholar] [CrossRef]
- Smet, K.; Ryckaert, W.; Pointer, M.; Deconinck, G.; Hanselaer, P. A memory colour quality metric for white light sources. Energy Build. 2012, 49, 216–225. [Google Scholar] [CrossRef]
- Mukai, K. Relationship between Colour Rendering Indices and Subjective Colour Differences. In Proceedings of the 29th CIE SESSION, Washington, DC, USA, 14–22 June 2019; pp. 980–989. [Google Scholar] [CrossRef]
- Jost-Boissard, S.; Fontoynont, M.; Blanc-Gonnet, J. Perceived lighting quality of LED sources for the presentation of fruit and vegetables. J. Mod. Opt. 2009, 56, 1420–1432. [Google Scholar] [CrossRef]
- Park, N.-K.; Farr, C.A. The Effects of Lighting on Consumers’ Emotions and Behavioral Intentions in a Retail Environment: A Cross-Cultural Comparison. J. Inter. Des. 2007, 33, 17–32. [Google Scholar] [CrossRef]
- Rinner, O.; Gegenfurtner, K.R. Time course of chromatic adaptation for color appearance and discrimination. Vis. Res. 2000, 40, 1813–1826. [Google Scholar] [CrossRef] [Green Version]
- Shevell, S.K. The time course of chromatic adaptation. Color Res. Appl. 1999, 26, S170–S173. [Google Scholar] [CrossRef]
- Chen, L.; Dou, W.W.; Qiao, Z. Correction: Ensemble Subsampling for Imbalanced Multivariate Two-Sample Tests. J. Am. Stat. Assoc. 2014, 109, 871. [Google Scholar] [CrossRef] [Green Version]
- IES Color Committee. IES Method for Evaluating Light Source Color Rendition (ANSI/IES TM-30-18); Lighting Design + Application; Illuminating Engineering Society: New York, NY, USA, 2019; Volume 49, p. 11. Available online: https://www.proquest.com/magazines/ies-method-evaluating-light-source-color/docview/2264107658/se-2?accountid=17215 (accessed on 12 April 2022).
- Davis, W.; Ohno, Y. Color quality scale. Opt. Eng. 2010, 49, 33602. [Google Scholar] [CrossRef] [Green Version]
- Royer, M.; Wilkerson, A.; Wei, M. Human perceptions of colour rendition at different chromaticities. Light. Res. Technol. 2017, 50, 965–994. [Google Scholar] [CrossRef]
- Babilon, S.; Khanh, T.Q. Color appearance rating of familiar real objects under immersive viewing conditions. Color Res. Appl. 2018, 43, 551–568. [Google Scholar] [CrossRef]
SOR Level | Key Outcomes of the Research |
---|---|
Stimulus | Schielke [16]: Only by changing the lighting, brand image can be changed. Non-uniform lighting looks more modern. Tantanatewin & Inkarojrit [5]: A space illuminated with warmer white light creates a higher impression and identity score. Li et al. [7]: High chroma increases liveliness. Sina & Wu [17]: Cool lighting creates more arousal than warm lighting and creates higher pleasure |
Organism | Schupbach et al. [18]: Visual perception of objects is strongly influenced by lighting condition. Fszabó et al. [19]: A certain type of meat can have a wide variety in chromaticity when considering different stores due to lighting condition. Chakrabarti et al. [20]: Under certain lighting conditions, gold may appear as silver. Smet & Hanselaer [21]: Memory color has an influence on preferred colors of familiar objects. Teunissen et al. [22]: Light sources with higher gamut area are preferred due to an increase in saturation, which leads to a higher color vividness. Oberfeld et al. [23]: Wine can taste better under blue and red light (cross model sensory). Briand and Pars [24]: Warm white light has a strong influence on store upmarket positioning. Kuijsters et al. [25]: Warm white light is perceived as cozier and less tense. Masuda & Nascimento [26]: Objects illuminated with a CCT of 6200 K off the Planckian locus in the purplish direction light would appear more natural. Otterbring et al. [27]: Food products are evaluated more negatively under cold white light. Wang [28]: Warm light (4000 K) significantly increased appetite. Red lighting could enhance appetite, while green lighting results in people losing their appetite Kang et al. [29]: Both warm-bright lighting and cool-dim lighting intensify the ease of processing of information |
Response | Quartier [3]: Lighting has an influence on people’s behavior in retail environments. Lue Yang et al. [8]: Apples are more eaten under yellow light. Areni & Kim [30]: Higher brightness leads to an increased examination and tasting of wine bottles. Biswas et al. [31]: In brighter restaurants, customers select more healthy food. Summers & Hebert [32]: Increasing the lighting level will produce arousal, pleasure and approach. |
Ch# | Channel Name | Peak Wavelength (nm) | ||
---|---|---|---|---|
1 | Red (R) | 632 | 0.6861 | 0.3135 |
2 | Green (G) | 517 | 0.1772 | 0.7112 |
3 | Blue (B) | 446 | 0.1520 | 0.0381 |
4 | PC-Amber (PcA) | 598 | 0.5801 | 0.4144 |
5 | Cyan (C) | 493 | 0.0711 | 0.4909 |
6 | Mint (Mi) | 543 | 0.3971 | 0.4571 |
Objects | Null Condition Test | Interval Bias Test | ||||
---|---|---|---|---|---|---|
Null Pairs (A/A) | 1st | 2nd | No Difference | Chi-Square Goodness-of-Fit Test | ||
Statistic | p-Value | |||||
Green Salad | 1/1 | 0 | 0 | 100% | 0.05 | 0.83 |
2/2 | 25% | 0 | 75% | |||
Butternut Squash | 1/1 | 0 | 100% | 0 | 0.05 | 0.83 |
2/2 | 17% | 17% | 66% | |||
Carrot | 1/1 | 25% | 0 | 75% | 1.19 | 0.28 |
2/2 | 0 | 33% | 67% | |||
Broccoli | 1/1 | 0 | 67% | 33% | 0.43 | 0.51 |
2/2 | 0 | 0 | 100% | |||
Seven Up | 1/1 | 0 | 0 | 100% | 1.19 | 0.28 |
2/2 | 17% | 17% | 66% | |||
Milka | 1/1 | 33% | 0 | 67% | 0 | 1 |
2/2 | 0 | 50% | 50% | |||
Orange | 1/1 | 0 | 50% | 50% | 0.07 | 0.79 |
2/2 | 0 | 50% | 50% | |||
3/3 | 0 | 25% | 75% | |||
5/5 | 0 | 12% | 88% | |||
Red Cabbage | 1/1 | 50% | 0 | 50% | 0 | 1 |
2/2 | 25% | 0 | 75% | |||
Pepsi | 1/1 | 0 | 0 | 100% | 4.04 | 0.04 |
3/3 | 0 | 0 | 100% | |||
4/4 | 0 | 0 | 100% | |||
5/5 | 0 | 100% | 0 | |||
Green Apple | 1/1 | 9% | 36% | 55% | 0.14 | 0.71 |
2/2 | 0 | 0 | 100% | |||
3/3 | 0 | 17% | 83% | |||
Tomato | 1/1 | 0 | 0 | 100% | 0.02 | 0.89 |
2/2 | 0 | 0 | 100% | |||
3/3 | 0 | 33% | 67% | |||
5/5 | 0 | 0 | 100% | |||
Yellow Banana | 1/1 | 14% | 14% | 72% | 2.9 | 0.09 |
2/2 | 11% | 32% | 57% | |||
3/3 | 21% | 14% | 65% |
PGreen Salad | PButternut Squash | PCarrot | PBroccoli | PSeven Up | PMilka | PRed cabbage | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Illumination | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 |
1 | - | 100% | - | 0% | - | 14% | - | 100% | - | 95% | - | 25% | - | 50% |
2 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
PYellow Banana | PGreen Apple | |||||||||||||
Illumination | 1 | 2 | 3 | 1 | 2 | 3 | ||||||||
1 | - | 32% | 28% | - | 79% | 81% | ||||||||
2 | - | - | 48% | - | - | 45% | ||||||||
3 | - | - | - | - | - | - | ||||||||
PTomato | ||||||||||||||
Illumination | 1 | 2 | 3 | 4 | ||||||||||
1 | - | 10% | 2% | 12% | ||||||||||
2 | - | - | 36% | 24% | ||||||||||
3 | - | - | - | 49% | ||||||||||
4 | - | - | - | - | ||||||||||
POrange | PPepsi | |||||||||||||
Illumination | 1 | 2 | 3 | 4 | 5 | 1 | 2 | 3 | 4 | 5 | ||||
1 | - | 10% | 9% | 5% | 15% | - | 38% | 25% | 14% | 13% | ||||
2 | - | - | 39% | 3% | 14% | 58% | - | 22% | 38% | 0% | ||||
3 | - | - | - | 11% | 10% | 75% | 86% | - | 14% | 57% | ||||
4 | - | - | - | - | 56% | 86% | 71% | 56% | - | 71% | ||||
5 | - | - | - | - | - | 63% | 38% | 29% | 13% | - |
Green Salad | Butternut Squash | Carrot | Broccoli | Seven up | Milka | Orange | Red Cabbage | Pepsi | Green Apple | Tomato | Yellow Banana | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
CVmin | 24% | 24% | 24% | 24% | 24% | 25% | 30% | 22% | 0% | 30% | 30% | 37% |
CVmax | 76% | 76% | 76% | 76% | 76% | 75% | 70% | 78% | 100% | 70% | 70% | 63% |
Green Salad | Butternut Squash | Carrot | Broccoli | Seven up | Milka | Orange | Red Cabbage | Pepsi | Green Apple | Tomato | Yellow Banana | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Preferred Illumination(s) | GS1 | BS2 | C1 | Br1 | S1 | M2 | O4O5 | - | - | A1 | T3 T4 | B2 B3 |
Objects | Illumination | Rf | Rg | Rm | Rmi | Qp | Rcshj | Rfi | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Green Salad | Rcsh1 | Rcsh6 | Rf42 | Rf43 | Rf45 | ||||||||
GS1 | 81.9 | 99.9 | 85.0 | 83.3 | −8% | 9% | 79.9 | 79.3 | 86.2 | ||||
GS2 | 92.2 | 98.6 | 88.6 | 91.1 | −6% | 1% | 97.6 | 97.1 | 99.5 | ||||
Butternut Squash | Rcsh1 | Rcsh3 | Rf20 | Rf21 | Rf22 | ||||||||
BS1 | 75.0 | 93.4 | 78.6 | 72.4 | −17% | −6% | 46.1 | 60.3 | 60.4 | ||||
BS2 | 92.1 | 98.9 | 88.6 | 91.0 | −6% | −2% | 80.1 | 95.4 | 93.3 | ||||
Carrot | Rcsh1 | Rcsh2 | Rcsh3 | Rf20 | Rf21 | Rf22 | |||||||
C1 | 75.1 | 93.5 | 78.8 | 72.6 | −17% | −14% | −5% | 46.2 | 60.6 | 60.0 | |||
C2 | 92.1 | 98.9 | 88.6 | 90.6 | −6% | −4% | −2% | 80.2 | 95.7 | 93.6 | |||
Broccoli | Rcsh1 | Rcsh6 | Rf42 | Rf49 | Rf52 | ||||||||
Br1 | 81.8 | 99.9 | 84.9 | 82.9 | −8% | 9% | 79.8 | 82.1 | 90.6 | ||||
Br2 | 92.4 | 98.5 | 88.7 | 91.6 | −6% | 1% | 96.6 | 97.1 | 94.6 | ||||
Seven Up | Rcsh1 | Rcsh6 | Rf49 | Rf52 | Rf53 | ||||||||
S1 | 86.4 | 101.9 | 87.6 | 91.1 | −6% | 8% | 84.2 | 90.8 | 85.0 | ||||
S2 | 75.9 | 94.2 | 79.5 | 73.8 | −15% | 7% | 80.1 | 87.4 | 77.7 | ||||
Milka | Rcsh1 | Rcsh13 | Rcsh14 | Rf80 | Rf81 | Rf83 | |||||||
M1 | 92.2 | 98.7 | 88.6 | 92.3 | −6% | 2% | 2% | 89.9 | 68.8 | 92.8 | |||
M2 | 82.3 | 99.8 | 85.1 | 83.9 | −8% | 8% | 10% | 84.5 | 79.5 | 91.4 | |||
Orange | Rcsh1 | Rcsh3 | Rcsh4 | Rf21 | Rf22 | Rf26 | |||||||
O1 | 74.7 | 93.4 | 78.3 | Rm3 | 67.8 | 77.2 | −17% | −6% | 3% | 59.7 | 59.7 | 65.7 | |
O2 | 79.9 | 97.4 | 83.1 | 87.1 | 79.9 | −11% | −4% | 3% | 68.6 | 69.0 | 71.7 | ||
O3 | 84.4 | 100.2 | 86.3 | 95.2 | 82.2 | −8% | −3% | 2% | 77.6 | 77.7 | 78.0 | ||
O4 | 89.3 | 99.3 | 87.9 | 98.1 | 88.4 | −7% | −2% | 1% | 87.4 | 86.3 | 88.1 | ||
O5 | 92.4 | 98.9 | 88.7 | 99.3 | 90.3 | −6% | −2% | 0% | 96.9 | 94.6 | 97.1 | ||
Red Cabbage | Rcsh1 | Rcsh15 | Rf90 | Rf97 | Rf99 | ||||||||
RC1 | 75.5 | 93.5 | 79.0 | 72.8 | −16% | 0% | 79.4 | 83.6 | 64.1 | ||||
RC2 | 92.2 | 98.8 | 88.6 | 91.7 | −6% | −2% | 94.5 | 94.3 | 88.8 | ||||
Pepsi | Rcsh1 | Rcsh11 | Rf76 | Rf77 | Rf78 | ||||||||
P1 | 92.3 | 98.6 | 88.6 | 92.4 | −6% | 2% | 94.7 | 83.8 | 90.3 | ||||
P2 | 89.9 | 99.3 | 88.1 | 90.4 | −7% | 0% | 86.0 | 87.3 | 83.2 | ||||
P3 | 86.5 | 99.8 | 87.1 | 87.5 | −8% | −2% | 75.4 | 86.0 | 75.0 | ||||
P4 | 82.5 | 99.6 | 85.2 | 83.9 | −9% | −4% | 64.9 | 80.8 | 67.0 | ||||
P5 | 75.7 | 93.9 | 79.3 | 73.5 | −16% | −5% | 57.1 | 75.7 | 60.7 | ||||
Green Apple | Rcsh1 | Rcsh5 | Rf42 | Rf43 | Rf45 | ||||||||
A1 | 76.4 | 94.9 | 80.1 | Rm1 | 97.9 | 75.0 | −15% | 7% | 83.8 | 79.6 | 86.4 | ||
A2 | 88.5 | 99.4 | 87.7 | 94.3 | 89.1 | −7% | 3% | 91.3 | 89.7 | 93.6 | |||
A3 | 92.2 | 98.7 | 88.6 | 87.7 | 92.3 | −6% | −1% | 97.7 | 97.0 | 99.3 | |||
Tomato | Rcsh1 | Rcsh2 | Rcsh3 | Rf5 | Rf7 | Rf11 | |||||||
T1 | 74.5 | 93.3 | 78.2 | 72.1 | 17% | −14% | −6% | 50.0 | 58.4 | 61.4 | |||
T2 | 78.7 | 97.1 | 82.3 | 78.8 | 12% | −10% | −4% | 62.6 | 71.8 | 71.4 | |||
T3 | 84.4 | 99.8 | 86.2 | 84.2 | 8% | −7% | −3% | 73.7 | 82.9 | 81.0 | |||
T4 | 92.4 | 98.6 | 88.7 | 90.9 | −6% | −4% | −2% | 79.6 | 87.2 | 88.7 | |||
Yellow Banana | Rcsh1 | Rcsh4 | Rf26 | Rf29 | Rf31 | ||||||||
B1 | 74.9 | 93.6 | 78.5 | Rm2 | 73.7 | 72.6 | −17% | 3% | 65.8 | 69.1 | 72.4 | ||
B2 | 86.8 | 100.0 | 87.2 | 96.8 | 84.7 | −7% | 2% | 82.6 | 82.5 | 83.9 | |||
B3 | 92.3 | 98.6 | 88.6 | 99.8 | 92.4 | −6% | 0% | 97.6 | 97.2 | 97.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmadian Tazehmahaleh, K.; Godazgar, H.; Smet, K.A.; Hanselaer, P. Multi-Channel LED Luminaires: An Object-Oriented Approach for Retail Lighting Based on the SOR Framework. Sustainability 2022, 14, 5994. https://doi.org/10.3390/su14105994
Ahmadian Tazehmahaleh K, Godazgar H, Smet KA, Hanselaer P. Multi-Channel LED Luminaires: An Object-Oriented Approach for Retail Lighting Based on the SOR Framework. Sustainability. 2022; 14(10):5994. https://doi.org/10.3390/su14105994
Chicago/Turabian StyleAhmadian Tazehmahaleh, Kaveh, Hamideh Godazgar, Kevin AG Smet, and Peter Hanselaer. 2022. "Multi-Channel LED Luminaires: An Object-Oriented Approach for Retail Lighting Based on the SOR Framework" Sustainability 14, no. 10: 5994. https://doi.org/10.3390/su14105994
APA StyleAhmadian Tazehmahaleh, K., Godazgar, H., Smet, K. A., & Hanselaer, P. (2022). Multi-Channel LED Luminaires: An Object-Oriented Approach for Retail Lighting Based on the SOR Framework. Sustainability, 14(10), 5994. https://doi.org/10.3390/su14105994