Urban Health at a Glance in Italy by PASSI and PASSI d’Argento Surveillance Systems Data
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Sources
2.1.1. PASSI and PASSI d’Argento Surveillance Systems Data
2.1.2. Italian Municipalities Classification
- high population density municipalities—at least 50% of the population lives in densely populated areas;
- intermediate population density municipalities—less than 50% of the population lives in rural areas and less than 50% in densely populated areas;
- low population density municipalities—more than 50% of the population falls into rural areas.
2.2. Statistical Analysis
3. Results
3.1. PASSI
3.1.1. Self-Reported Health Status
3.1.2. Prevention
3.1.3. Lifestyle
3.2. Passi d’Argento
3.2.1. Lifestyle and Self-Reported Health Status
3.2.2. Elderly Conditions
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- United Nations. 2018 Revision of World Urbanization Prospects; Department of Economic and Social Affairs, United Nations: New York, NY, USA, 2019. [Google Scholar]
- Breckenkamp, J.; Patterson, L.; Scharlach, M.; Hellmeier, W.; Verma, A. Definitions of urban areas feasible for examining urban health in the European Union. Eur. J. Public Health 2017, 27 (Suppl. 2), 19–24. [Google Scholar] [CrossRef][Green Version]
- Urban Population (% of Total Population). Available online: https://data.worldbank.org/indicator/SP.URB.TOTL.IN.ZS (accessed on 2 March 2022).
- Verma, A.; Van Ameijden, E.; Birt, C.; Bocsan, I.; Pope, D.; on behalf of the EURO-URHIS 1 and 2 consortia. Why investigate urban health indicators? Eur. J. Public Health 2017, 27 (Suppl. 2), 1–3. [Google Scholar] [CrossRef]
- Crane, M.; Lloyd, S.; Haines, A.; Ding, D.; Hutchinson, E.; Belesova, K.; Davies, M.; Osrin, D.; Zimmermann, N.; Capon, A.; et al. Transforming cities for sustainability: A health perspective. Environ. Int. 2021, 147, 106366. [Google Scholar] [CrossRef]
- Capolongo, S.; Buffoli, M.; Brambilla, A.; Rebecchi, A. Healthy urban planning and design strategies to improve urban quality and attractiveness of places. TECHNE—J. Technol. Archit. Environ. 2020, 19, 271–279. [Google Scholar] [CrossRef]
- Glouberman, S.; Gemar, M.; Campsie, P.; Miller, G.; Armstrong, J.; Newman, C.; Siotis, A.; Groff, P. A framework for improving health in cities: A discussion paper. J. Urban Health 2006, 83, 325–338. [Google Scholar] [CrossRef]
- Fehr, R.; Capolongo, S. Promozione della salute nei contesti urbani: L’approccio urban health. Epidemiol. Prev. 2016, 40, 151–152. [Google Scholar] [CrossRef]
- Talukder, S.; Capon, A.; Nath, D.; Kolb, A.; Jahan, S.; Boufford, J. Urban health in the post-2015 agenda. Lancet 2015, 385, 745. [Google Scholar] [CrossRef]
- Rydin, Y.; Bleahu, A.; Davies, M.; Dávila, J.D.; Friel, S.; De Grandis, G.; Groce, N.; Hallal, P.C.; Hamilton, I.; Howden-Chapman, P.; et al. Shaping cities for health: Complexity and the planning of urban environments in the 21st century. Lancet 2012, 379, 2079–2108. [Google Scholar] [CrossRef]
- Vardoulakis, S.; Salmond, J.; Krafft, T.; Morawska, L. Urban environmental health interventions towards the Sustainable Development Goals. Sci. Total Environ. 2020, 748, 141530. [Google Scholar] [CrossRef]
- Pineo, H.; Zhou, K.; Niu, Y.; Hale, J.; Willan, C.; Crane, M.; Zimmermann, N.; Michie, S.; Liu, Q.; Davies, M. Evidence-informed urban health and sustainability governance in two Chinese cities. Build. Cities 2021, 2, 550–567. [Google Scholar] [CrossRef]
- Prime Minister’s Office. DPCM 3rd March 2017 on Registries and Surveillances (GU Serie Generale n.109 del 12-05-2017—All.A). Available online: https://www.gazzettaufficiale.it/eli/id/2017/05/12/17A03142/sg (accessed on 1 March 2022).
- American Association for Public Opinion Research. Standard Definitions: Final Dispositions of Case Codes and Outcome Rates for Surveys. 9th Edition. Available online: https://www.aapor.org/AAPOR_Main/media/publications/Standard-Definitions20169theditionfinal.pdf (accessed on 20 March 2022).
- Baldissera, S.; Campostrini, S.; Binkin, N.; Minardi, V.; Minelli, G.; Ferrante, G.; Salmaso, S.; PASSI Coordinating Group. Features and initial assessment of the Italian Behavioral Risk Factor Surveillance System (PASSI), 2007–2008. Prev. Chronic Dis. 2010, 8, A24. [Google Scholar]
- Baldissera, S.; Ferrante, G.; Quarchioni, E.; Minardi, V.; Possenti, V.; Carrozzi, G.; Masocco, M.; Salmaso, S.; PASSI Coordinating Group. Field substitution of nonresponders can maintain sample size and structure without altering survey estimates-the experience of the Italian behavioral risk factors surveillance system (PASSI). Ann. Epidemiol. 2014, 24, 241–245. [Google Scholar] [CrossRef]
- Contoli, B.; Carrieri, P.; Masocco, M.; Penna, L.; Perra, A.; PDA Study Group. PASSI d’Argento (Silver Steps): The main features of the new nationwide surveillance system for the ageing Italian population, Italy 2013–2014. Ann. Ist. Super Sanità 2016, 52, 536–542. [Google Scholar] [CrossRef]
- Principali Statistiche Geografiche Sui Comuni. Available online: https://www.istat.it/it/archivio/156224 (accessed on 1 February 2022).
- Barros, A.J.; Hirakata, V.N. Alternatives for logistic regression in cross-sectional studies: An empirical comparison of models that directly estimate the Odds Ratio. BMC Med Res. Methodol. 2003, 3, 21. [Google Scholar] [CrossRef]
- Kroenke, K.; Spitzer, R.L.; Williams, J.B.W. The Patient Health Questionnaire-2: Validity of a two-item depression screener. Med. Care 2003, 41, 1284–1292. [Google Scholar] [CrossRef]
- Washburn, R.A.; Smith, K.W.; Jette, A.M.; Janney, C.A. The physical activity scale for the elderly (PASE): Development and evaluation. J. Clin. Epidemiol. 1993, 46, 153–162. [Google Scholar] [CrossRef]
- Aroogh, M.D.; Shahboulaghi, F.M. Social Participation of Older Adults: A Concept Analysis. Int. J. Community Based Nurs. Midwifery 2020, 8, 55–72. [Google Scholar] [CrossRef]
- Possenti, V.; Minardi, V.; Contoli, B.; Gallo, R.; Lana, S.; Bertozzi, N.; Campostrini, S.; Carrozzi, G.; Cristofori, M.; D’Argenzio, A.; et al. The two behavioural risk factor surveillances on the adult and elderly populations as information systems for leveraging data on health-related sustainable development goals in Italy. Int. J. Med. Inform. 2021, 152, 104443. [Google Scholar] [CrossRef]
- Jiang, X.; Li, D.; Boyce, W.; Pickett, W. Alcohol Consumption and Injury among Canadian Adolescents: Variations by Urban–Rural Geographic Status. J. Rural Health 2008, 24, 143–147. [Google Scholar] [CrossRef]
- Pappagallo, M. Le città obesogene. Urbes Mag. 2018, 4, 104–105. [Google Scholar]
- NCD Risk Factor Collaboration (NCD-RisC). Rising rural body-mass index is the main driver of the global obesity epidemic in adults. Nature 2019, 569, 260–264. [Google Scholar] [CrossRef] [PubMed]
- Plotnikoff, R.C.; Mayhew, A.; Birkett, N.; Loucaides, C.A.; Fodor, G. Age, gender, and urban–rural differences in the correlates of physical activity. Prev. Med. 2004, 39, 1115–1125. [Google Scholar] [CrossRef] [PubMed]
- De Mei, B.; Cadeddu, C.; Luzi, P.; Spinelli, S. Movimento, Sport e Salute: L’importanza Delle Politiche di Promozione Dell’attività Fisica e Le Ricadute Sulla Collettività; Rapporto ISTISAN; Istituto Superiore di Sanità: Roma, Italy, 2018. [Google Scholar]
- Ricciardi, W.; Guerra, R.; Galeone, D.; Siliquini, R. “Guadagnare Salute” in città. Health Policy Noncommun. Dis. Diabetes 2017, 4, 14–18. [Google Scholar]
- World Health Organization & UN-Habitat. Global Report on Urban Health: Equitable Healthier Cities for Sustainable Development; World Health Organization: Generva, Switzerland, 2016; Available online: https://apps.who.int/iris/handle/10665/204715 (accessed on 15 March 2022).
- Venturelli, F.; Sampaolo, L.; Carrozzi, G.; PASSI Working Group; Zappa, M.; Rossi, P.G. Associations between cervical, breast and colorectal cancer screening uptake, chronic diseases and health-related behaviours: Data from the Italian PASSI nationwide surveillance. Prev. Med. 2019, 120, 60–70. [Google Scholar] [CrossRef] [PubMed]
- Gong, Y.; Palmer, S.; Gallacher, J.; Marsden, T.; Fone, D. A systematic review of the relationship between objective measurements of the urban environment and psychological distress. Environ. Int. 2016, 96, 48–57. [Google Scholar] [CrossRef]
- Chandak, A.; Nayar, P.; Lin, G. Rural-Urban Disparities in Access to Breast Cancer Screening: A Spatial Clustering Analysis. J. Rural Health 2019, 35, 229–235. [Google Scholar] [CrossRef]
- Osservatorio Nazionale Screening. Rapporto 2018. Available online: https://www.osservatorionazionalescreening.it/content/rapporto (accessed on 10 March 2022).
Outcome | Prevalence (%) | OR ° | Prevalence (%) | OR ° | ||
---|---|---|---|---|---|---|
(95% CI) | (95% CI) | (95% CI) | (95% CI) | |||
Metr. Area | Non Metr. Area | Metr. Area vs. Non Metr. Area | Level 1 | Level 3 | Level 1 vs. Level 3 | |
Overweight | 42.40 | 42.30 | 1.00 | 40.90 | 44.90 | 0.89 *** |
(41.9–43.0) | (41.9–42.6) | (0.97–1.03) | (40.3–41.5) | (44.4–45.4) | (0.86–0.93) | |
Obesity | 10.60 | 10.80 | 0.97 | 9.90 | 11.70 | 0.88 *** |
(10.2–11.0) | (10.6–11.0) | (0.93–1.02) | (9.5–10.3) | (11.3–12.0) | (0.84–0.93) | |
Depressive symptoms | 7.20 | 5.40 | 1.26 ***(1) | 7.10 | 5.50 | 1.27 ***(1) |
(6.8–7.5) | (5.2–5.5) | (1.20–1.33) | (6.8–7.4) | (5.2–5.7) | (1.19–1.35) | |
Diabetes | 5.10 | 4.60 | 1.09 ***(2) | 4.70 | 5.10 | 1.00 (2) |
(4.8–5.4) | (4.4–4.7) | (1.02–1.16) | (4.4–5.0) | (4.8–5.3) | (0.93–1.08) | |
Respiratory system diseases | 7.80 | 5.70 | 1.24 ***(3) | 7.80 | 6.40 | 1.21 ***(3) |
(7.5–8.2) | (5.4–6.0) | (1.18–1.30) | (7.4–8.1) | (6.2–6.7) | (1.13–1.29) | |
Cancer diseases | 3.90 | 3.70 | 1.12 ***(4) | 3.90 | 3.60 | 1.06 (4) |
(3.7–4.2) | (3.6–3.8) | (1.05–1.20) | (3.7–4.1) | (3.4–3.8) | (0.98–1.15) | |
Cardio-cerebrovascular system diseases | 5.20 | 4.80 | 1.09 ***(5) | 4.90 | 5.10 | 1.00 (5) |
(5.0–5.5) | (4.7–5.0) | (1.03–1.15) | (4.7–5.2) | (4.9–5.3) | (0.93–1.07) |
Outcome | Prevalence (%) | OR ° | Prevalence (%) | OR ° | ||
---|---|---|---|---|---|---|
(95% CI) | (95% CI) | (95% CI) | (95% CI) | |||
Metr. Area | Non Metr. Area | Metr. Area vs. Non Metr. Area | Level 1 | Level 3 | Level 1 vs. Level 3 | |
Breast cancer screeing | 71.70 | 75.00 | 0.91 *** | 73.20 | 73.10 | 0.95 |
total | (70.5–72.9) | (74.3–75.6) | (0.84–0.97) | (72.0–74.4) | (72.1–74.2) | (0.87–1.04) |
Breast cancer screeing | 47.60 | 58.00 | 0.82 ***(1) | 49.80 | 56.90 | 0.87 ***(1) |
organized public programs | (46.4–48.9) | (57.3–58.6) | (0.75–0.88) | (48.6–51.1) | (55.7–58.0) | (0.79–0.95) |
Breast cancer screeing | 23.50 | 16.70 | 1.24 ***(1) | 22.90 | 15.90 | 1.34 ***(1) |
personal initiative | (22.4–24.7) | (16.1–17.2) | (1.13–1.37) | (21.8–24.1) | (15.1–16.8) | (1.19–1.51) |
Uterine cervix cancer screening | 79.20 | 79.40 | 1.06 ** | 79.50 | 77.80 | 1.05 |
total | (78.4–80.0) | (79.0–79.9) | (1.00–1.12) | (78.7–80.3) | (77.1–78.5) | (0.98–1.13) |
Uterine cervix cancer screening | 38.40 | 50.60 | 0.93 **(1) | 38.70 | 51.20 | 0.87 ***(1) |
organized public programs | (37.5–39.3) | (50.1–51.1) | (0.87–0.99) | (37.9–39.6) | (50.4–52.0) | (0.81–0.93) |
Uterine cervix cancer screening | 40.20 | 28.40 | 1.30 ***(1) | 40.20 | 26.20 | 1.42 ***(1) |
personal initiative | (39.3–41.1) | (28.0–28.9) | (1.12–1.39) | (39.3–41.2) | (25.4–26.9) | (1.32–1.54) |
Outcome | Prevalence (%) | OR ° | Prevalence (%) | OR ° | ||
---|---|---|---|---|---|---|
(95% CI) | (95% CI) | (95% CI) | (95% CI) | |||
Metr. Area | Non Metr. Area | Metr. Area vs. Non Metr. Area | Level 1 | Level 3 | Level 1 vs. Level 3 | |
Sedentary lifestyle | 32.70 | 25.80 | 1.31 *** | 30.20 | 27.50 | 1.16 *** |
(32.2–33.3) | (25.6–26.1) | (1.27–1.35) | (29.6–30.7) | (27.0–28.0) | (1.12–1.21) | |
Smoking | 26.90 | 25.10 | 1.10 *** | 27.00 | 25.40 | 1.14 *** |
(26.4–27.5) | (24.8–25.4) | (1.06–1.13) | (26.5–27.6) | (24.9–25.8) | (1.10–1.19) | |
At-risk alcohol consumption | 15.60 | 17.90 | 0.92 *** | 16.60 | 17.80 | 0.92 *** |
(15.1–16.0) | (17.7–18.1) | (0.88–0.95) | (16.2–17.0) | (16.8–17.3) | (0.88–0.97) | |
Fruits and vegetables consumption (5 portions) | 10.50 | 9.50 | 1.16 *** | 10.20 | 9.50 | 1.03 |
(10.2–10.9) | (9.3–9.7) | (1.11–1.21) | (9.9–10.6) | (9.2–9.8) | (0.98–1.09) |
Outcome | Prevalence (%) | OR ° | Prevalence (%) | OR ° | ||
---|---|---|---|---|---|---|
(95% CI) | (95% CI) | (95% CI) | (95% CI) | |||
Metr. Area | Non Metr. Area | Metr. Area vs. Non Metr. Area | Level 1 | Level 3 | Level 1 vs. Level 3 | |
Sedentary lifestyle | 43.80 | 37.90 | 1.21 *** | 43.80 | 37.10 | 1.35 *** |
(41.3–44.3) | (36.8–39.1) | (1.11–1.33) | (42.4–45.2) | (35.2–39.0) | (1.21–1.50) | |
Smoking | 10.50 | 9.40 | 1.08 | 11.40 | 8.60 | 1.28 *** |
(9.7–11.3) | (8.8–10.1) | (0.96–1.21) | (10.6–12.2) | (7.8–9.5) | (1.12–1.47) | |
At–risk alcohol consumption | 17.00 | 19.40 | 0.85 *** | 16.90 | 20.20 | 0.79 *** |
(16.0–17.4) | (18.4–20.2) | (0.77–0.94) | (16.0–17.8) | (19.0–21.5) | (0.71–0.89) | |
Fruits and vegetables consumption (3 portions) | 51.60 | 57.60 | 0.75 *** | 53.20 | 56.30 | 0.83 *** |
(50.3–53.0) | (56.6–58.6) | (0.70–0.81) | (51.9–54.5) | (54.9–57.8) | (0.76–0.90) | |
Depressive symptoms | 13.90 | 13.10 | 1.14 ** | 15.00 | 12.30 | 1.35 *** |
(12.9–14.9) | (12.3–14.9) | (1.00–1.30) | (14.0–16.0) | (11.2–13.6) | (1.16–1.56) |
Outcome | Prevalence (%) | OR ° | Prevalence (%) | OR ° | ||
---|---|---|---|---|---|---|
(95% CI) | (95% CI) | (95% CI) | (95% CI) | |||
Metr. Area | Non Metr. Area | Metr. Area vs. Non Metr. Area | Level 1 | Level 3 | Level 1 vs. Level 3 | |
Neighborhood security perception | 82.10 | 85.50 | 0.78 *** | 80.40 | 87.90 | 0.57 *** |
(81.0–83.2) | (84.6–86.3) | (0.70–0.87) | (79.3–81.5) | (86.7–89.0) | (0.50–0.65) | |
Satisfaction with life | 75.80 | 80.20 | 0.74 *** | 77.60 | 78.00 | 0.93 |
(74.4–77.1) | (79.3–81.1) | (0.66–0.83) | (76.5–78.8) | (76.4–79.6) | (0.82–1.05) | |
Problems in health services access | 31.30 | 31.80 | 1.04 | 29.10 | 34.70 | 0.82 *** |
(30.1–32.6) | (30.9–32.8) | (0.95–1.13) | (27.9–30.3) | (33.3–36.1) | (0.74–0.92) | |
Problems in daily services access | 31.60 | 33.00 | 1.01 | 29.30 | 35.90 | 0.79 *** |
(30.4–32.8) | (32.0–33.9) | (0.92–1.11) | (28.1–30.5) | (34.5–37.3) | (0.71–0.88) | |
Elderly as “resouce” | 27.70 | 29.40 | 0.88 *** | 27.80 | 27.60 | 0.91 * |
(26.5–29.0) | (28.5–30.3) | (0.81–0.96) | (26.7–29.0) | (26.2–29.0) | (0.83–1.01) | |
Support for cohabitants | 18.40 | 19.50 | 0.87 *** | 17.70 | 18.10 | 0.90 * |
(17.4–19.4) | (18.7–20.4) | (0.79–0.95) | (16.7–18.7) | (17.1–19.3) | (0.80–1.00) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nobile, F.; Gallo, R.; Minardi, V.; Contoli, B.; Possenti, V.; Masocco, M. Urban Health at a Glance in Italy by PASSI and PASSI d’Argento Surveillance Systems Data. Sustainability 2022, 14, 5931. https://doi.org/10.3390/su14105931
Nobile F, Gallo R, Minardi V, Contoli B, Possenti V, Masocco M. Urban Health at a Glance in Italy by PASSI and PASSI d’Argento Surveillance Systems Data. Sustainability. 2022; 14(10):5931. https://doi.org/10.3390/su14105931
Chicago/Turabian StyleNobile, Federica, Rosaria Gallo, Valentina Minardi, Benedetta Contoli, Valentina Possenti, and Maria Masocco. 2022. "Urban Health at a Glance in Italy by PASSI and PASSI d’Argento Surveillance Systems Data" Sustainability 14, no. 10: 5931. https://doi.org/10.3390/su14105931
APA StyleNobile, F., Gallo, R., Minardi, V., Contoli, B., Possenti, V., & Masocco, M. (2022). Urban Health at a Glance in Italy by PASSI and PASSI d’Argento Surveillance Systems Data. Sustainability, 14(10), 5931. https://doi.org/10.3390/su14105931