The Influence of Municipal Wastewater Treatment Technologies on the Biological Stabilization of Sewage Sludge: A Systematic Review
Abstract
:1. Introduction
- (i)
- The characteristics of the wastewater (e.g., the biochemical oxygen demand—BOD5, the chemical oxygen demand—COD, and the total suspended solid—TSS).
- (ii)
- The type of the wastewater collection system (e.g., a sanitary sewer, storm water, or combined systems).
- (iii)
- The type (e.g., biological or chemical) and stage (i.e., primary, secondary, or mixed) of the wastewater treatment process from which the sludge originates.
- (iv)
- The sludge stabilization processes (e.g., anaerobic and aerobic digestion, composting, and chemical and thermal treatment).
- (v)
- The operation conditions, wastewater treatment, and sludge stabilization processes (e.g., the temperature and the sludge retention time).
2. Methods
3. Results
3.1. Bibliometric Data
3.2. Municipal Wastewater Treatment Plants (WWTPs)
3.3. Sewage Sludge Characteristics
3.4. Biological Stabilization Processes of Sewage Sludge
Process | Advantages | Limitations | Characteristics of the Sludge Generated | Reference (s) |
---|---|---|---|---|
Anaerobic digestion (AnD) | Reduction in the biological degradation (organic matter) and attraction of vectors, pathogens, and odor. Potential to use the main gas generated (CH4). | High investment costs, relatively slow degradation of organic matter process, high maintenance and qualified operator requirements; the process depends on the temperature and the SRT. Limited degradation capacity of heavy metals and complex organic compounds. Excess moisture. Emission of greenhouse gases if biogas is not used as a source of renewable energy. | Requires dewatering in addition to requiring further treatment (hygienization) to eliminate pathogens and potentiate unrestricted uses in agriculture. | [5,32,50,55,68,69] |
Aerobic digestion (AeD) | Rapid reduction in the biological degradation (organic matter) and attraction of vectors, pathogens, and odor. | High operating costs, odor formation, high maintenance and qualified operator requirements; the process depends on the temperature and the SRT. Limited degradation capacity of heavy metals and complex organic compounds. Excess moisture. Emission of greenhouse gases. | Requires dewatering in addition to requiring further treatment (hygienization) to eliminate pathogens and potential unrestricted uses in agriculture. | [50,55,69] |
Composting | Reduction in the biological degradation (organic matter) and attraction of vectors. Significant reduction in pathogens. Reduction in sludge volume (up to 60% in 20 days) | Complex management by the volume of sludge generated; the process depends on the temperature, lack of availability of microorganisms, and the presence of unstabilized pathogenic materials. Limited degradation capacity of heavy metals and complex organic compounds. Heavy metals are only transformed into less mobile forms. Emission of greenhouse gases. | Low moisture material; however, the sewage sludge requires dewatering before the composting process. It produces value-added products in C, N, and P for horticultural, nursery, and landscape uses. | [5,50,55,69,70] |
Indicators Used to Evaluate the Biological Stabilization of Sewage Sludge
Stabilization Process | Indicator | Advantages (A) and Limitations (L) | Unit | Criterion | Reference (s) |
---|---|---|---|---|---|
Anaerobic (AnD) and aerobic (AeD) digestion | Volatile fatty acids (VFAs) * | A: Process quality control, safe quality of the end products L: Complicated operating procedures and applicable for anaerobic digestion only | mg COD/g OM | <430 | [45,86,87,88,89,90,91,92] |
Volatile solids (VS) | A: Simple testing methods L: Procedure control and laboratory assembly | % VS/TS | <65 | [45,86,90,93] | |
≤60 | [45,85,86,90,94] | ||||
% VSR | ≥38 | [12,45,52,86,90,93,95,96,97,98,99,100] | |||
≥40 | [45,74,85,86,90,101,102,103] | ||||
Additional VS when it is anaerobically batch-digested in the laboratory (40 days at 30–37 °C) * Additional VS when it is aerobically batch-digested in the laboratory (30 days at 20 °C) ** | A: Indicates process efficiency L: Complicated operating procedures | % VSR | ≤15 | [12,45,52,86,90,95,96,98,99,100] | |
% VSR | ≤17 | [12,45,52,86,90,95,96,98,99,100] | |||
Humic substances (HS) *** | A: Indicates ecological value of end products L: Complicated operating procedures | mg/gVS | ≥150 | [45,81,86,90] | |
Specific oxygen uptake rate (SOUR) ** | A: Process quality control L: Complicated operating procedures, applicable for aerobic digestion only, and ignores the value of end products | mg O2/g TS−h | ≤1.5 | [12,45,52,86,90,93,95,96,97,98,99,100] | |
mg O2/g VSS−h | ≤2.5 | [83,104] | |||
Composting | Volatile solids | A: Simple testing methods L: Procedure control | % VSR | ≥50 | [45,75,86,90,101,102,103] |
Carbon/nitrogen ratio (C/N) | A: Simple testing methods L: End-products quality control | − | <12 | [45,86,87,90,105] | |
Total organic carbon (TOC) | A: Simple testing methods and end-products quality control L: Need delicacy management | % | >5 | [45,86,90] | |
CO2 evolution rate | A: End-products quality control L: Unreasonable organic degradation rate and ignores the value of end products | mg CO2/g OM−d | <2 (Very stable) 2–4 (Stable) >4 (Unstable) | [45,70,73,86,90] | |
Specific oxygen uptake rate (SOUR) | A: Process quality control L: Complicated operating procedures, applicable for aerobic digestion only, and ignores the value of end products | mg O2/g VS−d | <3 (Very stable) 3–10 (Stable) >10 (Unstable) | ||
Self−heating (Dewar test) | A: Indicates ecological value of end products L: Applicable for composting only and ignores the value of end products | Dewar index (∆T °C) | <10 (Very stable) 10–20 (Stable) >20 (Unstable) |
Municipal WWTPs | Sludge Type | Stabilization Process | Operational Variables of the Process * | Indicators of Biological Stabilization | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
T (°C) | HRT (h) | SRT (d) | pH | VFAs (mgCOD/gVS) | VSR (%) | VS/TS (%) | C/N | HS (mg/gVS) | TOC (%) | SOUR (mgO2/g TS-h) | Dewar Test (∆T °C) | Reference (s) | |||
Anaerobic | SS | NA | 35–40 | 15 | 20 | 7.3 | - | 46–60 | 42 | - | 186–273 | - | - | - | [81,109] |
SS | NA | 54–55 | 15 | 20 | 7.6 | - | 38 | 51 | - | 146.1 | - | - | - | [81,109] | |
UASB | SS | NA | 35 | 24–48 | 18–33 | 8.2 | 160–320 | 55–68 | 60−65 | 9.0 | - | - | - | - | [50,54,110,111] |
CAS | SS | NA | - | - | 4–8 | - | - | - | 73–87 | - | - | - | 3–4.5 | - | [107,111] |
CAS | SM | Anaerobic digestion | 12–22 | - | - | 7.0–7.9 | - | 49−52 | 60 | 6.1–17 | - | 13.8 | - | - | [50,72,76,112] |
SS | 25–50 | - | 5–12 | 8–10 | 140–520 | 52 | - | - | - | - | - | - | [59,82,113] | ||
Aerobic | SS | Composting | - | - | - | 6.4–6.7 | - | 50–80 | - | - | 242–334 | - | - | - | [82,114] |
Anaerobic | SS | Composting | 35 | - | - | 7.3–7.6 | - | 43.5 | 45–47 | 10 | - | 2.0 | 1.4–1.1 | 10–20 | [80,87,115] |
Aerobic | SS | NA | - | - | - | 6.5–9.0 | - | 56−63 | 44 | 8.9–15 | - | - | - | - | [50,70] |
EAAS | SS | NA | 20–25 | 20 | 18–30 | 7.1–7.8 | - | 32–40 | 60–70 | 5.4–5.9 | - | - | 0.9–1.5 | >20 | [47,48,79,107,116] |
SBR | SS | NA | 20 | - | 24–40 | 6.8 | - | 34–38 | 60−70 | 6.0 | - | - | 1.8–2.0 | - | [76,83,117] |
CAS | SM | Aerobic digestion | 20 | - | 18–35 | - | - | 26–31 | 65−80 | - | - | - | − | - | [90,118,119] |
Anaerobic | SS | 35 | 20 | - | 6.8–6.9 | - | - | 29 | - | - | - | <1.5 | - | [120] | |
CAS | SS | Aerobic digestion | 59–61 | 5–15 | - | 7.8–8.3 | - | - | 25–37 | - | - | - | - | - | [109] |
Anaerobic | SS | 35–65 | 20 | - | 6.3–6.9 | - | 44–24.5 | 62–70 | - | - | - | - | - | [121] |
4. Future Perspectives
- (i)
- How the implemented MWW treatment technology and sludge stabilization process influence the degree of stabilization and characteristics of the sewage sludge. Different stabilization indicators should be included in the sewage sludge, contributing to the safe use of sewage sludge and biosolids and minimizing the environmental impacts and public health risks.
- (ii)
- The verification of the need to apply complementary stabilization and hygienization processes that ensure a safe material that complies with regulations, as it is necessary depending on the characteristics of the sewage sludge.
- (iii)
- The agronomic potential benefits related to the proportion and availability of the nutrients present in the sewage sludge, which must be compared with that of chemical fertilizers.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Noyola, A.; Padilla, A.; Morgan, J.M.; Güereca, L.P.; Hernández, F. Typology of Municipal Wastewater Treatment Technologies in Latin America. Clean Soil Air Water 2012, 40, 926–932. [Google Scholar] [CrossRef]
- Qu, J.; Wang, H.; Wang, K.; Yu, G.; Ke, B.; Yu, H.Q.; Ren, H.; Zheng, X.; Li, J.; Li, W.W.; et al. Municipal wastewater treatment in China: Development history and future perspectives. Front. Environ. Sci. Eng. 2019, 13, 88. [Google Scholar] [CrossRef]
- Sato, T.; Qadir, M.; Yamamoto, S.; Endo, T.; Zahoor, A. Global, regional, and country level need for data on wastewater generation, treatment, and use. Agric. Water Manag. 2013, 130, 1–13. [Google Scholar] [CrossRef]
- World Bank. The World Bank Data; GDP per Capita, Atlas Method (Current USD). 2019. Available online: https://data.worldbank.org/indicator/NY.GDP.PCAP.CD (accessed on 12 September 2020).
- Zhang, Q.; Hu, J.; Lee, D.J.; Chang, Y.; Lee, Y.J. Sludge treatment: Current research trends. Bioresour. Technol. 2017, 243, 1159–1172. [Google Scholar] [CrossRef]
- Collivignarelli, M.C.; Canato, M.; Abbà, A.; Carnevale, M. Biosolids: What are the different types of reuse? J. Clean. Prod. 2019, 238, 117844. [Google Scholar] [CrossRef] [Green Version]
- United Nations Human Settlements Programme (UN-Habitat). Global Atlas of Excreta, Wastewater Sludge, and Biosolids Management: Moving forward the Sustainable and Welcome Uses of a Global Resource; LeBlanc, R.J., Matthews, P., Richard, R.P., Eds.; United Nations Human Settlements Programme (UN-Habitat): Nairobi, Kenya, 2008; Available online: https://unhabitat.org/global-atlas-of-excreta-wastewater-sludge-and-biosolids-management (accessed on 5 March 2022).
- Wijesekara, H.; Bolan, N.S.; Thangavel, R.; Seshadri, B.; Surapaneni, A.; Saint, C.; Hetherington, C.; Matthews, P.; Vithanage, M. The impact of biosolids application on organic carbon and carbon dioxide fluxes in soil. Chemosphere 2017, 189, 565–573. [Google Scholar] [CrossRef]
- Ferrans, L.; Tamara, A.; Müller, A.; Hiroshan, H.; Christina, D.; Serena, C. Selecting sustainable sewage sludge reuse options through a systematic assessment framework: Methodology and case study in Latin America. J. Clean. Prod. 2020, 242, 118389. [Google Scholar] [CrossRef]
- Kacprzak, M.; Neczaj, E.; Fijałkowski, K.; Grobelak, A.; Grosser, A.; Worwag, M.; Rorat, A.; Brattebo, H.; Almås, Å.; Singh, B.R. Sewage sludge disposal strategies for sustainable development. Environ. Res. 2017, 156, 39–46. [Google Scholar] [CrossRef]
- Gherghel, A.; Teodosiu, C.; De Gisi, S. A review on wastewater sludge valorisation and its challenges in the context of circular economy. J. Clean. Prod. 2019, 228, 244–263. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency (USEPA). Control of Pathogens and Vector Attraction in Sewage Sludge; United States Environmental Protection Agency (USEPA): Washington, DC, USA, 2003. [CrossRef]
- Pedroza, M.M.; Vieira, G.E.G.; Sousa, J.F.; Pickler, A.C.; Leal, A.C.; Milhomen, C.C. Produção e Tratamento de lodo de esgoto—Uma revisão. Rev. Lib. 2010, 16, 89–188. [Google Scholar]
- Al-Gheethi, A.A.; Efaq, A.N.; Bala, J.D.; Norli, I.; Abdel-Monem, M.O.; Kadir, M.O. Removal of pathogenic bacteria from sewage-treated effluent and biosolids for agricultural purposes. Appl. Water Sci. 2018, 8, 74. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Yan, S.H.; Ye, Z.L.; Meng, H.J.; Zhu, Y.G. Utilization of urban sewage sludge: Chinese perspectives. Environ. Sci. Pollut. Res. 2012, 19, 1454–1463. [Google Scholar] [CrossRef] [PubMed]
- Silva-Leal, J.; Bedoya, D.; Torres-Lozada, P. Effect of thermal drying and alkaline treatment on the microbiological and chemical characteristics of biosolids from domestic wastewater treatment plants. Química Nova 2013, 36, 207–214. [Google Scholar] [CrossRef] [Green Version]
- Ducoli, S.; Zacco, A.; Bontempi, E. Incineration of sewage sludge and recovery of residue ash as building material: A valuable option as a consequence of the COVID-19 pandemic. J. Environ. Manag. 2021, 282, 111966. [Google Scholar] [CrossRef] [PubMed]
- Patel, M.; Chaubey, A.K.; Pittman, C.U., Jr.; Mlsna, T.; Mohan, D. Coronavirus (SARS-CoV-2) in the environment: Occurrence, persistence, analysis in aquatic systems and possible management. Sci. Total Environ. 2020, 765, 142698. [Google Scholar] [CrossRef] [PubMed]
- Balboa, S.; Mauricio-Iglesias, M.; Rodríguez, S.; Martínez-Lamas, L.; Vasallo, F.J.; Regueiro, B.; Lema, J.M. The fate of SARS-CoV-2 in wastewater treatment plants points out the sludge line as a suitable spot for incidence monitoring. medRxiv 2021, 772, 145268. [Google Scholar]
- Kumar, V.; Chopra, A.K.; Kumar, A. A Review on Sewage Sludge (Biosolids) a Resource for Sustainable Agriculture. Arch. Agric. Environ. Sci. 2017, 2, 340–347. [Google Scholar] [CrossRef]
- Badza, T.; Tesfamariam, E.H.; Cogger, C.G. Agricultural use suitability assessment and characterization of municipal liquid sludge: Based on South Africa survey. Sci. Total Environ. 2020, 721, 137658. [Google Scholar] [CrossRef]
- Silva-Leal, J.; Pérez-Vidal, A.; Torres-Lozada, P. Effect of biosolids on the nitrogen and phosphorus contents of soil used for sugarcane cultivation. Heliyon 2021, 7, e06360. [Google Scholar] [CrossRef]
- Kaszycki, P.; Głodniok, M.; Petryszak, P. Towards a bio-based circular economy in organic waste management and wastewater treatment-The Polish perspective. New Biotechnol. 2021, 61, 80–89. [Google Scholar] [CrossRef]
- Aparicio, I.; Santos, J.L.; Alonso, E. Limitation of the concentration of organic pollutants in sewage sludge for agricultural purposes: A case study in South Spain. Waste Manag. 2009, 29, 1747–1753. [Google Scholar] [CrossRef] [PubMed]
- Sharma, B.; Sarkar, A.; Singh, P.; Singh, R. Agricultural utilization of biosolids: A review on potential effects on soil and plant grown. Waste Manag. 2017, 64, 117–132. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Padilla, F.; Margni, M.; Noyola, A.; Guereca-Hernandez, L.; Bulle, C. Assessing wastewater treatment in Latin America and the Caribbean: Enhancing life cycle assessment interpretation by regionalization and impact assessment sensibility. J. Clean. Prod. 2017, 142, 2140–2153. [Google Scholar] [CrossRef]
- Moral, J.A.; Herrera, E.; Santisteban, A.; Cobo, M.J. Software tools for conducting bibliometric analysis in science: An up-to-date review. Prof. Inf. 2020, 29, 4. [Google Scholar] [CrossRef] [Green Version]
- Shah, S.; Gwee, S.X.W.; Ng, J.Q.X.; Lau, N.; Koh, J.; Koh, J.; Pang, J. Wastewater surveillance to infer COVID-19 transmission: A systematic review. Sci. Total Environ. 2022, 804, 150060. [Google Scholar] [CrossRef]
- Troian, A.; Gomes, M.C. A bibliometric analysis on the use of the multicriteria approach to the water resource management. Gest. Prod. 2020, 27, e4761. [Google Scholar] [CrossRef]
- Van-Eck, N.; Waltman, L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 2010, 84, 523–538. [Google Scholar] [CrossRef] [Green Version]
- Luo, Y.; Yao, J.; Wanga, W.; Zheng, M.; Guo, D.; Chen, Y. Efficient municipal wastewater treatment by oxidation ditch process at low temperature: Bacterial community structure in activated sludge. Sci. Total Environ. 2020, 703, 135031. [Google Scholar] [CrossRef]
- Wang, Q.; Wei, W.; Gong, Y.; Yu, Q.; Li, Q.; Sun, J.; Yuan, Z. Technologies for reducing sludge production in wastewater treatment plants: State of the art. Sci. Total Environ. 2017, 587–588, 510–521. [Google Scholar] [CrossRef]
- Kaur, R.; Wani, S.P.; Singh, A.K.; Lal, K. Wastewater production, treatment and use in India. In Proceedings of the 2nd Regional Workshop on Safe Use of Wastewater in Agriculture, New Delhi, India, 16–18 May 2012. [Google Scholar]
- Jin, L.; Zhang, G.; Tian, H. Current state of sewage treatment in China. Water Res. 2014, 66, 85–98. [Google Scholar] [CrossRef]
- Rakedjian, B. Implementation of the Urban Wastewater Treatment Directive in France. Directive 91/271/CE. UWWTD Programme Manager for the French Ministry of Environment. 2015. France. Available online: http://businessdocbox.com/Green_Solutions/87789209-Implementation-of-the-urban-wastewater-treatment-directive-in-france.html (accessed on 5 March 2022).
- Comisión Nacional del Agua (CONAGUA). Manual de Agua Potable, Alcantarillado y Saneamiento, Diseño de Plantas de Tratamiento de Aguas Residuales Municipales: Tratamiento y Disposición de Lodos; Secretaria de Medio Ambiente y Recursos Naturales; Comisión Nacional del Agua (CONAGUA): Ciudad de México, México, 2015.
- Zhang, Q.; Yang, W.; Ngo, H.; Guo, W.; Jin, P.; Dzakpasu, M.; Yang, S.J.; Wang, Q.; Wang, X.C.; Ao, D. Current status of urban wastewater treatment plants in China. Environ. Int. 2016, 92–93, 11–12. [Google Scholar] [CrossRef] [PubMed]
- Jin, C.; Archer, G.; Parker, W. Current status of sludge processing and biosolids disposition in Ontario. Resour. Conserv. Recycl. 2018, 137, 21–31. [Google Scholar] [CrossRef]
- Superintendencia de Servicios Públicos Domiciliarios (SSPD). Estudio Sectorial de los servicios públicos domiciliarios de Acueducto y Alcantarillado 2020; Superintendencia de Servicios Públicos Domiciliarios (SSPD): Bogotá, Colombia, 2021.
- Maltos, R.A.; Holloway, R.W.; Cath, T.Y. Enhancement of activated sludge wastewater treatment with hydraulic selection. Sep. Purif. Technol. 2020, 250, 117214. [Google Scholar] [CrossRef]
- Von Sperling, M.; Freire, V.; Chernicharo, C. Performance evaluation of a UASB-activated sludge system treating municipal wastewater. Water Sci. Technol. 2001, 43, 323–328. [Google Scholar] [CrossRef]
- Chan, Y.J.; Chong, M.F.; Law, C.L.; Hassell, D.G. A review on anaerobic-aerobic treatment of industrial and municipal wastewater. Chem. Eng. J. 2009, 155, 1–18. [Google Scholar] [CrossRef]
- Orhon, D. Evolution of the activated sludge process: The first 50 years. J. Chem. Technol. Biotechnol. 2014, 90, 608–640. [Google Scholar] [CrossRef]
- Demirbas, A.; Edris, G.; Alalayah, W.M. Sludge production from municipal wastewater treatment in sewage treatment plant. Energy Sources Part A Recovery Util. Environ. Eff. 2017, 39, 999–1006. [Google Scholar] [CrossRef]
- Cokgor, E.U.; Tas, D.O.; Zengin, G.E.; Insel, G. Effect of stabilization on biomass activity. J. Biotechnol. 2012, 157, 547–553. [Google Scholar] [CrossRef]
- Fisher, R.M.; Alvarez-Gaitan, J.P.; Stuetz, R.M. Review of the effects of wastewater biosolids stabilization processes on odor emissions. Crit. Rev. Environ. Sci. Technol. 2019, 49, 1515–1586. [Google Scholar] [CrossRef]
- Uggetti, E.; Llorens, E.; Pedescoll, A.; Ferrer, I.; Castellnou, R.; García, J. Sludge dewatering and stabilization in drying reed beds: Characterization of thee full-scale systems in Catalonia, Spain. Bioresour. Technol. 2009, 100, 3882–3890. [Google Scholar] [CrossRef]
- Özdemir, S.; Çokgör, E.; Insel, G.; Orhon, D. Effect of extended aeration on the fate of particulate components in sludge stabilization. Bioresour. Technol. 2014, 174, 88–94. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.; Zhang, G.; Wang, H. Current state of sludge production, management, treatment and disposal in China. Water Res. 2015, 78, 60–73. [Google Scholar] [CrossRef] [PubMed]
- Nascimento, A.; de Souza, A.L.; Oliveira, F.C.; Carvalho, A.R.; Viana, D.G.; Regitano, J.B. Chemical attributes of sewage sludges: Relationships to sources and treatments, and implications for sludge usage in agriculture. J. Clean. Prod. 2020, 258, 120746. [Google Scholar] [CrossRef]
- Fijalkowski, K.; Rorat, A.; Grobelak, A.; Kacprzak, M.J. The presence of contaminations in sewage sludge-The current situation. J. Environ. Manag. 2017, 203, 1126–1136. [Google Scholar] [CrossRef] [PubMed]
- United States Environmental Protection Agency (USEPA). Land Application of Sewage Sludge a Guide for Land Appliers on the Requirements of the Federal Standards for the Use or Disposal of Sewage Sludge; Standard 40 CFR Part 503; United States Environmental Protection Agency (USEPA): Washington, DC, USA, 1994.
- Lu, Q.; He, Z.L.; Stoffella, P.J. Land Application of Biosolids in the USA: A Review. Appl. Environ. Soil Sci. 2012, 2012, 201462. [Google Scholar] [CrossRef] [Green Version]
- Shao, L.; Wang, T.; Li, T.; Lu, F.; He, P. Comparison of sludge digestion under aerobic and anaerobic conditions with a focus on the degradation of proteins at mesophilic temperature. Bioresour. Technol. 2013, 140, 131–137. [Google Scholar] [CrossRef]
- Anjum, M.; Al-Makishah, N.H.; Barakat, M.A. Wastewater sludge stabilization using pre-treatment methods. Process Saf. Environ. Prot. 2016, 102, 615–632. [Google Scholar] [CrossRef]
- Walter, I.; Martínez, F.; Cala, V. Heavy metal speciation and phytotoxic effects of thee representative sewage sludges for agricultural uses. Environ. Pollut. 2006, 139, 507–514. [Google Scholar] [CrossRef]
- Meghari, A.R.; Omar, R.K. Physicochemical Characterization of Sewage Sludge of Gaza Wastewater Treatment Plant for Agricultural Utilization. IUG J. Nat. Stud. 2017, 25, 72–78. [Google Scholar]
- Zuloaga, O.; Navarro, P.; Bizkarguenaga, E.; Iparraguirre, A.; Vallejo, A.; Olivares, M.; Prieto, A. Overview of extraction, clean-up and detection techniques for the determination of organic pollutants in sewage sludge: A review. Anal. Chim. Acta 2012, 736, 7–29. [Google Scholar] [CrossRef]
- Markowicz, A.; Bondarczuk, K.; Cycoń, M.; Sułowicz, S. Land application of sewage sludge: Response of soil microbial communities and potential spread of antibiotic resistance. Environ. Pollut. 2021, 271, 116317. [Google Scholar] [CrossRef] [PubMed]
- Sidhu, J.P.; Toze, S.G. Human pathogens and their indicators in biosolids: A literature review. Environ. Int. 2009, 35, 187–201. [Google Scholar] [CrossRef] [PubMed]
- Da Rocha, M.C.V.; Barés, M.E.; Braga, M.C.B. Quantification of viable helminth eggs in samples of sewage sludge. Water Res. 2016, 103, 245–255. [Google Scholar] [CrossRef] [PubMed]
- Martín-Díaz, J.; Lucena, F.; Blanch, A.R.; Jofre, J. Indicator bacteriophages in sludge, biosolids, sediments and soils. Environ. Res. 2020, 182, 109133. [Google Scholar] [CrossRef]
- Peccia, J.; Zulli, A.; Brackney, D.E.; Grubaugh, N.D.; Kaplan, E.H.; Casanovas-Massana, A.; Ko, A.I.; Malik, A.A.; Wang, D.; Wang, M.; et al. SARS-CoV-2 RNA concentrations in primary municipal sewage sludge as a leading indicator of COVID-19 outbreak dynamics. medRxiv 2020. [Google Scholar] [CrossRef]
- Kocamemi, B.A.; Kurt, H.; Sait, A.; Sarac, F.; Saatci, A.M.; Pakdemirli, B. SARS-CoV-2 detection in Istanbul wastewater treatment plant sludges. medRxiv 2020. [Google Scholar] [CrossRef]
- Brisolara, K.F.; Maal-Bared, R.; Reimers, R.S.; Rubin, A.; Sobsey, M.D.; Bastian, R.K.; Gerba, C.; Smith, J.E.; Bibby, K.; Kester, G.; et al. Assessing and Managing SARS-CoV-2 Occupational Health Risk to Workers Handling Residuals and Biosolids. Sci. Total Environ. 2021, 774, 145732. [Google Scholar] [CrossRef]
- Collivignarelli, M.C.; Abbà, A.; Benigna, I. The reuse of biosolids on agricultural land: Critical issues and perspective. Water Environ. Res. 2020, 92, 11–25. [Google Scholar] [CrossRef]
- National Research Council (NRC). Biosolids Applied to Land: Advancing Standards and Practices; National Academies Press: Washington, DC, USA, 2002; p. 55. [Google Scholar]
- Cieślik, B.M.; Namieśnik, J.; Konieczka, P. Review of sewage sludge management: Standards, regulations and analytical methods. J. Clean. Prod. 2015, 90, 1–15. [Google Scholar] [CrossRef]
- Semblante, G.U.; Hai, F.I.; Huang, X.; Ball, A.S.; Price, W.E.; Nghiem, L.D. Trace organic contaminants in biosolids: Impact of conventional wastewater and sludge processing technologies and emerging alternatives. J. Hazard. Mater. 2015, 300, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Wichuk, K.M.; McCartney, D. Compost stability and maturity evaluation—A literature review. Can. J. Civ. Eng. 2010, 37, 1505–1523. [Google Scholar] [CrossRef]
- Xiao, K.; Abbt-Braun, G.; Horn, H. Changes in the characteristics of dissolved organic matter during sludge treatment: A critical review. Water Res. 2020, 187, 116441. [Google Scholar] [CrossRef] [PubMed]
- Romanos, D.; Nemer, N.; Khairallah, Y.; Abi Saab, M.T. Assessing the quality of sewage sludge as an agricultural soil amendment in Mediterranean hábitats. Int. J. Recycl. Org. Waste Agric. 2019, 8, 377–383. [Google Scholar] [CrossRef] [Green Version]
- Bertanza, G.; Baroni, P.; Canato, M. Ranking sewage sludge management strategies by means of Decision Support Systems: A case study. Resour. Conserv. Recycl. 2016, 110, 1–15. [Google Scholar] [CrossRef]
- Seiple, T.E.; Coleman, A.M.; Skaggs, R.L. Municipal wastewater sludge as a sustainable bioresource in the United States. J. Environ. Manag. 2017, 197, 673–680. [Google Scholar] [CrossRef] [PubMed]
- European Comission. Disposal and Recycling Routes for Sewage Sludge Part 3: Regulatory Report; Disposal and recycling routes for sewage sludge (Vol. 0); European Comission: Luxemburg, 2001; ISBN 92-894-1799-4. [Google Scholar]
- Venegas, M.; Leiva, A.; Bay-Schmith, E.; Silva, J.; Vidal, G. Phytotoxicity of biosolids for soil application: Influence of conventional and advanced anaerobic digestion with sequential pre-treatment. Environ. Technol. Innov. 2019, 16, 100445. [Google Scholar] [CrossRef]
- Hudcová, H.; Vymazal, J.; Rozkošný, M. Present restrictions of sewage sludge application in agriculture within the European Union. Soil Water Res. 2019, 14, 104–120. [Google Scholar] [CrossRef]
- Rigby, H.; Clarke, B.O.; Pritchard, D.L.; Meehan, B.; Beshah, F.; Smith, S.R.; Porter, N. A critical review of nitrogen mineralization in biosolids-amended soil, the associated fertilizer value for crop production and potential for emissions to the environment. Sci. Total Environ. 2016, 541, 1310–1338. [Google Scholar] [CrossRef]
- Alvarenga, P.; Mourinha, C.; Farto, M.; Santos, T.; Palma, P.; Sengo, J.; Morais, M.C.; Cunha-Queda, C. Sewage sludge, compost and other representative organic wastes as agricultural soil amendments: Benefits versus limiting factors. Waste Manag. 2015, 40, 44–52. [Google Scholar] [CrossRef]
- Albini, E.; Pecorini, I.; Ferrara, G. Evaluation of biological processes performances using different stability indices. Procedia Environ. Sci. Eng. Manag. 2019, 6, 1–10. [Google Scholar]
- Mei, X.; Tang, J.; Zhang, Y. Sludge stabilization: Characteristics of the end-products and an alternative evaluative methodology. Waste Manag. 2020, 105, 355–363. [Google Scholar] [CrossRef] [PubMed]
- Fang, W.; Zhang, X.; Zhang, P.; Wan, J.; Guo, H.; Ghasimi, D.S.; Morera, X.C.; Zhang, T. Overview of key operation factors and strategies for improving fermentative volatile fatty acid production and product regulation from sewage sludge. J. Environ. Sci. 2020, 87, 93–111. [Google Scholar] [CrossRef] [PubMed]
- Parravicini, V.; Smidt, E.; Svardal, K.; Kroiss, H. Evaluating the stabilisation degree of digested sewage sludge: Investigations at four municipal wastewater treatment plants. Water Sci. Technol. 2006, 53, 81–90. [Google Scholar] [CrossRef] [PubMed]
- Ramdani, A.; Dold, P.; Déléris, S.; Lamarre, D.; Gadbois, A.; Comeau, Y. Biodegradation of the endogenous residue of activated sludge. Water Res. 2010, 44, 2179–2188. [Google Scholar] [CrossRef] [PubMed]
- Braguglia, C.M.; Coors, A.; Gallipoli, A.; Gianico, A.; Guillon, E.; Kunkel, U.; Mascolo, G.; Richter, E.; Ternes, T.A.; Tomei, M.C.; et al. Quality assessment of digested sludges produced by advanced stabilization processes. Environ. Sci. Pollut. Res. 2015, 22, 7216–7235. [Google Scholar] [CrossRef]
- Kazmierczak, M. Sewage sludge stabilization indicators in aerobic digestion—A review. Ann. Wars. Univ. Life Sci. SGGW Land Reclam. 2012, 44, 101–109. [Google Scholar] [CrossRef]
- Nikaeen, M.; Nafez, A.H.; Bina, B.; Nabavi, B.F.; Hassanzadeh, A. Respiration and enzymatic activities as indicators of stabilization of sewage sludge composting. Waste Manag. 2015, 39, 104–110. [Google Scholar] [CrossRef]
- Li, H.; Li, Y.K.; Li, C. Evolution of humic substances during anaerobic sludge digestion. Environ. Eng. Manag. J. 2017, 6, 1577–1582. [Google Scholar] [CrossRef]
- British Standard Institution (BSI). Specification for Whole Digestate, Separated Liquor and Separated Fibre Derived from the Anaerobic Digestion of Source-Segregated Biodegradable Materials; PAS 110; British Standard Institution (BSI): London, UK, 2010. [Google Scholar]
- Tas, D. Respirometric assessment of aerobic sludge stabilization. Bioresour. Technol. 2010, 101, 2592–2599. [Google Scholar] [CrossRef]
- Desarrollo de Sistemas Sostenibles de Producción y Uso de Biogás Agroindustria en España (PROBIOGAS). Guía de Utilización Agrícola de Los Materiales Digeridos por Biometanización; Desarrollo de Sistemas Sostenibles de Producción y Uso de Biogás Agroindustria en España (PROBIOGAS): Murcia España, 2011; ISBN 978-84-694-1868-0. [Google Scholar]
- Ministerio de Agricultura Pesca Alimentación y Medio Ambiente. Real Decreto 1310 de 1990-Orden AAA/1072/2013; Ministerio de Agricultura Pesca Alimentación y Medio Ambiente: City, España, 2013.
- Conselho Nacional do Meio Ambiente (CONAMA). Resolução N° 498, de 19 de Agosto de 2020. Define Critérios e Procedimentos Para Produção e Aplicação de Biossólido em Solos, e dá Outras Providências; Conselho Nacional do Meio Ambiente (CONAMA): Belo Horizonte, Brasil, 2020.
- Ministerio de Vivienda, Construcción y Saneamiento. Decreto Supremo N° 015-2017-Vivienda; Ministerio de Vivienda, Construcción y Saneamiento: Lima, Perú, 2017.
- United States Enviromental Protection Agency (USEPA). Standards for the Use or Disposal of Sewage Sludge; 40 CFR Part 503; United States Environmental Protection Agency (USEPA): Washington, DC, USA, 1993.
- Secretaría de Medio Ambiente y Recursos Naturales (SERMANAT). Norma de Protección Ambiental de Lodos y Biosólidos. Especificaciones y Límites Máximos Permisibles de Contaminantes Para su Aprovechamiento y Disposición Final; NOM-004-SERMANAT; Secretaría de Medio Ambiente y Recursos Naturales (SERMANAT): Ciudad de México, México, 2002.
- New Zealand Water and Wastes Association (NZWWA). Guidelines for the Safe Application of Biosolids to Land in New Zealand; New Zealand Water and Wastes Association (NZWWA): Wellington, New Zealand, 2003; ISBN 1-877134-43-0. [Google Scholar]
- Water Research Commission (WRC). Guidelines for the Utilization and Disposal of Wastewater Sludge; Volume 2: Requirements for the Agricultural Use of Wastewater Sludge; Rep. TT 262/06; Water Research Commission (WRC): Pretoria, South Africa, 2006. [Google Scholar]
- Canadian Council of Ministers of the Environment (CCME). A Review of the Current Canadian Legislative Framework for Wastewater Biosolids; Canadian Council of Ministers of the Environment (CCME): Winnipeg, MB, Canada, 2010; ISBN 978-1-896997-95-7.
- Ministerio de Vivienda, Ciudad y Territorio (MINVIVIENDA). Decreto 1287 del 10 de Julio de 2014; Ministerio de Vivienda, Ciudad y Territorio (MINVIVIENDA): Bogotá, Colombia, 2014.
- GB 18918-2002; Discharge Standard of Pollutants for Municipal Wastewater Treatment Plant. Ministry of Environmental Protection of China: Beijing, China, 2003.
- CJ/T 510-2017; Standard for Sludge Stabilization Treatment of Municipal Wastewater Treatment Plant. Standards Press of China: Beijing, China, 2017.
- GBT 4284-2018; Standards for Pollutant Control of Sludge for Agricultural Use. Standards Press of China: Beijing, China, 2018.
- Nowak, O. Sewage sludge stabilisation at treatment plants without mesophilic digestion (in German). Presented at the Ö WAV/TU-Workshop” Sewage sludge”, Vienna University of Technology, 26–27. Vienna Publ. Wien. Mitt. 2002, 177, 29–76. [Google Scholar]
- Ministerio de la Presidencia. Real Decreto 506/2013, de 28 de Junio, Sobre Productos Fertilizantes. Boletín Oficial del Estado (BOE) 10 Julio 2013, 164, e51118–e51207, España. Available online: https://www.boe.es/boe/dias/2013/07/10/pdfs/BOE-A-2013-7540.pdf (accessed on 5 March 2022).
- Evangelou, A.; Calabrò, P.S.; Greco, R.; Sánchez, A.; Komilis, D. Biodegradation activity of eight organic substrates: A correlation study of different test methods. Waste Biomass Valorization 2016, 7, 1067–1080. [Google Scholar] [CrossRef] [Green Version]
- Tonkovic, Z. Aerobic stabilisation criteria for BNR biosolids. Water Sci. Technol. 1999, 39, 167–174. [Google Scholar] [CrossRef]
- Li, Z.; Hang, Z.; Zhang, Q.; Zhang, S.; Zhang, T.; Yu, H. Tuning of activated sludge in winter based on respirogram profiles under standard and site temperatures. J. Environ. Sci. 2019, 79, 330–338. [Google Scholar] [CrossRef] [PubMed]
- López, A.; Rodríguez-Chueca, J.; Mosteo, R.; Gómez, J.; Ormad, M.P. Microbiological quality of sewage sludge after digestion treatment: A pilot scale case of study. J. Clean. Prod. 2020, 254, 120101. [Google Scholar] [CrossRef]
- Terreros-Mecalco, J.; Olmos-Dichara, A.; Noyola-Robles, A.; Ramírez-Vives, F.; Monroy-Hermosillo, O. Digestión anaerobia de lodo primario y secundario en dos reactores UASB en serie. Rev. Mex. Ing. Química 2009, 8, 153–161. [Google Scholar]
- Xu, J.; Yuan, H.; Lin, J.; Yuan, W. Evaluation of thermal, thermal-alkaline, alkaline and electrochemical pretreatments on sludge to enhance anaerobic biogas production. J. Taiwan Inst. Chem. Eng. 2013, 45, 2531–2536. [Google Scholar] [CrossRef]
- Černe, M.; Palčić, I.; Pasković, I.; Major, N.; Romić, M.; Filipović, V.; Igrc, M.D.; Perčin, A.; Ban, S.G.; Zorko, B.; et al. The effect of stabilization on the utilization of municipal sewage sludge as a soil amendment. Waste Manag. 2019, 94, 27–38. [Google Scholar] [CrossRef]
- Xiong, H.; Chen, J.; Wang, H.; Shi, H. Influences of volatile solid concentration, temperature and solid retention time for the hydrolysis of waste activated sludge to recover volatile fatty acids. Bioresour. Technol. 2012, 119, 285–292. [Google Scholar] [CrossRef]
- Vaca, R.; Lugo, J.; Martinez, R.; Esteller, M.V.; Zavaleta, H. Effects of sewage sludge and sewage sludge compost amendment on soil properties and Zea mays L. plants (heavy metals, quality and productivity). Rev. Int. Contam. Ambient. 2011, 27, 304–311. [Google Scholar]
- Toledo, M.; Gutiérrez, M.C.; Siles, J.A.; Martín, M.A. Full-scale composting of sewage sludge and market waste: Stability monitoring and odor dispersion modeling. Environ. Res. 2018, 167, 739–750. [Google Scholar] [CrossRef] [PubMed]
- Park, C.; Abu-Orf, M.M.; Novak, J. The Digestibility of Waste Activated Sludges. Water Environ. Res. 2006, 78, 59–68. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zhang, R. Aerobic treatment of dairy wastewater with sequencing batch reactor systems. Bioprocess Biosyst. Eng. 2002, 25, 103–109. [Google Scholar] [CrossRef] [PubMed]
- Yeneneh, A.; Sen, T.; Chong, S.; Ang, H.M.; Kayaalp, A. Effect of combined microwave-ultrasonic pretreatment on anaerobic biodegradability of primary, excess activated and mixed sludge. Comput. Water Energy Environ. Eng. 2013, 2, 7–11. [Google Scholar] [CrossRef] [Green Version]
- Souza, T.S.; Ferreira, L.C.; Sapkaite, I.; Pérez-Elvira, S.I.; Fdz-Polanco, F. Thermal pretreatment and hydraulic retention time in continuous digesters fed with sewage sludge: Assessment using the ADM1. Bioresour. Technol. 2013, 148, 317–324. [Google Scholar] [CrossRef]
- Smidt, E.; Parravicini, V. Effect of sewage sludge treatment and additional aerobic post-stabilization revealed by infrared spectroscopy and multivariate data analysis. Bioresour. Technol. 2009, 100, 1775–1780. [Google Scholar] [CrossRef]
- Liu, S.; Zhu, N.; Ning, P.; Li, L.Y.; Gong, X. The one-stage autothermal thermophilic aerobic digestion for sewage sludge treatment: Effects of temperature on stabilization process and sludge properties. Chem. Eng. J. 2012, 197, 223–230. [Google Scholar] [CrossRef]
- Council of the European Communities (CEC). Directive 86/278/EEC. Protection of the Environment, and in Particular of the Soil, when Sewage Sludge is Used in Agriculture. Off. J. Eur. Communities EUR-Lex 1986, 181, 6–12. [Google Scholar]
- Ospina, F.A.; Rodríguez, A.; Gónzalez, J.M. Comparación de la reglamentación para el manejo de lodos provenientes de agua residual en Argentina, Chile y Colombia. Rev. Investig. Agrar. Ambient. 2017, 8, 227–237. [Google Scholar] [CrossRef]
Characteristics | CAS | EAAS–SBR | UASB |
---|---|---|---|
Kinetics of organic matter conversion | CnHaObNc + 5O2 ↓ CO2 + H2O + NH3 + biomass | CnHaObNc + 7O2 ↓ CO2 + H2O + H+ + NO3− + biomass | CnHaObNc ↓ CH4 + CO2 + H2O + NH3 + biomass |
Area requirement (m2/inhabitant) | 0.2–0.3 | 0.25–0.35 | 0.1–0.2 |
Sludge retention time (SRT) | 4–15 days | 18–30 days | 30–40 days |
Hydraulic retention time (HRT) | 5–14 h | 18–36 h | 6–14 h |
Removal efficiency of COD | 80–90% | 90–95% | 60–70% |
Removal efficiency of BOD5 | 85–95% | 80–98% | 60–80% |
Energy requirements | Reduced | High | Low to moderate |
Temperature influence | Average | High | High |
Biological stabilization of sludge | Low and insufficient | Sufficient | High |
Complementary biological stabilization processes of sludge | Necessary | Not required | Not required |
Sludge production (L/per*d) | High (8.2) | Medium (3.3–5.6) | Low (0.2–0.6) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cárdenas-Talero, J.L.; Silva-Leal, J.A.; Pérez-Vidal, A.; Torres-Lozada, P. The Influence of Municipal Wastewater Treatment Technologies on the Biological Stabilization of Sewage Sludge: A Systematic Review. Sustainability 2022, 14, 5910. https://doi.org/10.3390/su14105910
Cárdenas-Talero JL, Silva-Leal JA, Pérez-Vidal A, Torres-Lozada P. The Influence of Municipal Wastewater Treatment Technologies on the Biological Stabilization of Sewage Sludge: A Systematic Review. Sustainability. 2022; 14(10):5910. https://doi.org/10.3390/su14105910
Chicago/Turabian StyleCárdenas-Talero, José Luis, Jorge Antonio Silva-Leal, Andrea Pérez-Vidal, and Patricia Torres-Lozada. 2022. "The Influence of Municipal Wastewater Treatment Technologies on the Biological Stabilization of Sewage Sludge: A Systematic Review" Sustainability 14, no. 10: 5910. https://doi.org/10.3390/su14105910