Microclimatic and Environmental Improvement in a Mediterranean City through the Regeneration of an Area with Nature-Based Solutions: A Case Study
Abstract
:1. Introduction
Aims
- Evaluate the effects of different plant species and their arrangement to quantify, through simulations, the beneficial effects of greening and other technical solutions to counteract the UHI and maximise the ecosystem functions and the ecosystem services provision.
- Quantify the potential microclimatic benefits of NbS in a small but critical and densely populated urban area, comparing different design scenarios.
- Model the selected plant species with a high level of accuracy in terms of canopy shape, plant dimensions, and ecology.
- Define the most effective strategy for the draft of a final design for a pilot redevelopment project.
2. Materials and Methods
2.1. Study Site
2.2. Criteria for Plant Selection
2.3. Design Scenarios
2.4. Microclimatic Model
2.4.1. Model Dimensions
2.4.2. Environmental Parameters
2.4.3. Plant Species Parametrisation
2.4.4. Data Analysis
3. Results and Discussion
4. Conclusions
- Different design scenarios with selected plant species, compared with the current state (no NbS), can play a key role in improving microclimatic conditions during summer (hot day) and thermal comfort, mitigating air temperature (up to 1.8 °C for the scenario with the less greening, with herbaceous and tree layers), mean radiant temperature (up to 17.3 °C for the scenario with the maximum greening with herbaceous, shrub, and tree layers), and increasing relative humidity (up to 5.6% for the scenario with the maximum greening), resulting in a relevant improvement in the UTCI (up to 5.4 °C for the scenario with maximum greening), despite the air flow reduction (up to 0.3 m/s less for the scenario with maximum greening). It is worth mentioning that the mean radiant temperature in scenario 3 (maximum greening) was <5.0 °C compared to scenario 1 (minimal greening), corresponding to the trees layer and flower beds. Overall, the type and coverage percentage of plant layers plays a key role in all microclimate parameters except for relative humidity.
- The re-parametrisation of the plant species characteristics in the ENVI-met database is fundamental to reach a high level of accuracy, as demonstrated by the significant differences highlighted when comparing a simulation with standard values and a simulation with a re-parametrisation of all the plant species (ΔT = 5.4 °C for punctual mean radiant temperature for scenario 3 with the maximum greening).
- Plant species can be selected with a systemic approach to maximise the ecosystem functions and the ecosystem services provision.
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- European Commission Urban Development. Available online: https://ec.europa.eu/regional_policy/en/policy/themes/urban-development/ (accessed on 26 November 2021).
- Edenhofer, O.; Pichs-Madruga, R.; Sokona, Y.; Agrawala, S.; Bashmakov, I.A.; Blanco, G.; Broome, J.; Bruckner, T.; Brunner, S.; Bustamante, M.; et al. Summary for Policymakers; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Jim, C.Y. Green-Space Preservation and Allocation for Sustainable Greening of Compact Cities. Cities 2004, 21, 311–320. [Google Scholar] [CrossRef]
- Fini, A.; Ferrini, F. Influenza Dell’ambiente Urbano Sulla Fisiologia e La Crescita Degli Alberi. Italus Hortus 2007, 14, 9–24. [Google Scholar]
- IPCC Global Warming of 1.5 °C. Available online: https://www.ipcc.ch/sr15/ (accessed on 26 November 2021).
- WEF The Global Risks Report 2020. Available online: https://www.weforum.org/reports/the-global-risks-report-2020/ (accessed on 26 November 2021).
- Michelozzi, P.; De’ Donato, F.K.; Bargagli, A.M.; D’Ippoliti, D.; De Sario, M.; Marino, C.; Schifano, P.; Cappai, G.; Leone, M.; Kirchmayer, U.; et al. Surveillance of Summer Mortality and Preparedness to Reduce the Health Impact of Heat Waves in Italy. Int. J. Environ. Res. Public. Health 2010, 7, 2256–2273. [Google Scholar] [CrossRef] [PubMed]
- De’Donato; Leone, M.; Stafoggia, M.; Marino, C.; Fabrizi, R.; Michelozzi, P. Urban Heat Island and Socio-Economic Position as Factors that Increase the Risk of Heat-Related Mortality in Rome, Italy. ISEE Conf. Abstr. 2011. [Google Scholar] [CrossRef]
- Conti, S.; Masocco, M.; Meli, P.; Minelli, G.; Palummeri, E.; Solimini, R.; Toccaceli, V.; Vichi, M. General and Specific Mortality among the Elderly during the 2003 Heat Wave in Genoa (Italy). Environ. Res. 2007, 103, 267–274. [Google Scholar] [CrossRef]
- Morabito, M.; Crisci, A.; Gioli, B.; Gualtieri, G.; Toscano, P.; Stefano, V.D.; Orlandini, S.; Gensini, G.F. Urban-Hazard Risk Analysis: Mapping of Heat-Related Risks in the Elderly in Major Italian Cities. PLoS ONE 2015, 10, e0127277. [Google Scholar] [CrossRef] [Green Version]
- Alaimo, L.S.; Ivaldi, E.; Landi, S.; Maggino, F. Measuring and Evaluating Socio-Economic Inequality in Small Areas: An Application to the Urban Units of the Municipality of Genoa. Socioecon. Plann. Sci. 2021, 101170. [Google Scholar] [CrossRef]
- Contiero, P.; Tagliabue, G.; Tittarelli, A.; Bertoldi, M.; Tresoldi, C.; Barigelletti, G.; Perotti, V.; Balbo, V.; Rizzieri, S.; D’Orazi, M.; et al. Municipality Data as a Rapid and Effective Tool to Analyse Spatial and Temporal Variations of All-Cause Mortality by Town District: The Experience in Genoa (Italy). Int. J. Environ. Res. Public. Health 2021, 18, 8250. [Google Scholar] [CrossRef]
- Vercelli, M.; Lillini, R. Application of Socio-Economic and Health Deprivation Indices to Study the Relationships between Socio-Economic Status and Disease Onset and Outcome in a Metropolitan Area Subjected to Aging, Demographic Fall and Socio-Economic Crisis. J. Prev. Med. Hyg. 2021, 62, E718–E727. [Google Scholar] [CrossRef]
- Ministero della Salute Piano Nazionale per la Prevenzione Degli Effetti Del Caldo Sulla Salute. Available online: https://www.salute.gov.it/portale/caldo/dettaglioContenutiCaldo.jsp?area=emergenzaCaldo&id=408&lingua=italiano&menu=vuoto (accessed on 14 February 2022).
- De’Donato, F.; Scortichini, M.; De Sario, M.; de Martino, A.; Michelozzi, P. Temporal Variation in the Effect of Heat and the Role of the Italian Heat Prevention Plan. Public Health 2018, 161, 154–162. [Google Scholar] [CrossRef]
- Ccm Adattamento e Mitigazione Ai Cambiamenti CLIMAtici: IntervenTI Urbani per La PromOzioNe Della Salute—CLIMACTIONS CCM—Network. Available online: https://www.ccm-network.it/progetto.jsp?id=node/2021&idP=740 (accessed on 14 February 2022).
- Macintyre, H.L.; Heaviside, C. Potential Benefits of Cool Roofs in Reducing Heat-Related Mortality during Heatwaves in a European City. Environ. Int. 2019, 127, 430–441. [Google Scholar] [CrossRef] [PubMed]
- WHO. Urban Green Spaces and Health; World Health Organization, Regional Office for Europe: Copenhagen, Denmark, 2016. [Google Scholar]
- European Commission. Towards an EU Research and Innovation Policy Agenda for Nature-Based Solutions & Re-Naturing Cities: Final Report of the Horizon 2020 Expert Group on ’Nature Based Solutions and Re Naturing Cities’: (Full Version); Publications Office of the European Union: Louxemburg, 2015; ISBN 978-92-79-46051-7. [Google Scholar]
- EEA. EEA Report No 1/2021, Nature-Based Solutions in Europe. Available online: https://www.eea.europa.eu/publications/nature-based-solutions-in-europe (accessed on 26 November 2021).
- Gago, E.J.; Roldan, J.; Pacheco-Torres, R.; Ordóñez, J. The City and Urban Heat Islands: A Review of Strategies to Mitigate Adverse Effects. Renew. Sustain. Energy Rev. 2013, 25, 749–758. [Google Scholar] [CrossRef]
- Lee, H.; Mayer, H.; Chen, L. Contribution of Trees and Grasslands to the Mitigation of Human Heat Stress in a Residential District of Freiburg, Southwest Germany. Landsc. Urban Plan. 2016, 148, 37–50. [Google Scholar] [CrossRef]
- Cohen-Shacham, E.; Walters, G.; Janzen, C.; Maginnis, S. (Eds.) Nature-Based Solutions to Address Global Societal Challenges; IUCN International Union for Conservation of Nature: Gland, Switzerland, 2016; ISBN 978-2-8317-1812-5. [Google Scholar]
- Sowińska-Świerkosz, B.; García, J. What Are Nature-Based Solutions (NBS)? Setting Core Ideas for Concept Clarification. Nat.Based Solut. 2022, 2, 100009. [Google Scholar] [CrossRef]
- Morakinyo, T.E.; Kong, L.; Lau, K.K.-L.; Yuan, C.; Ng, E. A Study on the Impact of Shadow-Cast and Tree Species on in-Canyon and Neighborhood’s Thermal Comfort. Build. Environ. 2017, 115, 1–17. [Google Scholar] [CrossRef]
- Perini, K.; Chokhachian, A.; Auer, T. Green Streets to Enhance Outdoor Comfort. In Nature Based Strategies for Urban and Building Sustainability; Elsevier: Amsterdam, The Netherlands, 2018; pp. 119–129. ISBN 978-0-12-812150-4. [Google Scholar]
- Pereira, P.; Inácio, M.; Karnauskaitė, D.; Bogdzevič, K.; Gomes, E.; Kalinauskas, M.; Barcelo, D. Nature-Based Solutions Impact on Urban Environment Chemistry: Air, Soil, and Water. In The Handbook of Environmental Chemistry; Springer: Berlin/Heidelberg, Germany, 2021. [Google Scholar]
- Davies, H.J.; Doick, K.J.; Hudson, M.D.; Schreckenberg, K. Challenges for Tree Officers to Enhance the Provision of Regulating Ecosystem Services from Urban Forests. Environ. Res. 2017, 156, 97–107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnson, L.; Handel, S. Restoration Treatments in Urban Park Forests Drive Long-Term Changes in Vegetation Trajectories. Ecol. Appl. 2016, 26, 940–956. [Google Scholar] [CrossRef]
- Von Döhren, P.; Haase, D. Risk Assessment Concerning Urban Ecosystem Disservices: The Example of Street Trees in Berlin, Germany. Ecosyst. Serv. 2019, 40, 101031. [Google Scholar] [CrossRef]
- Tian, Y.; Wu, H.; Zhang, G.; Wang, L.; Zheng, D.; Li, S. Perceptions of Ecosystem Services, Disservices and Willingness-to-Pay for Urban Green Space Conservation. J. Environ. Manag. 2020, 260, 110140. [Google Scholar] [CrossRef]
- Boselli, M. Ecosistemi Urbani Ed Adattabilità Delle Specie Vegetali. Acer 1989, 6, 15–19. [Google Scholar]
- Noè, N. Ambiente Urbano e Adattabilità Della Specie. Folia di Acer 1996, 2, a9–a11. [Google Scholar]
- Santamouris, M.; Synnefa, A.; Karlessi, T. Using Advanced Cool Materials in the Urban Built Environment to Mitigate Heat Islands and Improve Thermal Comfort Conditions. Sol. Energy 2011, 85, 3085–3102. [Google Scholar] [CrossRef]
- Carnielo, E.; Zinzi, M. Optical and Thermal Characterisation of Cool Asphalts to Mitigate Urban Temperatures and Building Cooling Demand. Build. Environ. 2013, 60, 56–65. [Google Scholar] [CrossRef]
- Doulos, L.; Santamouris, M.; Livada, I. Passive Cooling of Outdoor Urban Spaces. The Role of Materials. Sol. Energy 2004, 77, 231–249. [Google Scholar] [CrossRef]
- Akbari, H.; Matthews, H.D. Global Cooling Updates: Reflective Roofs and Pavements. Energy Build. 2012, 55, 2–6. [Google Scholar] [CrossRef]
- Faragallah, R.N.; Ragheb, R.A. Evaluation of Thermal Comfort and Urban Heat Island through Cool Paving Materials Using ENVI-Met. Ain Shams Eng. J. 2022, 13, 101609. [Google Scholar] [CrossRef]
- Qin, Y. A Review on the Development of Cool Pavements to Mitigate Urban Heat Island Effect. Renew. Sustain. Energy Rev. 2015, 52, 445–459. [Google Scholar] [CrossRef]
- Tsoka, S.; Tsikaloudaki, A.; Theodosiou, T. Analyzing the ENVI-Met Microclimate Model’s Performance and Assessing Cool Materials and Urban Vegetation Applications–A Review. Sustain. Cities Soc. 2018, 43, 55–76. [Google Scholar] [CrossRef]
- Liu, Z.; Cheng, W.; Jim, C.Y.; Morakinyo, T.E.; Shi, Y.; Ng, E. Heat Mitigation Benefits of Urban Green and Blue Infrastructures: A Systematic Review of Modeling Techniques, Validation and Scenario Simulation in ENVI-Met V4. Build. Environ. 2021, 200, 107939. [Google Scholar] [CrossRef]
- Alsaad, H.; Hartmann, M.; Hilbel, R.; Voelker, C. ENVI-Met Validation Data Accompanied with Simulation Data of the Impact of Facade Greening on the Urban Microclimate. Data Brief 2022, 42, 108200. [Google Scholar] [CrossRef]
- Morakinyo, T.E.; Lam, Y.F. Simulation Study on the Impact of Tree-Configuration, Planting Pattern and Wind Condition on Street-Canyon’s Micro-Climate and Thermal Comfort. Build. Environ. 2016, 103, 262–275. [Google Scholar] [CrossRef]
- Yilmaz, S.; Mutlu, B.E.; Aksu, A.; Mutlu, E.; Qaid, A. Street Design Scenarios Using Vegetation for Sustainable Thermal Comfort in Erzurum, Turkey. Environ. Sci. Pollut. Res. 2021, 28, 3672–3693. [Google Scholar] [CrossRef] [PubMed]
- McRae, I.; Freedman, F.; Rivera, A.; Li, X.; Dou, J.; Cruz, I.; Ren, C.; Dronova, I.; Fraker, H.; Bornstein, R. Integration of the WUDAPT, WRF, and ENVI-Met Models to Simulate Extreme Daytime Temperature Mitigation Strategies in San Jose, California. Build. Environ. 2020, 184, 107180. [Google Scholar] [CrossRef]
- Gusson, C.S.; Duarte, D.H.S. Effects of Built Density and Urban Morphology on Urban Microclimate—Calibration of the Model ENVI-Met V4 for the Subtropical Sao Paulo, Brazil. Procedia Eng. 2016, 169, 2–10. [Google Scholar] [CrossRef]
- Cortes, A.; Rejuso, A.J.; Santos, J.A.; Blanco, A. Evaluating Mitigation Strategies for Urban Heat Island in Mandaue City Using ENVI-Met. J. Urban Manag. 2022, 11, 97–106. [Google Scholar] [CrossRef]
- Yang, J.; Hu, X.; Feng, H.; Marvin, S. Verifying an ENVI-Met Simulation of the Thermal Environment of Yanzhong Square Park in Shanghai. Urban For. Urban Green. 2021, 66, 127384. [Google Scholar] [CrossRef]
- Qaid, A.; Ossen, D.R. Effect of Asymmetrical Street Aspect Ratios on Microclimates in Hot, Humid Regions. Int. J. Biometeorol. 2015, 59, 657–677. [Google Scholar] [CrossRef]
- Lobaccaro, G.; Acero, J.A. Comparative Analysis of Green Actions to Improve Outdoor Thermal Comfort inside Typical Urban Street Canyons. Urban Clim. 2015, 14, 251–267. [Google Scholar] [CrossRef]
- Crank, P.J.; Sailor, D.J.; Ban-Weiss, G.; Taleghani, M. Evaluating the ENVI-Met Microscale Model for Suitability in Analysis of Targeted Urban Heat Mitigation Strategies. Urban Clim. 2018, 26, 188–197. [Google Scholar] [CrossRef]
- Huttner, S. Further Development and Application of the 3D Microclimate Simulation ENVI-Met. Ph.D. Thesis, Johannes Gutenberg-Universität Mainz, Mainz, Germany, 2012. [Google Scholar]
- Simon, H. Modeling Urban Microclimate: Development, Implementation and Evaluation of New and Improved Calculation Methods for the Urban Microclimate Model ENVI-Met. Ph.D. Thesis, Johannes Gutenberg-Universität Mainz, Mainz, Germany, 2016. [Google Scholar]
- Yilmaz, S.; Külekçi, E.A.; Mutlu, B.E.; Sezen, I. Analysis of Winter Thermal Comfort Conditions: Street Scenarios Using ENVI-Met Model. Environ. Sci. Pollut. Res. 2021, 28, 63837–63859. [Google Scholar] [CrossRef]
- Liu, Z.; Zheng, S.; Zhao, L. Evaluation of the ENVI-Met Vegetation Model of Four Common Tree Species in a Subtropical Hot-Humid Area. Atmosphere 2018, 9, 198. [Google Scholar] [CrossRef] [Green Version]
- Comune di Genova I Municipi Comune Di Genova. Available online: http://www.comune.genova.it/content/i-municipi-del-comune-di-genova (accessed on 1 February 2022).
- Comune di Genova Comune Di Genova. Available online: http://statistica.comune.genova.it/municipi/municipi.php (accessed on 1 February 2022).
- ISTAT ISTAT Indicatori Demografici. Available online: http://dati.istat.it/viewhtml.aspx?il=blank&vh=0000&vf=0&vcq=1100&graph=0&view-metadata=1&lang=it&QueryId=18462# (accessed on 1 February 2022).
- Mosca, F.; Dotti Sani, G.M.; Giachetta, A.; Perini, K. Nature-Based Solutions: Thermal Comfort Improvement and Psychological Wellbeing, a Case Study in Genoa, Italy. Sustainability 2021, 13, 11638. [Google Scholar] [CrossRef]
- Comune di Genova Regolamento Comunale del Verde. Available online: https://smart.comune.genova.it/node/945 (accessed on 10 March 2022).
- MATTM. Linee Guida per La Gestione Del Verde Urbano e Prime Indicazioni per Una Pianificazione Sostenibile; MATTM: Roma, Italy, 2017. [Google Scholar]
- Lin, B.B.; Philpott, S.M.; Jha, S. The Future of Urban Agriculture and Biodiversity-Ecosystem Services: Challenges and next Steps. Basic Appl. Ecol. 2015, 16, 189–201. [Google Scholar] [CrossRef]
- Didham, R.; Ewers, R. Edge Effects Disrupt Vertical Stratification of Microclimate in a Temperate Forest Canopy. Pac. Sci. 2014, 68, 493–508. [Google Scholar] [CrossRef]
- European Union. EU Regolamento (UE) N. 1143/2014 Del Parlamento Europeo E Del Consiglio Del 22 Ottobre 2014 Recante Disposizioni Volte a Prevenire e Gestire l’introduzione e La Diffusione Delle Specie Esotiche Invasive; European Union: Maastricht, The Netherlands, 2014. [Google Scholar]
- MITE Decreto Legislativo 15 Dicembre 2017, n. 230-Adeguamento Della Normativa Nazionale Alle Disposizioni Del Regolamento (UE) n. 1143/2014 Del Parlamento Europeo e Del Consiglio Del 22 Ottobre 2014 Ministero Della Transizione Ecologica. Available online: https://www.mite.gov.it/normative/decreto-legislativo-15-dicembre-2017-n-230-adeguamento-della-normativa-nazionale-alle (accessed on 9 March 2022).
- Locosselli, G.M.; de Camargo, E.P.; Moreira, T.C.L.; Todesco, E.; de Andrade, M.F.; de André, C.D.S.; de André, P.A.; Singer, J.M.; Ferreira, L.S.; Saldiva, P.H.N.; et al. The Role of Air Pollution and Climate on the Growth of Urban Trees. Sci. Total Environ. 2019, 666, 652–661. [Google Scholar] [CrossRef]
- Di Napoli, C.; Pappenberger, F.; Cloke, H.L. Assessing Heat-Related Health Risk in Europe via the Universal Thermal Climate Index (UTCI). Int. J. Biometeorol. 2018, 62, 1155–1165. [Google Scholar] [CrossRef] [Green Version]
- Blazejczyk, K.; Jendritzky, G.; Broede, P.; Fiala, D.; Havenith, G.; Epstein, Y.; Psikuta, A.; Kampmann, B. An Introduction to the Universal Thermal Climate Index (UTCI). Geogr. Pol. 2013, 86, 5–10. [Google Scholar] [CrossRef] [Green Version]
- Mipaaf Mipaaf-Progetto Qualiviva. Available online: https://www.politicheagricole.it/flex/cm/pages/ServeBLOB.php/L/IT/IDPagina/9785 (accessed on 1 March 2022).
- Zhang, L.; Zhan, Q.; Lan, Y. Effects of the Tree Distribution and Species on Outdoor Environment Conditions in a Hot Summer and Cold Winter Zone: A Case Study in Wuhan Residential Quarters. Build. Environ. 2018, 130, 27–39. [Google Scholar] [CrossRef]
- Taleghani, M.; Kleerekoper, L.; Tenpierik, M.; van den Dobbelsteen, A. Outdoor Thermal Comfort within Five Different Urban Forms in the Netherlands. Build. Environ. 2015, 83, 65–78. [Google Scholar] [CrossRef]
- Yilmaz, S.; Mutlu, E.; Yilmaz, H. Alternative Scenarios for Ecological Urbanizations Using ENVI-Met Model. Environ. Sci. Pollut. Res. 2018, 25, 26307–26321. [Google Scholar] [CrossRef]
- Gatto, E.; Buccolieri, R.; Aarrevaara, E.; Ippolito, F.; Emmanuel, R.; Perronace, L.; Santiago, J.L. Impact of Urban Vegetation on Outdoor Thermal Comfort: Comparison between a Mediterranean City (Lecce, Italy) and a Northern European City (Lahti, Finland). Forests 2020, 11, 228. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Zhao, J.; Xu, M.; Ahmadian, E. Effects of Landscape Patterns on the Summer Microclimate and Human Comfort in Urban Squares in China. Sustain. Cities Soc. 2021, 73, 103099. [Google Scholar] [CrossRef]
- Zheng, S.; Zhao, L.; Li, Q. Numerical Simulation of the Impact of Different Vegetation Species on the Outdoor Thermal Environment. Urban For. Urban Green. 2016, 18, 138–150. [Google Scholar] [CrossRef]
- Fang, Z.; Lin, Z.; Mak, C.M.; Niu, J.; Tse, K.T. Investigation into Sensitivities of Factors in Outdoor Thermal Comfort Indices. Build. Environ. 2018, 128, 129–142. [Google Scholar] [CrossRef]
- Maggiotto, G.; Buccolieri, R.; Santo, M.A.; Leo, L.S.; Di Sabatino, S. Validation of Temperature-Perturbation and CFD-Based Modelling for the Prediction of the Thermal Urban Environment: The Lecce (IT) Case Study. Environ. Model. Softw. 2014, 60, 69–83. [Google Scholar] [CrossRef]
- Ng, E.; Chen, L.; Wang, Y.; Yuan, C. A Study on the Cooling Effects of Greening in a High-Density City: An Experience from Hong Kong. Build. Environ. 2012, 47, 256–271. [Google Scholar] [CrossRef]
- Berardi, U.; Jandaghian, Z.; Graham, J. Effects of Greenery Enhancements for the Resilience to Heat Waves: A Comparison of Analysis Performed through Mesoscale (WRF) and Microscale (Envi-Met) Modeling. Sci. Total Environ. 2020, 747, 141300. [Google Scholar] [CrossRef]
- Abu Ali, M.; Alawadi, K.; Khanal, A. The Role of Green Infrastructure in Enhancing Microclimate Conditions: A Case Study of a Low-Rise Neighborhood in Abu Dhabi. Sustainability 2021, 13, 4260. [Google Scholar] [CrossRef]
- Perini, K.; Chokhachian, A.; Dong, S.; Auer, T. Modeling and Simulating Urban Outdoor Comfort: Coupling ENVI-Met and TRNSYS by Grasshopper. Energy Build. 2017, 152, 373–384. [Google Scholar] [CrossRef]
Requirement | Description |
---|---|
Resistance to drought * | Herbaceous, shrubby, and arboreal plants to reduce water consumption adapted to conditions of aridity and lack of water. |
Resistance to pathogens ** | Herbaceous, shrubby, and tree species resistant to diseases and pests, resulting in a reduction in the use of plant pesticides. |
Resistance to pollutants | High resistance to water, soil, and air pollutants by roots and shoots. |
Resistance to soil stress ** | Plants that can tolerate stress factors in urban environments (scarcity and poor soil quality, soil compaction). |
Climate coherence * | Consistent with the climatic zone of planting (evergreen species of Mediterranean scrub or similar). |
Deciduous/evergreen species | To promote the sequestration of pollutants even during winter and constant shade (pollutant sequestration) even during winter (30–50%). |
Entomophilous reproductive strategy * | Herbaceous, shrubby, and arboreal species to promote pollination by insects and nutrient species on which pollinators may feed, thus increasing the biodiversity. |
Maintenance | Low maintenance requirements after planting. |
Ecosystem disservices *,** | Herbaceous, shrubby, and arboreal species that do not present allergenic, toxic, stinging properties or species that are densely thorny or have a high tendency to dirty. |
Scenario 1 | Scenario 2 | Scenario 3 | |
---|---|---|---|
Layout plan | |||
Plant typology |
|
|
|
Surface material | Light concrete pavement | Light concrete pavement | Light concrete pavement |
Time | AT (°C) | RH (%) | WS (m/s) | WD |
---|---|---|---|---|
00:00 | 30.8 | 44 | 1.7 | 20 |
1:00 | 31.3 | 40 | 1.9 | 51 |
2:00 | 31 | 39 | 0.7 | 350 |
3:00 | 30.9 | 39 | 0.9 | 359 |
4:00 | 30 | 43 | 0.9 | 306 |
5:00 | 29.5 | 44 | 0.9 | 3 |
6:00 | 29.4 | 43 | 0.9 | 34 |
7:00 | 29.7 | 43 | 0.7 | 6 |
8:00 | 31.1 | 39 | 0.4 | 152 |
9:00 | 32.1 | 36 | 0.8 | 213 |
10:00 | 32.4 | 35 | 1.3 | 225 |
11:00 | 31.1 | 44 | 1.4 | 220 |
12:00 | 31.9 | 41 | 1.6 | 224 |
13:00 | 32.8 | 35 | 1.7 | 223 |
14:00 | 33.1 | 39 | 1.9 | 219 |
15:00 | 33.5 | 36 | 2.4 | 226 |
16:00 | 34.2 | 27 | 2.7 | 225 |
17:00 | 34 | 26 | 2.5 | 222 |
18:00 | 33.6 | 27 | 2.4 | 222 |
19:00 | 32.8 | 29 | 1.1 | 234 |
20:00 | 32.7 | 29 | 0.6 | 20 |
21:00 | 32 | 29 | 1.3 | 35 |
22:00 | 31.7 | 29 | 1.1 | 355 |
23:00 | 31.1 | 30 | 0.9 | 36 |
ENVI-Met Existing Database | New Project Database |
---|---|
Resistance to Drought | Resistance to Pathogens | Resistance to Pollutants | Resistance to Soil Stress | Climate Coherence | Deciduous/Evergreen | Entomophilous Reproductive Strategy | Maintenance | Ecosystem Disservices | Selected and Used in Scenarios | |
---|---|---|---|---|---|---|---|---|---|---|
Tree Species | ||||||||||
Albizia julibrissin Durazz. | High * | High * | High * | Medium * | No | Deciduous * | Yes | High * | No | - |
Ceratonia siliqua L. | High * | High * | Medium * | High * | Yes | Evergreen * | Yes | Medium * | No | - |
Cercis siliquastrum L. | High * | High * | Medium * | Medium * | Yes | Deciduous * | Yes | Low * | No | 1; 2 |
Jacaranda mimosifolia D.Don | High * | High * | Medium * | High * | No | Evergreen * | Yes | Medium * | No | 3 |
Koelreuteria paniculata Laxm | Medium * | High * | High * | Medium * | No | Deciduous * | Yes | Medium * | No | - |
Schinus molle L. | High * | High * | Medium * | High * | No | Evergreen * | Yes | Medium * | Yes | - |
Shrub Species | ||||||||||
Cistus monspeliensis L. | High | High | High | High | Yes | Evergreen | Yes | Low | No | 3 |
Teucrium fruticans L. | High | High | High | High | Yes | Evergreen | Yes | Low | No | - |
Jacobaea maritima (L.) Pelser & Meijden | High | High | Medium | High | Yes | Evergreen | Yes | Low | No | - |
Lavandula angustifolia L. | High | High | High | Medium | Yes | Evergreen | Yes | Low | No | - |
Phillyrea angustifolia L. | High | High | High | High | Yes | Evergreen | Yes | Medium | No | 2; 3 |
Pistacia lentiscus L. | High | High | High | High | Yes | Evergreen | Yes | Medium | No | 2; 3 |
Polygala myrtifolia L. | High | High | High | Medium | No | Evergreen | Yes | Low | No | - |
Salvia rosmarinus Spenn. | High | High | High | High | Yes | Evergreen | Yes | Low | No | - |
Viburnum tinus L. | High | High | High | Medium | Yes | Evergreen | Yes | Medium | No | 2; 3 |
Herbaceous Species | ||||||||||
Centranthus ruber (L.) DC | High | High | High | High | Yes | - | Yes | Low | No | - |
Festuca glauca Blaufuchs | High | High | High | High | No | - | Yes | Low | No | 3 |
Salvia leucantha “Waverly” Cav. | High | Medium | Medium | Medium | No | - | Yes | Low | No | 2; 3 |
Climbers | ||||||||||
Hedera helix L. | High | High | High | High | Yes | Evergreen | Yes | Medium | No | 1; 3 |
Hedera hibernica (G. Kirchn.) bean | High | High | High | High | No | Evergreen | Yes | Medium | No | - |
Ficus pumila L. | High | High | Medium | Medium | No | Evergreen | Yes | Medium | No | - |
Current State | Scenario 1 | Scenario 2 | Scenario 3 | Legend | |
---|---|---|---|---|---|
Air temperature | Min: 33.42 °C Max: 34.43 °C | Min: 32.19 °C Max: 32.62 °C | Min: 32.25 °C Max: 32.82 °C | Min: 32.42 °C Max: 33.09 °C | |
Mean radiant temperature | Min: 65.66 °C Max: 70.06 °C | Min: 53.41 °C Max: 68.40 °C | Min: 49.41 °C Max: 68.97 °C | Min: 48.42 °C Max: 68.75 °C | |
Relative humidity | Min: 36.53% Max: 39.23% | Min: 40.26% Max: 42.98% | Min: 40.31 Max: 43.99% | Min: 40.44% Max: 44.78% | |
Wind speed | Min: 0.62 m/s Max: 1.08 m/s | Min: 0.44 m/s Max: 1.02 m/s | Min: 0.36 m/s Max: 0.98 m/s | Min: 0.32 m/s Max: 0.98 m/s | |
UTCI | Min: 41.27 °C Max: 42.05 °C | Min: 37.91 °C Max: 41.38 °C | Min: 36.67 °C Max: 41.63 °C | Min: 36.59 °C Max: 41.73 °C |
Parameter | Scenario | ||
---|---|---|---|
1 | 2 | 3 | |
Air temperature (°C) | 32.48 ± 0.03 a | 32.59 ± 0.05 b | 32.73 ± 0.01 c |
Mean radiant temperature (°C) | 60.16 ± 5.99 a | 58.13 ± 5.65 a | 42.80 ± 0.96 b |
Relative humidity (%) | 41.78 ± 0.18 a | 43.21 ± 0.34 b | 41.93 ± 0.08 a |
Wind speed (m/s) | 0.77 ± 0.04 a | 0.64 ± 0.07 b | 0.49 ± 0.03 c |
UTCI (°C) | 39.17 ± 0.69 a | 38.94 ± 0.71 a | 35.13 ± 0.39 b |
herbaceous layer (%) | 9.70 ± 0.02 a | 25.19 ± 0.02 b | 37.45 ± 0.02 c |
shrub layer (%) | 0.00 a | 3.39 ± 0.02 b | 6.96 ± 0.02 c |
tree layer (%) | 32.91 ± 0.05 a | 32.89 ± 0.02 a | 51.87 ± 0.02 b |
Total plant coverage (%) | 42.57 ± 0.02 a | 61.43 ± 0.02 b | 96.25 ± 0.02 c |
Parameter | Herbaceous Layer (%) | Shrub Layer (%) | Tree Layer (%) | Total Plant Coverage (%) |
---|---|---|---|---|
Air temperature (°C) | 0.96 ** | 0.96 ** | 0.86 ** | 0.96 ** |
Mean radiant temperature (°C) | −0.77 ** | −0.81 ** | −0.87 ** | −0.85 ** |
Relative humidity (%) | 0.16 | 0.08 | −0.39 | −0.07 |
Wind speed (m/s) | −0.93 ** | −0.94 ** | −0.83 ** | −0.93 ** |
UTCI (°C) | −0.82 ** | −0.86 ** | −0.96 ** | −0.91 ** |
Parameter | Standard (Default Parameters) | Re-Parametrised | p | Point |
---|---|---|---|---|
Air temperature (°C) | 32.56 ± 0.03 | 32.73 ± 0.01 | 0.000001 | A |
32.37 ± 0.04 | 32.46 ± 0.03 | 0.005 | B | |
mean radiant temperature (°C) | 49.07 ± 2.08 | 42.81 ± 0.96 | 0.0003 | A |
43.31 ± 2.66 | 42.62 ± 0.87 | 0.60 | B | |
Relative humidity (%) | 42.03 ± 0.18 | 41.93 ± 0.08 | 0.65 | A |
43.90 ± 0.18 | 43.99 ± 0.25 | 0.55 | B | |
Wind speed (m/s) | 0.64 ± 0.04 | 0.49 ± 0.03 | 0.0001 | A |
0.62 ± 0.09 | 0.55 ± 0.08 | 0.25 | B | |
UTCI (°C) | 36.59 ± 0.65 | 35.13 ± 0.39 | 0.003 | A |
35.02 ± 0.81 | 34.86 ± 0.37 | 0.71 | B |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Perini, K.; Calise, C.; Castellari, P.; Roccotiello, E. Microclimatic and Environmental Improvement in a Mediterranean City through the Regeneration of an Area with Nature-Based Solutions: A Case Study. Sustainability 2022, 14, 5847. https://doi.org/10.3390/su14105847
Perini K, Calise C, Castellari P, Roccotiello E. Microclimatic and Environmental Improvement in a Mediterranean City through the Regeneration of an Area with Nature-Based Solutions: A Case Study. Sustainability. 2022; 14(10):5847. https://doi.org/10.3390/su14105847
Chicago/Turabian StylePerini, Katia, Chiara Calise, Paola Castellari, and Enrica Roccotiello. 2022. "Microclimatic and Environmental Improvement in a Mediterranean City through the Regeneration of an Area with Nature-Based Solutions: A Case Study" Sustainability 14, no. 10: 5847. https://doi.org/10.3390/su14105847