Improving Oil Recovery of the Heterogeneous Low Permeability Reservoirs by Combination of Polymer Hydrolysis Polyacrylamide and Two Highly Biosurfactant-Producing Bacteria
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Strains
2.2. Assays of P. aeruginosa 8D and B. subtilis S4 Oil-Displacement and Biosurfactant Production
2.3. The Preparation of MMODA and Performance Evaluation
2.3.1. The Preparation of MMODA
2.3.2. Emulsion Activity Assay
2.3.3. Surface Tension and Interfacial Tension
2.3.4. Displacement Efficiency of Oil Sand
- R—Displacement efficiency, %
- M0—Weight of empty beaker, g
- M1—Weight of remaining oil sand and empty beaker, g
2.3.5. Degradation of Crude Oil
2.3.6. Temperature Effects on MMODA
2.3.7. Salt Effects on MMODA
2.4. HPAM-MMODA Compatibility
2.5. Core Flooding Experiment
3. Results
3.1. Oil-Displacement and Biosurfactant Analysis of P. aeruginosa 8D and B. subtilis S4
3.2. The Preparation of MMODA and the Evaluation of Oil-Displacement Performance
3.3. Compatibility Assay of HPAM and b-MMODA
3.4. Core Flooding Experiment
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Alvarado, V.; Manrique, E. Enhanced Oil Recovery: An Update Review. Energies 2010, 3, 1529–1575. [Google Scholar] [CrossRef]
- Cao, J.; Song, T.; Zhu, Y.; Wang, S.; Wang, X.; Lv, F.; Jiang, L.; Sun, M. Application of Amino-Functionalized Nanosilica in Improving the Thermal Stability of Acrylamide-Based Polymer for Enhanced Oil Recovery. Energy Fuels 2018, 32, 246–254. [Google Scholar] [CrossRef]
- Maurya, N.K.; Kushwaha, P.; Mandal, A. Studies on interfacial and rheological properties of water soluble polymer grafted nanoparticle for application in enhanced oil recovery—ScienceDirect. J. Taiwan Inst. Chem. Eng. 2017, 70, 319–330. [Google Scholar] [CrossRef]
- Intek, I.J.A.R. Review of Emerging Resources: U. S. Shale Gas and Shale Oil Plays. In All Reports & Publications; U.S. Department of Eneergy: Washington, DC, USA, 2011. [Google Scholar]
- Dongkun, L.; Youjin, D. China’s low-permeability gas resources await development. Oil Gas J. 2009, 107, 37–39. [Google Scholar]
- Zhang, N. Development Characteristics and Development Technology Analysis of Low Permeability Oilfield. J. Phys. Conf. Ser. 2020, 1649, 012021–012025. [Google Scholar] [CrossRef]
- Song, H.; Huang, X.; Lou, Y. Study on the effect of fracture characteristics to ultra-low permeability reservoirs development. In Proceedings of the 2011 Second International Conference on Mechanic Automation and Control Engineering, Inner Mongolia, China, 15–17 July 2011; pp. 3559–3562. [Google Scholar]
- Bai, Y.B.; Zhang, Q. Characteristics and assessment of the Chang 2 low permeability sandstone reservoir in the Dingbian oilfield of Ordos Basin. Tezhong Youqicang Spec. Oil Gas Reserv. 2011, 18, 56–59. [Google Scholar]
- Sheng, J.; Leonhardt, B.; Al Azri, N.S. Status of Polymer-Flooding Technology. J. Can. Pet. Technol. 2015, 54, 116–126. [Google Scholar] [CrossRef]
- Wang, C.W. Discussion on the Application of EOR Technology in Oil Field. J. Phys. Conf. Ser. 2020, 1533, 022083. [Google Scholar] [CrossRef]
- Wang, Y.L.; Li, T.; Fu, Z.G.; Liu, S.X.; Yu, B.L.; Sun, S.Y. The Research on Effect Factors of the Polymer Flooding in Low Permeability Reservoir of Daqing Oilfield. Adv. Mater. Res. 2011, 383–390, 3809–3813. [Google Scholar] [CrossRef]
- Yan, H.; Wei, J.; Li, M.; Zhang, M.; Zhang, J.; Zhang, Q. Application of polymer microsphere flooding in L1 block of Jiyuan Oilfield. Petrochem. Ind. Technol. 2018, 4, 187–189. [Google Scholar]
- Cui, C.; Zhou, Z.; He, Z. Engineering. Enhance oil recovery in low permeability reservoirs: Optimization and evaluation of ultra-high molecular weight HPAM/phenolic weak gel system. J. Pet. Sci. Eng. 2020, 195, 107908. [Google Scholar] [CrossRef]
- Zhang, L.; Khan, N.; Pu, C. A New Method of Plugging the Fracture to Enhance Oil Production for Fractured Oil Reservoir using Gel Particles and the HPAM/Cr3+ System. Polymer 2019, 11, 446. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kamal, M.S.; Sultan, A.; Al-Mubaiyedh, U.A.; Hussein, I.A. Review on Polymer Flooding: Rheology, Adsorption, Stability, and Field Applications of Various Polymer Systems. Polym. Rev. 2015, 55, 491–530. [Google Scholar] [CrossRef]
- Feng, R.; Xue, S.; Chen, J.; Guo, Y.; Pu, D. Synthesis and solution properties of alkali-soluble hydrophobically associating terpolymer P(AM/AA/BEM). Oilfield Chem. 2017, 34, 165–170. [Google Scholar]
- Wang, W.; Lu, X. Property Evaluation of Eor [Enhanced Oil Recovery] Technology by Means of Expansive Granular Crosslinked Polymer. In Proceedings of the SPE Production and Operations Symposium, Oklahoma City, OK, USA, 4 April 2009. [Google Scholar] [CrossRef]
- Wang, W.; Yue, X.-A.; Chen, Y.-X. A Laboratory Feasibility Study of Surfactant-Polymer Combinational Flooding in Low Permeability Reservoirs. J. Dispers. Sci. Technol. 2013, 34, 639–643. [Google Scholar] [CrossRef]
- Fan, Z.; Wang, M.; Jigang, J.; Wang, X. Study on Oil Displacement Efficiency of Binary Compound Flooding in Heterogeneous Reservoir. Energy Power Eng. 2015, 7, 571–574. [Google Scholar] [CrossRef] [Green Version]
- Corredor, L.M.; Aliabadian, E.; Husein, M.; Chen, Z.; Maini, B.; Sundararaj, U. Heavy oil recovery by surface modified silica nanoparticle/HPAM nanofluids. Fuel. 2019, 252, 622–634. [Google Scholar] [CrossRef]
- Eldeen, A.; Alhadi, A.; Mergani, M.A. Microbial Enhanced Oil Recovery (MEOR). Environmental Science. 2013. Available online: http://api.uofk.edu:8080/api/core/bitstreams/22b6c57f-2e5b-47ad-86b2-cbb0354e6c2c/content (accessed on 26 December 2021).
- She, H.; Kong, D.; Li, Y.; Hu, Z.; Guo, H. Recent Advance of Microbial Enhanced Oil Recovery (MEOR) in China. Geofluids 2019, 2019, 1871392. [Google Scholar] [CrossRef] [Green Version]
- Vishnyakov, V.; Suleimanov, B.; Salmanov, A.; Zeynalov, E. Microbial enhanced oil recovery (MEOR). In Primer on Enhanced Oil Recovery; Gulf Professional Publishing: Houston, TX, USA, 2020; pp. 161–169. [Google Scholar]
- Gudiña, E.J.; Pereira, J.F.; Rodrigues, L.R.; Coutinho, J.; Teixeira, J. Isolation and study of microorganisms from oil samples for application in Microbial Enhanced Oil Recovery. Int. Biodeterior. Biodegrad. 2012, 68, 56–64. [Google Scholar] [CrossRef] [Green Version]
- Patel, J.; Borgohain, S.; Kumar, M.; Rangarajan, V.; Somasundaran, P.; Sen, R. Recent developments in microbial enhanced oil recovery. Renew. Sustain. Energy Rev. 2015, 52, 1539–1558. [Google Scholar] [CrossRef]
- Mcinerney, M.J.; Marsh, T.L.; Zhang, X.; Knapp, R.M.; Nagle, D.P., Jr.; Sharma, P.K.; Jackson, B.E. Development of More Effective Biosurfactants for Enhanced Oil Recovery. Office of Scientific & Technical Information Technical Reports; U.S. Department of Energy: Tulsa, OK, USA, 2003.
- Halim, A.Y.; Nielsen, S.M.; Lantz, A.E.; Suicmez, V.S.; Lindeloff, N.; Shapiro, A. Investigation of spore forming bacterial flooding for enhanced oil recovery in a North Sea chalk Reservoir. J. Pet. Sci. Eng. 2015, 133, 444–454. [Google Scholar] [CrossRef]
- Wang, L.Y.; Gao, C.X.; Mbadinga, S.M.; Zhou, L.; Liu, J.F.; Gu, J.D.; Mu, B.Z. Characterization of an alkane-degrading methanogenic enrichment culture from production water of an oil reservoir after 274 days of incubation. Int. Biodeterior. Biodegrad. 2011, 65, 444–450. [Google Scholar] [CrossRef]
- Bi, Y.Q.; Yu, L.; Huang, L.X.; Ma, T.; Xiu, J.L.; Yi, L.N. Microscopic profile control mechanism and potential application of the biopolymer-producing strain FY-07 for microbial enhanced oil recovery. Pet. Sci. Technol. 2016, 34, 1952–1957. [Google Scholar] [CrossRef]
- Sakthipriya, N.; Doble, M.; Sangwai, J.S. Action of biosurfactant producing thermophilic Bacillus subtilis on waxy crude oil and long chain paraffins. Int. Biodeterior. Biodegrad. 2015, 105, 168–177. [Google Scholar] [CrossRef]
- Nie, M.; Yin, X.; Ren, C.; Wang, Y.; Xu, F.; Shen, Q. Novel rhamnolipid biosurfactants produced by a polycyclic aromatic hydrocarbon-degrading bacterium Pseudomonas aeruginosa strain NY3. Biotechnol. Adv. 2010, 28, 635–643. [Google Scholar] [CrossRef] [Green Version]
- Yin, H.; Qiang, J.; Jia, Y.; Ye, J.; Peng, H.; Qin, H.; Zhang, N.; He, B. Characteristics of biosurfactant produced by Pseudomonas aeruginosa S6 isolated from oil-containing wastewater. Process Biochem. 2009, 44, 302–308. [Google Scholar] [CrossRef]
- Pecci, Y.; Rivardo, F.; Martinotti, M.G.; Allegrone, G. LC/ESI-MS/MS characterisation of lipopeptide biosurfactants produced by the Bacillus licheniformis V9T14 strain. Biol. Mass Spectrom. 2010, 45, 772–778. [Google Scholar] [CrossRef]
- Gai, L.X.; Song, K.P. Ratio and Content of Rhamnolipid Determined using Sugar Development Process. Biotechnology 2010, 20, 33–37. [Google Scholar]
- Biniarz, P.; Łukaszewicz, M. Direct quantification of lipopeptide biosurfactants in biological samples via HPLC and UPLC-MS requires sample modification with an organic solvent. Appl. Microbiol. Biotechnol. 2017, 101, 4747–4759. [Google Scholar] [CrossRef]
- Cooper, D.G.; Goldenberg, B.G. Surface-Active Agents from Two Bacillus Species. Appl. Environ. Microbiol. 1987, 53, 224–229. [Google Scholar] [CrossRef] [Green Version]
- Zhang, F.; She, Y.H. Quantitative and qualitative analysis of biosurfactant by oil spreading method. Chem. Eng. 2005, 1, 1002–1124. [Google Scholar] [CrossRef]
- Tabatabaee, A.; Assadi, M.M.; Noohi, A.A.; Sajadian, V.A. Engineering. Isolation of Biosurfactant Producing Bacteria from Oil Reservoirs. J. Environ. Health Sci. Eng. 2005, 2, 6–12. [Google Scholar]
- Al-Bahry, S.; Al-Wahaibi, Y.; Elshafie, A.; Al-Bemani, A.; Joshi, S.; Al-Makhmari, H.; Al-Sulaimani, H. Biosurfactant production by Bacillus subtilis B20 using date molasses and its possible application in enhanced oil recovery. Int. Biodeterior. Biodegrad. 2013, 81, 141–146. [Google Scholar] [CrossRef]
- Mcinerney, M.J.; Jenneman, G.E.; Knapp, R.M. Biosurfactant and Enhanced Oil Recovery. U.S. Patent No. 4,522,261 A, 11 June 1985. [Google Scholar]
- Lopes, P.; Montagnolli, R.N.; Cruz, J.M.; Lovaglio, R.B.; Bidoia, E.D.J.W.; Valorization, B. Production of Rhamnolipids from Soybean Soapstock: Characterization and Comparation with Synthetics Surfactants. Waste Biomass Valoriz. 2021, 12, 2013–2023. [Google Scholar] [CrossRef]
- Meena, K.R.; Tandon, T.; Sharma, A.; Kanwar, S.S. Lipopeptide antibiotic production by Bacillus velezensis KLP2016. J. Appl. Pharm. Sci. 2018, 8, 91–98. [Google Scholar]
- Fang, W. Preparation and properties of low interfacial tension biosurfactant solutions for eor. Oilfield Chem. 1994, 1, 66–69. [Google Scholar]
- Joshi, S.; Al-Wahaibi, Y.M.; Al-Bahry, S.N.; Elshafie, A.E.; Al-Bemani, A.; Al-Bahri, A.; Al-Mandhari, M.S. Production, Characterization, and Application of Bacillus licheniformis W16 Biosurfactant in Enhancing Oil Recovery. Front. Microbiol. 2016, 7, 1853. [Google Scholar] [CrossRef]
- Zheng, J.P.; Liang, S.K.; Shi, X.Y.; Lin, J.Z.; Wang, W.D.; Song, Y.T.; Cao, Y.B. Oil-Water Interfacial Activities of Rhamnolipid-Sophorolipid Mixed Biosurfactants Systems and Their Effects on Oil Displacement Efficiency. Period. Ocean. Univ. China 2015, 45, 72–77. [Google Scholar] [CrossRef]
- Ke, C.Y.; Sun, W.J.; Li, Y.B.; Hui, J.; Lu, G.M.; Zheng, X.; Zhang, Q.Z.; Zhang, X.L. Polymer-Assisted Microbial Enhanced Oil Recovery. Energy Fuels 2018, 32, 5885–5892. [Google Scholar] [CrossRef]
Sample | EI24 (%) | Surface Tension (mN/m) | Interfacial Tension (mN/m) | Displacement Efficiency (%) |
---|---|---|---|---|
control | 0 ± 0 | 72.89 ± 0.19 | 18.902 ± 0.005 | 0 ± 0 |
8D | 80.87 ± 0.54 | 25.33 ± 0.24 | 0.180 ± 0.005 | 87.56 ± 0.41 |
S4 | 55.32 ± 0.35 | 32.89 ± 0.02 | 15.872 ± 0.107 | 60.87 ± 0.31 |
a-MMODA | 83.56 ± 0.40 | 25.45 ± 0.17 | 0.030 ± 0.002 | 90.77 ± 0.65 |
b-MMODA | 88.87 ± 0.97 | 19.94 ± 0.12 | 0.012 ± 0.001 | 95.23 ± 0.51 |
c-MMODA | 77.24 ± 0.58 | 28.67 ± 0.27 | 0.080 ± 0.001 | 85.01 ± 0.07 |
Temperature (°C) | 20 | 30 | 40 | 50 | 60 | 70 |
---|---|---|---|---|---|---|
Surface tension (mN/m) | 20.13 | 20.11 | 20.12 | 20.13 | 20.15 | 20.10 |
Length (mm) | Inner Diameter (mm) | Porosity (%) | Oil Saturation (%) | Injection Formula | |
---|---|---|---|---|---|
Sample 1 | 19.40 | 35.10 | 25.57 | 64.89 | 1 PV HPAM |
Sample 2 | 19.90 | 35.10 | 23.64 | 63.50 | 1 PV b-MMODA |
Sample 3 | 20.13 | 34.90 | 18.59 | 60.28 | 0.5 PV HPAM + 0.5 PV b-MMODA |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xue, S.; Zhao, Y.; Zhou, C.; Zhang, G.; Chen, F.; Wang, S. Improving Oil Recovery of the Heterogeneous Low Permeability Reservoirs by Combination of Polymer Hydrolysis Polyacrylamide and Two Highly Biosurfactant-Producing Bacteria. Sustainability 2022, 14, 423. https://doi.org/10.3390/su14010423
Xue S, Zhao Y, Zhou C, Zhang G, Chen F, Wang S. Improving Oil Recovery of the Heterogeneous Low Permeability Reservoirs by Combination of Polymer Hydrolysis Polyacrylamide and Two Highly Biosurfactant-Producing Bacteria. Sustainability. 2022; 14(1):423. https://doi.org/10.3390/su14010423
Chicago/Turabian StyleXue, Shuwen, Yanhong Zhao, Chunling Zhou, Guangming Zhang, Fulin Chen, and Shiwei Wang. 2022. "Improving Oil Recovery of the Heterogeneous Low Permeability Reservoirs by Combination of Polymer Hydrolysis Polyacrylamide and Two Highly Biosurfactant-Producing Bacteria" Sustainability 14, no. 1: 423. https://doi.org/10.3390/su14010423
APA StyleXue, S., Zhao, Y., Zhou, C., Zhang, G., Chen, F., & Wang, S. (2022). Improving Oil Recovery of the Heterogeneous Low Permeability Reservoirs by Combination of Polymer Hydrolysis Polyacrylamide and Two Highly Biosurfactant-Producing Bacteria. Sustainability, 14(1), 423. https://doi.org/10.3390/su14010423