Modelling the Demand and Access of Mineral Resources in a Changing World
Abstract
:1. Introduction
2. The Drivers of Mineral Resources Consumption
2.1. The Base Metals and Cement Consumption from Traditional Applications
2.2. The New Applications and High-Tech Metals
3. Can Future Production Meet the Demand?
Energy of Metal Primary Production, Prices, and Reserves
4. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Schaffartzik, A.; Mayer, A.; Gingrich, S.; Eisenmenger, N.; Loy, C.; Krausmann, F. The global metabolic transition: Regional patterns and trends of global material flows, 1950–2010. Glob. Environ. Chang. 2014, 26, 87–97. [Google Scholar] [CrossRef] [Green Version]
- Graedel, T.E.; Cao, J. Metal spectra as indicators of development. Proc. Natl. Acad. Sci. USA 2010, 107, 20905–20910. [Google Scholar] [CrossRef] [Green Version]
- Graedel, T.E. On the future availability of the energy metals. Annu. Rev. Mater. Res. 2011, 41, 323–335. [Google Scholar] [CrossRef]
- Wiedmann, T.O.; Schandl, H.; Lenzen, M.; Moran, D.; Suh, S.; West, J.; Kanemoto, K. The material footprint of nations. Proc. Natl. Acad. Sci. USA 2015, 112, 6271–6276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elshkaki, A.; Graedel, T.E.; Ciacci, L.; Reck, B.K. Resource Demand Scenarios for the Major Metals. Environ. Sci. Technol. 2018, 52, 2491–2497. [Google Scholar] [CrossRef] [PubMed]
- Elshkaki, A. Materials, energy, water, and emissions nexus impacts on the future contribution of PV solar technologies to global energy scenarios. Sci. Rep. 2019, 9, 19238. [Google Scholar] [CrossRef] [PubMed]
- Nuclear Energy and the Fossil Fuel, Vol. All Days, Drilling and Production Practice. 1956. Available online: http://xxx.lanl.gov/abs/https://onepetro.org/APIDPP/proceedings-pdf/API56/All-API56/API-56-007/2059843/api-56-007.pdf (accessed on 16 December 2021).
- Bardi, U.; Lavacchi, A. A Simple Interpretation of Hubbert’s Model of Resource Exploitation. Energies 2009, 2, 646–661. [Google Scholar] [CrossRef]
- Bardi, U.; Pagani, M. Peak Minerals. 2007. Available online: http://theoildrum.com/node/3086 (accessed on 16 December 2021).
- Meadows, D.H.; Meadows, D.L.; Randers, J.; Behrens, W.W. The Limits to Growth: A Report for the Club of Rome’s Project on the Predicament of Mankind; Universe Books: New York, NY, USA, 1972. [Google Scholar] [CrossRef]
- Sverdrup, H.; Ragnarsdóttir, K.V. Natural Resources in a Planetary Perspective. Geochem. Perspect. 2014, 3, 129–341. [Google Scholar] [CrossRef] [Green Version]
- Kerr, R.A. The Coming Copper Peak. Science 2014, 343, 722–724. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Northey, S.; Mohr, S.; Mudd, G.; Weng, Z.; Giurco, D. Modelling future copper ore grade decline based on a detailed assessment of copper resources and mining. Resour. Conserv. Recycl. 2014, 83, 190–201. [Google Scholar] [CrossRef]
- Bardi, U. Energy Prices and Resource Depletion: Lessons from the Case of Whaling in the Nineteenth Century. Energy Sources Part B Econ. Plan. Policy 2007, 2, 297–304. [Google Scholar] [CrossRef]
- Bardi, U.; Lavacchi, A.; Yaxley, L. EROEI and Net Energy in the Exploitation of Natural Resources. A Study Based on the Lotka-Volterra Model. In The Oil Drum: Europe; 2010; p. 7. Available online: http://theoildrum.com/files/O_126_Ugo_Bardi_26_9_2010.pdf (accessed on 16 December 2021).
- Laherrére, J. Copper peak. In The Oil Drum: Europe; 2010; pp. 1–27. Available online: http://theoildrum.com/node/6307 (accessed on 16 December 2021).
- Mudd, G.M. The Sustainability of Mining in Australia: Key Production Trends and Environmental Implications; Monash University, Department of Civil Engineering: Clayton, Australia, 2009. [Google Scholar]
- UN. UN Comtrade—International Trade Statistics Database; United Nations: New York, NY, USA, 2021. [Google Scholar]
- Worldsteel. Steel Statistical Yearbook; Worldsteel: Brussels, Belgium, 2021. [Google Scholar]
- Copper Alliance. Annual Reports—Copper Alliance; Technical report; Copper Alliance: Bruxelles, Belgium, 2021. [Google Scholar]
- USGS. Mineral Commodity Summaries; Technical report; USGS: Reston, VA, USA, 2021.
- Li, Q.; Dai, T.; Gao, T.; Zhong, W.; Wen, B.; Li, T.; Zhou, Y. Aluminum material flow analysis for production, consumption, and trade in China from 2008 to 2017. J. Clean. Prod. 2021, 296, 126444. [Google Scholar] [CrossRef]
- Streeck, J.; Dammerer, Q.; Wiedenhofer, D.; Krausmann, F. The role of socio-economic material stocks for natural resource use in the United States of America from 1870 to 2100. J. Ind. Ecol. 2021, 25, jiec.13166. [Google Scholar] [CrossRef]
- Ciacci, L.; Fishman, T.; Elshkaki, A.; Graedel, T.; Vassura, I.; Passarini, F. Exploring future copper demand, recycling and associated greenhouse gas emissions in the EU-28. Glob. Environ. Chang. 2020, 63, 102093. [Google Scholar] [CrossRef]
- Wiedenhofer, D.; Fishman, T.; Lauk, C.; Haas, W.; Krausmann, F. Integrating Material Stock Dynamics Into Economy-Wide Material Flow Accounting: Concepts, Modelling, and Global Application for 1900–2050. Ecol. Econ. 2019, 156, 121–133. [Google Scholar] [CrossRef]
- Pfaff, M.; Glöser-Chahoud, S.; Chrubasik, L.; Walz, R. Resource efficiency in the German copper cycle: Analysis of stock and flow dynamics resulting from different efficiency measures. Resour. Conserv. Recycl. 2018, 139, 205–218. [Google Scholar] [CrossRef]
- Krausmann, F.; Schandl, H.; Eisenmenger, N.; Giljum, S.; Jackson, T. Material Flow Accounting: Measuring Global Material Use for Sustainable Development. Annu. Rev. Environ. Resour. 2017, 42, 647–675. [Google Scholar] [CrossRef]
- Deetman, S.; de Boer, H.; Van Engelenburg, M.; van der Voet, E.; van Vuuren, D. Projected material requirements for the global electricity infrastructure—Generation, transmission and storage. Resour. Conserv. Recycl. 2021, 164, 105200. [Google Scholar] [CrossRef]
- Ren, K.; Tang, X.; Wang, P.; Willerström, J.; Höök, M. Bridging energy and metal sustainability: Insights from China’s wind power development up to 2050. Energy 2021, 227, 120524. [Google Scholar] [CrossRef]
- Li, F.; Ye, Z.; Xiao, X.; Xu, J.; Liu, G. Material stocks and flows of power infrastructure development in China. Resour. Conserv. Recycl. 2020, 160, 104906. [Google Scholar] [CrossRef]
- Watari, T.; McLellan, B.C.; Giurco, D.; Dominish, E.; Yamasue, E.; Nansai, K. Total material requirement for the global energy transition to 2050: A focus on transport and electricity. Resour. Conserv. Recycl. 2019, 148, 91–103. [Google Scholar] [CrossRef]
- Moreau, V.; Dos Reis, P.; Vuille, F. Enough Metals? Resource Constraints to Supply a Fully Renewable Energy System. Resources 2019, 8, 29. [Google Scholar] [CrossRef] [Green Version]
- Dong, D.; Tukker, A.; Van der Voet, E. Modeling copper demand in China up to 2050: A business-as-usual scenario based on dynamic stock and flow analysis. J. Ind. Ecol. 2019, 23, 1363–1380. [Google Scholar] [CrossRef] [Green Version]
- Vidal, O.; Boulzec, H.L.; François, C. Modelling the material and energy costs of the transition to low-carbon energy. EPJ Web Conf. 2018, 189, 00018. [Google Scholar] [CrossRef] [Green Version]
- Tokimatsu, K.; Wachtmeister, H.; McLellan, B.; Davidsson, S.; Murakami, S.; Höök, M.; Yasuoka, R.; Nishio, M. Energy modeling approach to the global energy-mineral nexus: A first look at metal requirements and the 2 °C target. Appl. Energy 2017, 207, 494–509. [Google Scholar] [CrossRef]
- Elshkaki, A.; Graedel, T. Dynamic analysis of the global metals flows and stocks in electricity generation technologies. J. Clean. Prod. 2013, 59, 260–273. [Google Scholar] [CrossRef]
- Vidal, O.; Goffé, B.; Arndt, N. Metals for a low-carbon society. Nat. Geosci. 2013, 6, 894–896. [Google Scholar] [CrossRef]
- Dunn, J.; Slattery, M.; Kendall, A.; Ambrose, H.; Shen, S. Circularity of Lithium-Ion Battery Materials in Electric Vehicles. Environ. Sci. Technol. 2021, 55, 5189–5198. [Google Scholar] [CrossRef]
- Pauliuk, S.; Heeren, N. Material efficiency and its contribution to climate change mitigation in Germany: A deep decarbonization scenario analysis until 2060. J. Ind. Ecol. 2021, 25, 479–493. [Google Scholar] [CrossRef]
- Yang, H.; Song, X.; Zhang, X.; Lu, B.; Yang, D.; Li, B. Uncovering the in-use metal stocks and implied recycling potential in electric vehicle batteries considering cascaded use: A case study of China. Environ. Sci. Pollut. Res. 2021, 28, 45867–45878. [Google Scholar] [CrossRef]
- Zhu, Y.; Chappuis, L.B.; De Kleine, R.; Kim, H.C.; Wallington, T.J.; Luckey, G.; Cooper, D.R. The coming wave of aluminum sheet scrap from vehicle recycling in the United States. Resour. Conserv. Recycl. 2021, 164, 105208. [Google Scholar] [CrossRef]
- Liu, M.; Chen, X.; Zhang, M.; Lv, X.; Wang, H.; Chen, Z.; Huang, X.; Zhang, X.; Zhang, S. End-of-life passenger vehicles recycling decision system in China based on dynamic material flow analysis and life cycle assessment. Waste Manag. 2020, 117, 81–92. [Google Scholar] [CrossRef]
- Deetman, S.; Marinova, S.; van der Voet, E.; van Vuuren, D.P.; Edelenbosch, O.; Heijungs, R. Modelling global material stocks and flows for residential and service sector buildings towards 2050. J. Clean. Prod. 2020, 245, 118658. [Google Scholar] [CrossRef]
- Marinova, S.; Deetman, S.; van der Voet, E.; Daioglou, V. Global construction materials database and stock analysis of residential buildings between 1970–2050. J. Clean. Prod. 2020, 247, 119146. [Google Scholar] [CrossRef]
- Liu, Y.; Li, J.; Duan, L.; Dai, M.; Chen, W.Q. Material dependence of cities and implications for regional sustainability. Reg. Sustain. 2020, 1, 31–36. [Google Scholar] [CrossRef]
- Cao, Z.; Shen, L.; Zhong, S.; Liu, L.; Kong, H.; Sun, Y. A Probabilistic Dynamic Material Flow Analysis Model for Chinese Urban Housing Stock: A Probabilistic Dynamic MFA Model. J. Ind. Ecol. 2018, 22, 377–391. [Google Scholar] [CrossRef]
- Wiedenhofer, D.; Steinberger, J.K.; Eisenmenger, N.; Haas, W. Maintenance and Expansion: Modeling Material Stocks and Flows for Residential Buildings and Transportation Networks in the EU25. J. Ind. Ecol. 2015, 19, 538–551. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kalt, G.; Thunshirn, P.; Wiedenhofer, D.; Krausmann, F.; Haas, W.; Haberl, H. Material stocks in global electricity infrastructures—An empirical analysis of the power sector’s stock-flow-service nexus. Resour. Conserv. Recycl. 2021, 173, 105723. [Google Scholar] [CrossRef]
- Beylot, A.; Guyonnet, D.; Muller, S.; Vaxelaire, S.; Villeneuve, J. Mineral raw material requirements and associated climate-change impacts of the French energy transition by 2050. J. Clean. Prod. 2019, 208, 1198–1205. [Google Scholar] [CrossRef]
- Huang, T.; Shi, F.; Tanikawa, H.; Fei, J.; Han, J. Materials demand and environmental impact of buildings construction and demolition in China based on dynamic material flow analysis. Resour. Conserv. Recycl. 2013, 72, 91–101. [Google Scholar] [CrossRef]
- Hunt, C.; Romero, J.; Jara, J.; Lagos, G. Copper demand forecasts and predictions of future scarcity. Resour. Policy 2021, 73, 102123. [Google Scholar] [CrossRef]
- Sverdrup, H.U.; Olafsdottir, A.H.; Ragnarsdottir, K.V. On the long-term sustainability of copper, zinc and lead supply, using a system dynamics model. Resour. Conserv. Recycl. X 2019, 4, 100007. [Google Scholar] [CrossRef]
- Ayres, R.U.; Ayres, L.W. The Life Cycle of Copper, Its Co-Products and By-Products; International Institute for Environment and Development: London, UK, 2002. [Google Scholar]
- Olafsdottir, A.H.; Sverdrup, H.U. Modelling Global Mining, Secondary Extraction, Supply, Stocks-in-Society, Recycling, Market Price and Resources, Using the WORLD6 Model. Biophys. Econ. Resour. Qual. 2018, 3, 11. [Google Scholar] [CrossRef]
- Sverdrup, H.U.; Olafsdottir, A.H. System Dynamics Modelling of the Global Extraction, Supply, Price, Reserves, Resources and Environmental Losses of Mercury. Water Air Soil Pollut. 2020, 231, 439. [Google Scholar] [CrossRef]
- Capellán-Pérez, I.; Blas, I.D.; Nieto, J.; Castro, C.D.; Miguel, L.J.; Carpintero, O.; Mediavilla, M.; Lobejón, L.F.; Ferreras-Alonso, N.; Rodrigo, P.; et al. MEDEAS: A new modeling framework integrating global biophysical and socioeconomic constraints. Energy Environ. Sci. 2020, 13, 986–1017. [Google Scholar] [CrossRef]
- Bleischwitz, R.; Nechifor, V.; Winning, M.; Huang, B.; Geng, Y. Extrapolation or saturation—Revisiting growth patterns, development stages and decoupling. Glob. Environ. Chang. 2018, 48, 86–96. [Google Scholar] [CrossRef]
- Bleischwitz, R.; Nechifor, V. Saturation and Growth over Time: When Demand for Minerals Peaks; Cournot Centre: Paris, France, 2016; p. 37. [Google Scholar]
- Wårell, L. Trends and developments in long-term steel demand—The intensity-of-use hypothesis revisited. Resour. Policy 2014, 39, 134–143. [Google Scholar] [CrossRef]
- Vidal, O. Modeling the Long-Term Evolution of Primary Production Energy and Metal Prices. In Mineral Resources Economics 1: Context and Issues; Fizaine, F., Galiègue, X., Eds.; Wiley: Hoboken, NJ, USA, 2021. [Google Scholar] [CrossRef]
- Malenbaum, W. World Resources for the Year 2000. Ann. Am. Acad. Political Soc. Sci. 1973, 408, 30–46. [Google Scholar] [CrossRef]
- Huo, H.; Wang, M. Modeling future vehicle sales and stock in China. Energy Policy 2012, 43, 17–29. [Google Scholar] [CrossRef]
- Shi, F.; Huang, T.; Tanikawa, H.; Han, J.; Hashimoto, S.; Moriguchi, Y. Toward a Low Carbon-Dematerialization Society: Measuring the Materials Demand and CO2 Emissions of Building and Transport Infrastructure Construction in China. J. Ind. Ecol. 2012, 16, 493–505. [Google Scholar] [CrossRef]
- IEA. Global Status Report 2018; Technical report; IEA: Paris, France, 2018. [Google Scholar]
- Radicati. Mobile Statistics Report, 2019–2023; Technical report; Radicati: London, UK, 2019. [Google Scholar]
- European Commission. Critical Raw Materials Resilience: Charting a Path towards greater Security and Sustainability; Technical Report COM(2020) 474 final; European Commission: Brussels, Belgium, 2020. [Google Scholar]
- Kleijn, R.; van der Voet, E.; Kramer, G.J.; van Oers, L.; van der Giesen, C. Metal requirements of low-carbon power generation. Energy 2011, 36, 5640–5648. [Google Scholar] [CrossRef]
- Hertwich, E.G.; Gibon, T.; Bouman, E.A.; Arvesen, A.; Suh, S.; Heath, G.A.; Bergesen, J.D.; Ramirez, A.; Vega, M.I.; Shi, L. Integrated life-cycle assessment of electricity-supply scenarios confirms global environmental benefit of low-carbon technologies. Proc. Natl. Acad. Sci. USA 2015, 112, 6277–6282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vidal, O.; Rostom, F.; François, C.; Giraud, G. Global Trends in Metal Consumption and Supply: The Raw Material–Energy Nexus. Elements 2017, 13, 319–324. [Google Scholar] [CrossRef]
- IEA. Energy Technology Perspectives 2017; Technical report; IEA: Paris, France, 2017. [Google Scholar]
- Laherrére, J. Peak Gold, Easier to Model than Peak Oil? The Oil Drum: Fort Collins, CO, USA, 2009. [Google Scholar]
- Sverdrup, H.U.; Koca, D.; Ragnarsdóttir, K.V. Peak metals, minerals, energy, wealth, food and population: Urgent policy considerations for a sustainable society. J. Environ. Sci. Eng. B 2013, 2, 189. [Google Scholar]
- Gerst, M.D. Revisiting the Cumulative Grade-Tonnage Relationship for Major Copper Ore Types. Econ. Geol. 2008, 103, 615–628. [Google Scholar] [CrossRef]
- Singer, D.A. The lognormal distribution of metal resources in mineral deposits. Ore Geol. Rev. 2013, 55, 80–86. [Google Scholar] [CrossRef]
- Vidal, O.; Rostom, F.Z.; François, C.; Giraud, G. Prey–Predator Long-Term Modeling of Copper Reserves, Production, Recycling, Price, and Cost of Production. Environ. Sci. Technol. 2019, 53, 11323–11336. [Google Scholar] [CrossRef] [PubMed]
- Arndt, N.T.; Fontboté, L.; Hedenquist, J.W.; Kesler, S.E.; Thompson, J.F.; Wood, D.G. Future Global Mineral Resources. Geochem. Perspect. 2017, 6, 1–171. [Google Scholar] [CrossRef] [Green Version]
- Johnson, K.; Hammarstrom, J.; Zientek, M.; Dicken, C. Estimate of Undiscovered Copper Resources of the World, 2013; Fact Sheet 2014; USGS: Reston, VA, USA, 2014. [Google Scholar]
- Henckens, M.; van Ierland, E.; Driessen, P.; Worrell, E. Mineral resources: Geological scarcity, market price trends, and future generations. Resour. Policy 2016, 49, 102–111. [Google Scholar] [CrossRef] [Green Version]
- Singer, D.A. Future copper resources. Ore Geol. Rev. 2017, 86. [Google Scholar] [CrossRef]
- Rudnick, R.; Gao, S. Composition of the Continental Crust. In Treatise on Geochemistry; Elsevier: Amsterdam, The Netherlands, 2003; pp. 1–64. [Google Scholar] [CrossRef]
- IEA. IEA Sankey Diagram; IEA: Paris, France, 2021. [Google Scholar]
- Phillips, W.G.B.; Edwards, D.P. Metal prices as a function of ore grade. Resour. Policy 1976, 2, 167–178. [Google Scholar] [CrossRef]
- Johnson, J.; Harper, E.M.; Lifset, R.; Graedel, T.E. Dining at the Periodic Table: Metals Concentrations as They Relate to Recycling. Environ. Sci. Technol. 2007, 41, 1759–1765. [Google Scholar] [CrossRef]
- Gutowski, T.G.; Sahni, S.; Allwood, J.M.; Ashby, M.F.; Worrell, E. The energy required to produce materials: Constraints on energy-intensity improvements, parameters of demand. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2013, 371, 20120003. [Google Scholar] [CrossRef]
- Vidal, O.; Andrieu, B.; Le Boulzec, H.; Fizaine, F. Modeling the production energy and metal prices from 1900 to 2100. 2021; Manuscrit submitted for publication. [Google Scholar]
- Norgate, T.; Jahanshahi, S. Low grade ores—Smelt, leach or concentrate? Miner. Eng. 2010, 23, 65–73. [Google Scholar] [CrossRef]
- Mariscal, R.; Powell, A. Commodity Price Booms and Breaks: Detection, Magnitude and Implications for Developing Countries. SSRN Electron. J. 2014, 45. [Google Scholar] [CrossRef]
- Yellishetty, M.; Ranjith, P.; Tharumarajah, A. Iron ore and steel production trends and material flows in the world: Is this really sustainable? Resour. Conserv. Recycl. 2010, 54, 1084–1094. [Google Scholar] [CrossRef]
- Rötzer, N.; Schmidt, M. Historical, Current, and Future Energy Demand from Global Copper Production and Its Impact on Climate Change. Resources 2020, 9, 44. [Google Scholar] [CrossRef]
- Rosenkranz, R.D. Energy Consumption in Domestic Primary Copper Production; United States Department of the Interior: Washington, DC, USA, 1976; p. 40. [Google Scholar]
- Gaines, L. Energy and Materials Flows in the Copper Industry; Technical Report ANL/CNSV-11, 6540399; Argonne National Laboratory: Lemont, IL, USA, 1980. [Google Scholar] [CrossRef]
- Kellogg, H.H. Energy efficiency in the Age of Scarcity. JOM 1974, 26, 25–29. [Google Scholar] [CrossRef]
- Page, N.J.; Creasy, S.C. Ore grade, metal production, and energy. J. Res. Geol. Surv. 1975, 3, 1–13. [Google Scholar]
- Marsden, J.O. Energy Efficiency & Copper Hydrometallurgy; Society for Mining, Metallurgy, and Exploration: Englewood, CO, USA, 2008; p. 41. [Google Scholar]
- Office of Energy Efficiency & Renewable Energy. ITP Mining: Energy and Environmental Profile of the U.S. Mining Industry; Technical report; Office of Energy Efficiency & Renewable Energy: Washington, DC, USA, 2002.
- Rankin, W. Minerals, Metals and Sustainability: Meeting Future Material Needs; CSIRO Publishing: Clayton, Australia, 2011. [Google Scholar] [CrossRef]
- Chapman, P.F. The Energy Costs of Producing Copper and Aluminium from Primary Sources; Technical report, Research Report ERG001; Open University: Milton Keynes, UK, 1973. [Google Scholar]
- Hooke, R.L.; Martín-Duque, J.F. Land transformation by humans: A review. GSA Today 2012, 12, 4–10. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vidal, O.; Le Boulzec, H.; Andrieu, B.; Verzier, F. Modelling the Demand and Access of Mineral Resources in a Changing World. Sustainability 2022, 14, 11. https://doi.org/10.3390/su14010011
Vidal O, Le Boulzec H, Andrieu B, Verzier F. Modelling the Demand and Access of Mineral Resources in a Changing World. Sustainability. 2022; 14(1):11. https://doi.org/10.3390/su14010011
Chicago/Turabian StyleVidal, Olivier, Hugo Le Boulzec, Baptiste Andrieu, and François Verzier. 2022. "Modelling the Demand and Access of Mineral Resources in a Changing World" Sustainability 14, no. 1: 11. https://doi.org/10.3390/su14010011