Analyzing Restaurant Customers’ Evolution of Dining Patterns and Satisfaction during COVID-19 for Sustainable Business Insights
Abstract
:1. Introduction
2. Literature Review
2.1. UGC Analysis Techniques
2.2. Concerns Over Fake UGC
3. Data and Method
3.1. Data Source
3.2. Ethical Considerations
3.3. Data Processing
3.4. Model
4. Results
4.1. Descriptive Statistics
4.2. Review Topic Identification
4.3. Analysis of Variance
4.4. Rating-Review Regression
5. Discussion
6. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Giudice, F.; Caferra, R.; Morone, P. COVID-19, the food system and the circular economy: Challenges and opportunities. Sustainability 2020, 12, 7939. [Google Scholar] [CrossRef]
- Jian, Y.; Yu, I.Y.; Yang, M.X.; Zeng, K.J. The impacts of fear and uncertainty of COVID-19 on environmental concerns, brand trust, and behavioral intentions toward green hotels. Sustainability 2020, 12, 8688. [Google Scholar] [CrossRef]
- Umaña-Hermosilla, B.; de la Fuente-Mella, H.; Elórtegui-Gómez, C.; Fonseca-Fuentes, M. Multinomial logistic regression to estimate and predict the perceptions of individuals and companies in the face of the COVID-19 pandemic in the Ñuble region, Chile. Sustainability 2020, 12, 9553. [Google Scholar] [CrossRef]
- Appolloni, A.; Colasanti, N.; Fantauzzi, C.; Fiorani, G.; Frondizi, R. Distance learning as a resilience strategy during Covid-19: An analysis of the Italian context. Sustainability 2021, 13, 1388. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, H.B.; Chen, X. COVID-19 and restaurant demand: Early effects of the pandemic and stay-at-home orders. Int. J. Contemp. Hosp. Manag. 2020, 13, 3809–3834. [Google Scholar] [CrossRef]
- Zhong, Y.; Oh, S.; Moon, H.C. What can drive consumers’ dining-out behavior in China and Korea during the COVID-19 pandemic? Sustainability 2021, 13, 1724. [Google Scholar] [CrossRef]
- Davahli, M.R.; Karwowski, W.; Sonmez, S.; Apostolopoulos, Y. The hospitality industry in the face of the COVID-19 pandemic: Current topics and research methods. Int. J. Environ. Res. Public Health 2020, 17, 7366. [Google Scholar] [CrossRef] [PubMed]
- Mayasari, N.R.; Ho, D.K.N.; Lundy, D.J.; Skalny, A.V.; Tinkov, A.A.; Teng, I.C.; Wu, M.C.; Faradina, A.; Mohammed, A.Z.M.; Park, J.M.; et al. Impacts of the COVID-19 pandemic on food security and diet-related lifestyle behaviors: An analytical study of Google trends-based query volumes. Nutrients 2020, 12, 3103. [Google Scholar] [CrossRef]
- Kim, J.; Kim, J.; Wang, Y. Uncertainty risks and strategic reaction of restaurant firms amid COVID-19: Evidence from China. Int. J. Hosp. Manag. 2021, 92, 102752. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Lee, J.C. Effects of COVID-19 on preferences for private dining facilities in restaurants. J. Hosp. Tour. Manag. 2020, 45, 67–70. [Google Scholar] [CrossRef]
- Chen, W.K.; Riantama, D.; Chen, L.S. Using a text mining approach to hear voices of customers from social media toward the fast-food restaurant industry. Sustainability 2021, 13, 268. [Google Scholar] [CrossRef]
- Jia, S. Toward a better fitness club: Evidence from exerciser online rating and review using latent Dirichlet allocation and support vector machine. Int. J. Mark. Res. 2019, 61, 64–76. [Google Scholar] [CrossRef]
- Jia, S. Leisure motivation and satisfaction: A text mining of yoga centres, yoga consumers, and their interactions. Sustainability 2018, 10, 4458. [Google Scholar] [CrossRef] [Green Version]
- Jia, S. Behind the ratings: Text mining of restaurant customers’ online reviews. Int. J. Mark. Res. 2018, 60, 561–572. [Google Scholar] [CrossRef]
- Jia, S. Motivation and satisfaction of Chinese and US tourists in restaurants: A cross-cultural text mining of online reviews. Tour. Manag. 2020, 78, 104071. [Google Scholar] [CrossRef]
- Ye, Q.; Law, R.; Gu, B.; Chen, W. The influence of user-generated content on traveler behavior: An empirical investigation on the effects of e-word-of-mouth to hotel online bookings. Comput. Hum. Behav. 2011, 27, 634–639. [Google Scholar] [CrossRef]
- Anderson, M.; Magruder, J. Learning from the crowd: Regression discontinuity estimates of the effects of an online review database. Econ. J. 2012, 122, 957–989. [Google Scholar] [CrossRef]
- Lee, T.Y.; Bradlow, E.T. Automated marketing research using online customer reviews. Int. J. Mark. Res. 2011, 48, 881–894. [Google Scholar] [CrossRef]
- Hao, H.; Zhang, K.; Wang, W.; Gao, G. A tale of two countries: International comparison of online doctor reviews between China and the United States. Int. J. Med. Inf. 2017, 99, 37–44. [Google Scholar] [CrossRef]
- Pan, S.; Ting, P.; Bau, D. Perceptions of Taipei as revealed in travel blogs: A tale from two sides. Asia Pac. J. Tour. Res. 2014, 19, 700–720. [Google Scholar] [CrossRef]
- London, W.R.; Moyle, B.D.; Lohmann, G. Cruise infrastructure development in Auckland, New Zealand: A media discourse analysis (2008–2016). Asia Pac. J. Tour. Res. 2017, 22, 615–633. [Google Scholar] [CrossRef]
- Kim, H.; Joun, H.J.; Choe, Y.; Schroeder, A. How can a destination better manage its offering to visitors? Observing visitor experiences via online reviews. Sustainability 2019, 11, 4660. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Ye, Q.; Law, R. Determinants of customer satisfaction in the hotel industry: An application of online review analysis. Asia Pac. J. Tour. Res. 2013, 18, 784–802. [Google Scholar] [CrossRef]
- Li, N.; Tung, V.; Law, R. A fuzzy comprehensive evaluation algorithm for analysing electronic word-of-mouth. Asia Pac. J. Tour. Res. 2017, 22, 592–603. [Google Scholar] [CrossRef]
- Guo, Y.; Wang, Y.; Wang, C. Exploring the salient attributes of short-term rental experience: An analysis of online reviews from Chinese guests. Sustainability 2019, 11, 4290. [Google Scholar] [CrossRef] [Green Version]
- Miller, M.; Banerjee, T.; Muppalla, R.; Romine, W.; Sheth, A. What are people tweeting about Zika? An exploratory study concerning symptoms, treatment, transmission, and prevention. JMIR Public Health Surveill. 2017, 3, e38. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Barnes, S.J.; Jia, Q. Mining meaning from online ratings and reviews: Tourist satisfaction analysis using latent dirichlet allocation. Tour. Manag. 2017, 59, 467–483. [Google Scholar] [CrossRef] [Green Version]
- Xiang, Z.; Du, Q.; Ma, Y.; Fan, W. A comparative analysis of major online review platforms: Implications for social media analytics in hospitality and tourism. Tour. Manag. 2017, 58, 51–65. [Google Scholar] [CrossRef]
- Nam, S.; Lee, H.C. A text analytics-based importance performance analysis and its application to airline service. Sustainability 2019, 11, 6153. [Google Scholar] [CrossRef] [Green Version]
- Gosh, D.; Guha, R. What are we ‘tweeting’ about obesity? Mapping tweets with topic modeling and geographic information system. Cartogr. Geogr. Inf. Sci. 2013, 40, 90–102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, X.; Burns, A.C.; Hou, Y. An investigation of brand-related user-generated content on Twitter. J. Advert. 2017, 46, 236–247. [Google Scholar] [CrossRef]
- Rahman, M.; Carbunar, B.; Ballesteros, J.; Chau, D.H. To catch a fake: Curbing deceptive Yelp ratings and venues. Stat. Anal. Data Min. 2015, 8, 147–161. [Google Scholar] [CrossRef] [Green Version]
- Choi, S.; Mattila, A.S.; Van Hoof, H.B.; Quadri-Felitti, D. The role of power and incentives in inducing fake reviews in the tourism industry. J. Travel Res. 2017, 56, 975–987. [Google Scholar] [CrossRef]
- Cardoso, E.F.; Silva, R.M.; Almeida, T.A. Towards automatic filtering of fake reviews. Neurocomputing 2018, 309, 106–116. [Google Scholar] [CrossRef]
- Liang, Y.; Liu, Y.; Chen, C.; Jiang, Z.G. Extracting topic-sensitive content from textual documents: A hybrid topic model approach. Eng. Appl. Artif. Intell. 2018, 70, 81–91. [Google Scholar] [CrossRef] [Green Version]
- Sutherland, I.; Sim, Y.; Lee, S.K.; Byun, J.; Kiatkawsin, K. Topic modeling of online accommodation reviews via latent Dirichlet allocation. Sustainability 2020, 12, 1821. [Google Scholar] [CrossRef] [Green Version]
- Jieba 0.42.1. Available online: https://pypi.org/project/jieba/ (accessed on 24 April 2021).
- Blei, D.M.; Ng, A.Y.; Jordan, M.I. Latent Dirichlet allocation. J. Mach. Learn. Res. 2003, 3, 993–1022. [Google Scholar]
- Blei, D.M. Probabilistic topic models. Commun. ACM 2012, 84, 55–77. [Google Scholar] [CrossRef] [Green Version]
- Jia, S. Measuring tourists’ meal experience by mining online user generated content about restaurants. Scand. J. Hosp. Tour. 2019, 19, 371–389. [Google Scholar] [CrossRef]
- Büschken, J.; Allenby, G.M. Sentence-based text analysis for customer reviews. Mark. Sci. 2016, 35, 953–975. [Google Scholar] [CrossRef] [Green Version]
Data | Variable | Note |
---|---|---|
Date of UGC | Year | 0, if the UGC was posted in 2019 1, if the UGC was posted in 2020 |
Price per customer | Price | In RMB, 1 RMB ≈ 0.15 USD |
Rating | Rating | Interval scale, 0.5–5.0 |
Review | WOT | Per Equation (1) |
Variable | Mean | Standard Deviation | Max | Min |
---|---|---|---|---|
Panel 1. Restaurant level. All variables were calculated as restaurant average. | ||||
Year | 0.42 | 0.09 | 0.71 | 0.09 |
Price | 127.33 | 64.67 | 422.54 | 30.23 |
Rating | 4.34 | 0.17 | 4.89 | 3.76 |
N = 99 | ||||
Panel 2. UGC level. | ||||
Year | 0.42 | 0.49 | 1.00 | 0.00 |
Price | 128.59 | 75.51 | 1000.00 | 1.00 |
Rating | 4.34 | 0.83 | 5.00 | 0.50 |
N = 651,703 |
Topic | High Frequency Meaningful Words | ||||||
---|---|---|---|---|---|---|---|
Panel 1. Topic group A: Before the meal. | |||||||
1. Friend | Friends (89,677) | Tooth (30,856) | Color (19,340) | Taste (318,279) | Hotpot (70,609) | Services (188,876) | Environment (145,046) |
Next time (47,497) | Get-together (13,947) | Smile (11,794) | Flavor (100,075) | Lo mein (23,983) | Colleagues (15,656) | Waiter (107,553) | |
Eat hot pot (14,285) | Party (7884) | Place (30,174) | Candy (6267) | Cuisine (134,040) | Company (7276) | ||
2. Appointment | Queuing (236,235) | Advance (35,418) | Hours (64,874) | Appointment (16,991) | Wait (43,799) | Friends (89,677) | Time (41,350) |
Take a number (14,116) | Radio (10,850) | Hotpot (70,609) | Location (40,923) | Evening (38,186) | Lane (9836) | Online (9352) | |
Afternoon (26,073) | Door (29,663) | Heated (12,281) | Internet celebrity (22,463) | Line (13,367) | Weekend (21,261) | ||
3. Queuing | Queuing (236,235) | Hours (64,874) | Noon (40,346) | Working day (30,430) | Wait (43,799) | Time (41,350) | Evening (38,186) |
Afternoon (26,073) | Minutes (20,674) | Pandemic (17,742) | Door (29,663) | Period (11,719) | Weekend (21,261) | Speed (20,687) | |
Queue (9209) | Internet celebrity (22,463) | Popular restaurant (17,323) | Order (10,337) | Morning (6077) | Line (13,367) | ||
4. Environment | Environment (145,046) | Location (40,923) | Decoration (31,314) | Mint (25,327) | Place (30,174) | Services (188,876) | Seats (17,414) |
Easy to find (9534) | Subway (8814) | Clean (14,720) | Comfortable (11,466) | Waiter (107,553) | Traffic (6158) | Subway line No. (6138) | |
Noisy (5630) | Crowded (5223) | Queuing (236,235) | Restaurant (8381) | Lights (5112) | Spacious (4251) | ||
Panel 2. Topic group B: The meal. | |||||||
5. Spicy chicken | Spicy (63,269) | Chicken (35,652) | Taste (318,279) | Potatoes (18,098) | Cuisine (134,040) | Tasty (44,997) | Garlic (12,572) |
Flavor (100,075) | Chicken feet (19,117) | Copper pot (8526) | Chicken meat (23,905) | Beef (84,851) | Braised in oil (6568) | Earthen bowl (6900) | |
Oil (18,797) | Glutinous (24,181) | Slightly spicy (13,033) | French toast (4696) | Rice wine (6364) | String (10,745) | ||
6. Chicken | Taste (318,279) | Fish (25,994) | Tofu (26,085) | Bullfrog (101,224) | Cuisine (134,040) | Chicken wings (11,785) | Egg yolk (12,112) |
Tasty (44,997) | Tender (61,118) | Flavor (100,075) | Chicken feet (19,117) | Sweet and sour (7611) | Roast (26,464) | Meat (71,411) | |
Mouthfeel (68,455) | Stone pot (6244) | Tenderloin (5724) | Roast chicken (8647) | Salted egg (17,782) | Meat quality (19,,373) | ||
7. Duck | Taste (318,279) | Roast duck (15,048) | Cuisine (134,040) | Porridge (17,313) | Sweet (31,610) | Duck (17,873) | Flavor (100075) |
Osmanthus (7778) | Sweet fermented-rice (6892) | Sticky rice (8591) | Braised pork (6318) | Crab meat (21,336) | Glutinous (24,181) | Salted duck (6216) | |
Mouthfeel (68,455) | Must order (49,094) | Decoct (19,496) | Salty (18,255) | Sauce (24,603) | Food stalls (7271) | ||
8. Beef hotpot | Beef (84,851) | Tender (61,118) | Tripe (24,014) | Paste (25,484) | Hotpot (70,609) | Fresh (69,639) | Shrimp (58,748) |
Tribute (13,265) | Meatballs (12,421) | Boiled (24,644) | Duck blood (15,395) | Meat (71,411) | Mouthfeel (68,455) | Bullfrog (101,224) | |
Hotpot condiment (51,776) | Must order (49,094) | Taste (318,279) | Fresh duck blood (8632) | Fat beef (12,426) | Spicy (63,269) | ||
9. Bullfrog hotpot | Bullfrog (101,224) | Hotpot condiment (51,776) | Pot (35,832) | Spicy (63,269) | Taste (318,279) | Hotpot (70,609) | Frog (15,339) |
Tomato (19,315) | Side dish (13,321) | Two-flavor hotpot (12,635) | Boiled (24,644) | Tasty (44,997) | Ice jelly (29,986) | Beautiful frog (7830) | |
Slightly spicy (13,033) | Borscht (7406) | Spicy pot (10,553) | Quantity (48,424) | Charcoal fire (5170) | Soup (36,860) | ||
10. Crab | Coffee (26,780) | Taste (318,279) | Crab cream (17,501) | Noodle (21,988) | Soy sauce noodles (11,049) | Crab meat (21,336) | Tea (18,757) |
Baking (6704) | Crab (19,284) | Yellow croaker (8321) | Beer (7614) | Workshop (5626) | Coffee beans (5552) | Cake (26,443) | |
Fish (25,994) | Bread (22,689) | Dessert (21,494) | Flavor (100,075) | Experience (22,426) | Fish noodles (4513) | ||
11. Seafood | Fresh (69,639) | Shrimp (58,748) | Ingredients (28,870) | Seafood (29,395) | Buffet (17,550) | Fruit (17,204) | Variety (15,172) |
Roast (26,464) | Crab (19,284) | Sashimi (8129) | Salmon (12,977) | Crayfish (7347) | Sea urchin (8233) | Ice cream (15,356) | |
Taste (318,279) | Turtle (7220) | Beverage (22,673) | Liver (8558) | Quality (10,348) | Abalone (6388) | ||
12. Xinjiang cuisine | Cuisine (134,040) | Taste (318,279) | Xinjiang (12,976) | Mutton shashlik (11,828) | Quantity (48,424) | Large plate chicken (9691) | Mutton (11,278) |
Pack (16,670) | Next time (47,497) | Roast (26,464) | Milk tea (24,782) | Yogurt (6408) | Can’t eat it all (9123) | Flavor (100,075) | |
Cost performance (67,240) | Weight (17,489) | Must order (49,094) | Performance (7062) | Waiter (107,553) | Waste (6308) | ||
13. Cantonese cuisine | Shrimp dumplings (24,791) | Red rice bowl (23,437) | Chicken claw (20,352) | Taste (318,279) | Fried dough sticks (16,147) | Steaming (16,058) | Sea shrimp (14,140) |
Gold medal (14,330) | Jin Sha (11,463) | Shrimp meat (23,848) | Belly (10,910) | Ribs (11,118) | Mouthfeel (68,455) | Barbecued pork bun (9616) | |
Snacks (28,442) | Rice rolls (7767) | Baby porridge (8248) | Must order (49,094) | Pastry (9231) | Pigeon (9958) | ||
14. Hong Kong cuisine | Rice (35,012) | Taste (318,279) | Oil chicken (16,353) | Pineapple bread (13,856) | Pineapple (18,056) | Milk tea (24,782) | Leaky milk (12,481) |
Salted egg (17,782) | Pork chop (11,591) | Black pepper (11,701) | Decoct (19,496) | Shrimp meat (23,848) | Soy (10,633) | Fried (24,427) | |
Tender (61,118) | Hong Kong style (16,847) | Sweet (31,610) | Exclusive (6848) | Tea restaurant (16,152) | Greasy (25,533) | ||
15. Thai cuisine | Curry (25,133) | Taste (318,279) | Soup (36,860) | Tom Yam Gong (15,527) | Thai style (14,011) | Mango (11,585) | Seafood (29,395) |
Shrimp cake (11,050) | Rice (35,012) | Beef brisket (7306) | Flavor (100,075) | Water spinach (9388) | Coconut milk (6291) | Cuisine (134,040) | |
Slice (9310) | Lobster (9321) | Glutinous rice (6251) | Coconut juice (7935) | Sauce (24,603) | Rich (24,795) | ||
16. Western cuisine | Cheese (45,741) | Beef (84,851) | Hamburger (36,148) | French fries (24,043) | Cake (26,443) | Milkshake (18,055) | Taste (318,279) |
Bread (22,689) | Burger (12,895) | Mushroom (12,730) | Sauce (24,603) | Cream (10,648) | Steak (20,976) | Chocolate (13,812) | |
Mouthfeel (68,455) | Pizza (9601) | Greasy (25,533) | Limit (8521) | Strawberry (7599) | Salad (10,135) | ||
17. Dessert | Crisp (58,364) | Meat (71,411) | Glutinous rice cake (19,552) | Ice jelly (29,986) | Brown sugar (17,209) | Taste (318,279) | Butterfly (13,667) |
Moon cake (10,079) | Queuing (236,235) | Fresh meat (7896) | Mouthfeel (68,455) | Sweet green rice ball (4748) | Glutinous (24,181) | Crispy (11,017) | |
String (10,745) | Sweet (31,610) | Egg (10,252) | Fragrance (13,482) | Decoct (19,496) | Tender (61,118) | ||
Panel 3. Topic group C: After the meal. | |||||||
18. Services | Services (188,876) | Waiter (107,553) | Environment (145,046) | Bell (21,403) | Attitude (19,811) | Little sister (18,953) | Brother (12,257) |
Active (11,016) | Service attitude (20,263) | Considerate (11,190) | Lo mein (23,983) | Mint (25,327) | Speed (20,687) | Guest (10,877) | |
Thoughtful (6594) | Laddie (7331) | Personnel (5631) | Shop assistant (10,868) | Auntie (10,126) | Cuisine (134,040) | ||
19. Discount | RMB (32,437) | Dine-and-dasher (22,158) | Friends (89,677) | Cost-effective (13,975) | Activities (10,726) | Coupon (9470) | Cost performance (67,240) |
Snacks (28,442) | Group purchase (9015) | Birthday (10,981) | Free (11,516) | Noon (40,346) | Experience (22,426) | Voucher (7497) | |
Offer (7436) | Next time (47,497) | Queuing (236,235) | Parking (5897) | Waiter (107,553) | Time (41,350) | ||
20. Cost performance | Price (54,334) | Taste (318,279) | Cost performance (67,240) | Flavor (100,075) | Cuisine (134,040) | Affordable (18,585) | Queuing (236,235) |
Cheap (17,768) | Expensive (16,601) | Environment (145,046) | Per capita (12,417) | Quantity (48,424) | Snacks (28,442) | Next time (47,497) | |
Exquisite (8157) | Services (188,876) | RMB (32,437) | Friends (89,677) | Hong Kong style (16,847) | Weight (17,489) |
Topic Name | Variable | Mean | Standard Deviation | Max | Min |
---|---|---|---|---|---|
1. Friend | WOT1 | 0.069 | 0.064 | 0.966 | 0.000 |
2. Appointment | WOT2 | 0.048 | 0.064 | 0.833 | 0.000 |
3. Queuing | WOT3 | 0.042 | 0.064 | 0.800 | 0.000 |
4. Environment | WOT4 | 0.049 | 0.059 | 0.800 | 0.000 |
5. Spicy chicken | WOT5 | 0.041 | 0.050 | 0.923 | 0.000 |
6. Chicken | WOT6 | 0.047 | 0.049 | 0.857 | 0.000 |
7. Duck | WOT7 | 0.040 | 0.049 | 0.857 | 0.000 |
8. Beef hotpot | WOT8 | 0.054 | 0.063 | 0.933 | 0.000 |
9. Bullfrog hotpot | WOT9 | 0.042 | 0.060 | 0.857 | 0.000 |
10. Crab | WOT10 | 0.037 | 0.069 | 0.944 | 0.000 |
11. Seafood | WOT11 | 0.036 | 0.066 | 0.875 | 0.000 |
12. Xinjiang cuisine | WOT12 | 0.050 | 0.054 | 0.909 | 0.000 |
13. Cantonese cuisine | WOT13 | 0.031 | 0.061 | 0.923 | 0.000 |
14. Hong Kong cuisine | WOT14 | 0.030 | 0.050 | 0.833 | 0.000 |
15. Thai cuisine | WOT15 | 0.036 | 0.050 | 0.950 | 0.000 |
16. Western cuisine | WOT16 | 0.037 | 0.072 | 0.952 | 0.000 |
17. Dessert | WOT17 | 0.048 | 0.061 | 0.917 | 0.000 |
18. Services | WOT18 | 0.043 | 0.066 | 0.889 | 0.000 |
19. Discount | WOT19 | 0.048 | 0.059 | 0.889 | 0.000 |
20. Cost performance | WOT20 | 0.083 | 0.064 | 0.857 | 0.000 |
N = 651,703 |
Variables | 2019 | 2020 | p-Value (Two-Tailed t-Test) | ||
---|---|---|---|---|---|
Mean | Standard Deviation | Mean | Standard Deviation | ||
N * | 3830 | 3509 | 2753 | 2510 | 0.000 |
Price | 126.5 | 64.5 | 128.8 | 66.0 | 0.017 |
Rating | 4.39 | 0.17 | 4.27 | 0.19 | 0.000 |
Topic Name | Variables | Rating | |||
---|---|---|---|---|---|
Model 1 | Model 2 | Model 3 | Model 4 | ||
1. Friend | WOT1 | — | — | — | — |
2. Appointment | WOT2 | 0.163 *** (0.022) | 0.174 *** (0.022) | 0.122 *** (0.029) | 0.133 *** (0.029) |
3. Queuing | WOT3 | −0.699 *** (0.022) | −0.707 *** (0.022) | −0.822 *** (0.03) | −0.831 *** (0.03) |
4. Environment | WOT4 | −0.152 *** (0.022) | −0.148 *** (0.022) | −0.275 *** (0.029) | −0.272 *** (0.029) |
5. Spicy chicken | WOT5 | −0.214 *** (0.023) | −0.222 *** (0.023) | −0.266 *** (0.031) | −0.274 *** (0.031) |
6. Chicken | WOT6 | −0.080 ** (0.024) | −0.085 *** (0.024) | −0.136 *** (0.032) | −0.141 *** (0.032) |
7. Duck | WOT7 | −0.364*** (0.023) | −0.370 *** (0.023) | −0.410 *** (0.03) | −0.417 *** (0.03) |
8. Beef hotpot | WOT8 | 0.654 *** (0.022) | 0.661 *** (0.022) | 0.759 *** (0.03) | 0.766 *** (0.03) |
9. Bullfrog hotpot | WOT9 | 0.262 *** (0.022) | 0.259 *** (0.022) | 0.157 *** (0.029) | 0.153 *** (0.029) |
10. Crab | WOT10 | 0.292 *** (0.016) | 0.288 *** (0.016) | 0.252 *** (0.021) | 0.246 *** (0.021) |
11. Seafood | WOT11 | 0.107 *** (0.018) | 0.144 *** (0.018) | 0.022 (0.023) | 0.059 * (0.023) |
12. Xinjiang cuisine | WOT12 | −0.015 (0.021) | −0.017 (0.021) | −0.06 * (0.028) | −0.062 * (0.028) |
13. Cantonese cuisine | WOT13 | 0.246 *** (0.018) | 0.242 *** (0.018) | 0.133 *** (0.022) | 0.129 *** (0.022) |
14. Hong Kong cuisine | WOT14 | −0.252 *** (0.022) | −0.262 *** (0.022) | −0.397 *** (0.029) | −0.406 *** (0.029) |
15. Thai cuisine | WOT15 | 0.098 *** (0.023) | 0.104 *** (0.023) | 0.160 *** (0.03) | 0.165 *** (0.03) |
16. Western cuisine | WOT16 | −0.030 (0.016) | −0.031 (0.016) | −0.157 *** (0.02) | −0.159 *** (0.02) |
17. Dessert | WOT17 | 0.423 *** (0.018) | 0.414 *** (0.018) | 0.397 *** (0.024) | 0.389 *** (0.024) |
18. Services | WOT18 | −0.165 *** (0.02) | −0.159 *** (0.02) | −0.131 *** (0.027) | −0.125 *** (0.027) |
19. Discount | WOT19 | −0.167 *** (0.02) | −0.169 *** (0.02) | −0.110 *** (0.027) | −0.111 *** (0.027) |
20. Cost performance | WOT20 | 0.405 *** (0.018) | 0.402 *** (0.018) | 0.312 *** (0.023) | 0.309 *** (0.023) |
Year | −0.224 *** (0.012) | −0.224 *** (0.012) | |||
1. Friend | WOT1Year | — | — | — | — |
2. Appointment | WOT2Year | 0.075 (0.046) | 0.074 (0.046) | ||
3. Queuing | WOT3Year | 0.357 *** (0.044) | 0.361 *** (0.044) | ||
4. Environment | WOT4Year | 0.380 *** (0.045) | 0.380 *** (0.045) | ||
5. Spicy chicken | WOT5Year | 0.173 *** (0.046) | 0.172 *** (0.046) | ||
6. Chicken | WOT6Year | 0.176 *** (0.049) | 0.177 *** (0.049) | ||
7. Duck | WOT7Year | 0.151 ** (0.048) | 0.153 ** (0.048) | ||
8. Beef hotpot | WOT8Year | −0.110 * (0.044) | −0.111 * (0.044) | ||
9. Bullfrog hotpot | WOT9Year | 0.292 *** (0.044) | 0.292 *** (0.044) | ||
10. Crab | WOT10Year | 0.139 *** (0.034) | 0.142 *** (0.034) | ||
11. Seafood | WOT11Year | 0.183 *** (0.036) | 0.179 *** (0.036) | ||
12. Xinjiang cuisine | WOT12Year | 0.139 ** (0.043) | 0.139 ** (0.043) | ||
13. Cantonese cuisine | WOT13Year | 0.280 *** (0.038) | 0.279 *** (0.038) | ||
14. Hong Kong cuisine | WOT14Year | 0.407 *** (0.044) | 0.405 *** (0.044) | ||
15. Thai cuisine | WOT15Year | −0.080 (0.046) | −0.077 (0.046) | ||
16. Western cuisine | WOT16Year | 0.336 *** (0.033) | 0.339 *** (0.033) | ||
17. Dessert | WOT17Year | 0.100 ** (0.037) | 0.099 ** (0.037) | ||
18. Services | WOT18Year | 0.025 (0.042) | 0.024 (0.042) | ||
19. Discount | WOT19Year | −0.059 (0.041) | −0.061 (0.041) | ||
20. Cost performance | WOT20Year | 0.241 *** (0.038) | 0.242 *** (0.038) | ||
Constant | 4.297 *** (0.006) | 4.336 *** (0.007) | 4.374 *** (0.007) | 4.411 *** (0.008) | |
Price control | N | Y | N | Y | |
F-value | 330.10 | 321.19 | 215.75 | 213.88 | |
p-value | 0.000 | 0.000 | 0.000 | 0.000 | |
Adjusted R2 | 0.010 | 0.010 | 0.013 | 0.013 | |
N | 651,703 | 651,703 | 651,703 | 651,703 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jia, S. Analyzing Restaurant Customers’ Evolution of Dining Patterns and Satisfaction during COVID-19 for Sustainable Business Insights. Sustainability 2021, 13, 4981. https://doi.org/10.3390/su13094981
Jia S. Analyzing Restaurant Customers’ Evolution of Dining Patterns and Satisfaction during COVID-19 for Sustainable Business Insights. Sustainability. 2021; 13(9):4981. https://doi.org/10.3390/su13094981
Chicago/Turabian StyleJia, Susan (Sixue). 2021. "Analyzing Restaurant Customers’ Evolution of Dining Patterns and Satisfaction during COVID-19 for Sustainable Business Insights" Sustainability 13, no. 9: 4981. https://doi.org/10.3390/su13094981
APA StyleJia, S. (2021). Analyzing Restaurant Customers’ Evolution of Dining Patterns and Satisfaction during COVID-19 for Sustainable Business Insights. Sustainability, 13(9), 4981. https://doi.org/10.3390/su13094981