Smart Farming through Responsible Leadership in Bangladesh: Possibilities, Opportunities, and Beyond
Abstract
:1. Introduction
2. Present Status of Communication and Agricultural Technology in Bangladesh
2.1. Wireless Communication
2.2. Building Low-Power Wide Area Networks (LPWANs) Where Cellular Network Connectivity Is Limited
2.3. Agriculture Technology and System
2.3.1. Irrigation System
2.3.2. Disease and Pests
2.3.3. Pesticide and Fertilizer
2.3.4. Agriculture Mechanization
3. Potential of Smart Farming in Bangladesh
3.1. Forecasting
3.2. Remote Sensing
3.3. Planting Seeds and Seedlings
3.4. Sensors
3.4.1. Soil Moisture Sensor
3.4.2. Leaf Wetness Sensor
3.4.3. Soil Salinity Sensor
3.4.4. Soil Temperature Sensor
3.5. Farm Management Information System (FMIS)
- -
- Input efficiency—agricultural inputs (e.g., water, soil, pesticides, fertilizers, etc.) and its amount of application efficiency;
- -
- Reduction of cost—it will reduce the production cost through the control and systematic application of the agricultural inputs;
- -
- Profit—it will raise the profit by increasing the production rate of the crops per hectare;
- -
- Climate—it will play a vital role in climate protection (e.g., reduce the amount of chemical use, reduce the emission due to the irrigation and other electric equipment service in the farm, etc.). Hence, AI and IoT based smart farming will help Bangladesh to reach the goal of sustainable agriculture to eliminate hunger by 2030 [53,54].
4. Proposed AI and IoT Based Autonomous Smart Irrigation System in Bangladesh
5. Responsible Leadership
6. The Role of Responsible Leadership for Smart Farming
7. Directions for Future Research
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- World Resources Institute. How to Sustainably Feed 10 Billion People by 2050, in 21 Charts, 2021. Available online: https://www.wri.org/blog/2018/12/how-sustainably-feed-10-billion-people-2050-21-charts (accessed on 12 March 2021).
- Brun-Laguna, K.; Diedrichs, A.L.; Dujovne, D.; Taffernaberry, C.; Leone, R.; Vilajosana, X.; Watteyne, T. Using SmartMesh IP in smart agriculture and smart building applications. Comput. Commun. 2018, 121, 83–90. [Google Scholar] [CrossRef] [Green Version]
- Eastwood, C.; Klerkx, L.; Ayre, M.; Dela-Rue, B. Managing socio-ethical challenges in the development of smart farming: From a fragmented to a comprehensive approach for responsible research and innovation. J. Agric. Environ. Ethics 2017, 32, 741–768. [Google Scholar] [CrossRef] [Green Version]
- Lezoche, M.; Hernandez, J.; Alemany-Díaz, M.; Panetto, H.; Kacprzyk, J. Agri-food 4.0: A survey of the supply chains and technologies for the future agriculture. Comput. Ind. 2020, 117, 103187. [Google Scholar] [CrossRef]
- Panetto, H.; Lezoche, M.; Hernandez Hormazabal, J.; del Mar-Eva-Alemany-Diaz, M.; Kacprzyk, J. Special issue on Agri-Food 4.0 and digitalization in agriculture supply chains—New directions, challenges and applications. Comput. Ind. 2020, 116, 103188. [Google Scholar] [CrossRef]
- Wilkes, J.; Reid, J. Development and application of a distributed leadership framework to the curriculum mapping of quantitative skills in first-year undergraduate agriculture degrees. Int. J. Innov. Sci. Math. Educ. 2019, 27. [Google Scholar] [CrossRef]
- Maak, T.; Pless, N. Business leaders as citizens of the world. Advancing humanism on a global scale. J. Bus. Ethics 2009, 88, 537–550. [Google Scholar] [CrossRef]
- Čuček, L.; Klemeš, J.; Kravanja, Z. A review of footprint analysis tools for monitoring impacts on sustainability. J. Clean. Prod. 2012, 34, 9–20. [Google Scholar] [CrossRef]
- McKim, A.; Pauley, C.; Velez, J.; Sorensen, T. Leadership learning opportunities in agriculture, food, and natural resources education: The role of the teacher. J. Agric. Educ. 2017, 58, 84–100. [Google Scholar] [CrossRef]
- Haque, A.; Fernando, M.; Caputi, P. The relationship between responsible leadership and organizational commitment and the mediating effect of employee turnover intentions: An empirical study with Australian employees. J. Bus. Ethics 2017, 156, 759–774. [Google Scholar] [CrossRef]
- Haque, A.; Fernando, M.; Caputi, P. How is responsible leadership related to the three-component model of organizational commitment? Int. J. Product. Perform. Manag. 2020. [Google Scholar] [CrossRef]
- Ahmed, N.; De, D.; Hussain, I. Internet of Things (IoT) for smart precision agriculture and farming in rural areas. IEEE Internet Things J. 2018, 5, 4890–4899. [Google Scholar] [CrossRef]
- Ojha, T.; Misra, S.; Raghuwanshi, N. Wireless sensor networks for agriculture: The state-of-the-art in practice and future challenges. Comput. Electron. Agric. 2015, 118, 66–84. [Google Scholar] [CrossRef]
- Morgan, A.C.; Fuhrman, N.E.; King, D.L.; Flanders, F.B.; Rudd, R.D. Leadership Curriculum and Materials Used by High School Agricultural Science Teachers: A National Study of the Pre-“LifeKnowledge” Days. J. Agric. Educ. 2013, 54, 72–82. [Google Scholar] [CrossRef]
- Adhikari, L.; Tuladhar, S.; Hussain, A.; Aryal, K. Are traditional food crops really ‘future smart foods?’ A sustainability perspective. Sustainability 2019, 11, 5236. [Google Scholar] [CrossRef] [Green Version]
- Hossain, T.; Doi, Y.; Tazin, T.; Ahad, M.; Inoue, S. Study of LoRaWAN technology for activity recognition. In Proceedings of the 2018 ACM International Joint Conference and 2018 International Symposium on Pervasive and Ubiquitous Computing and Wearable Computers, Singapore, 8–12 October 2018; Association for Computing Machinery: New York, NY, USA, 2018; pp. 1449–1453. [Google Scholar] [CrossRef]
- Huawei All Set for 5G Technical Support in Bangladesh—Xinhua|English.news.cn. Xinhuanet.com, 2020. Available online: http://www.xinhuanet.com/english/2019-11/09/c_138541799.htm (accessed on 23 November 2020).
- Jannath, S. Evaluation of 4G Technology in Mobile Phone Network in Bangladesh. Dspace.bracu.ac.bd, 2020. Available online: http://dspace.bracu.ac.bd/xmlui/handle/10361/12288 (accessed on 23 November 2020).
- Barro, P.; Zennaro, M.; Degila, J.; Pietrosemoli, E. A Smart cities LoRaWAN network based on autonomous Base Stations (BS) for some countries with limited internet access. Future Internet 2019, 11, 93. [Google Scholar] [CrossRef] [Green Version]
- Islam, N.; Ray, B.; Pasandideh, F. IoT Based Smart Farming: Are the LPWAN Technologies Suitable for Remote Communication? IEEE Conference Publication, Ieeexplore.ieee.org, 2020. Available online: https://ieeexplore.ieee.org/document/9192008 (accessed on 23 November 2020).
- Islam, N.; Rashid, M.; Wibowo, S.; Wasimi, S.; Morshed, A.; Xu, C.; Moore, S. Machine learning based approach for weed detection in chilli field using RGB images. In Advances in Natural Computation, Fuzzy Systems and Knowledge Discovery; Meng, H., Lei, T., Li, M., Li, K., Xiong, N., Wang, L., Eds.; Springer: Cham, Switzerland, 2020; pp. 1–9. Available online: https://www.springer.com/gp/book/9783030324551 (accessed on 23 November 2020).
- Bagchi, M.; Rahman, S.; Shunbo, Y. Growth in agricultural productivity and its components in Bangladeshi regions (1987–2009): An application of bootstrapped Data Envelopment Analysis (DEA). Economies 2019, 7, 37. [Google Scholar] [CrossRef] [Green Version]
- Afroj, M.; Kazal, M.; Rahman, M. Precision agriculture in the World and its prospect in Bangladesh. Res. Agric. Livest. Fish. 2016, 3, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Pearson, K.; Millar, G.; Norton, G.; Price, A. Alternate wetting and drying in Bangladesh: Water-saving farming practice and the socioeconomic barriers to its adoption. Food Energy Secur. 2018, 7, e00149. [Google Scholar] [CrossRef]
- Matese, A.; Toscano, P.; Di Gennaro, S.; Genesio, L.; Vaccari, F.; Primicerio, J.; Belli, C.; Zaldei, A.; Bianconi, R.; Gioli, B. Intercomparison of UAV, Aircraft and satellite remote sensing platforms for precision viticulture. Remote Sens. 2015, 7, 2971–2990. [Google Scholar] [CrossRef] [Green Version]
- Islam, N.; Rashid, M.M.; Pasandideh, F.; Ray, B.; Moore, S.; Kadel, R. A Review of Applications and Communication Technologies for Internet of Things (IoT) and Unmanned Aerial Vehicle (UAV) Based Sustainable Smart Farming. Sustainability 2021, 13, 1821. [Google Scholar] [CrossRef]
- Aliev, K.; Moazzam, M.; Narejo, S.; Pasero, E.; Pulatov, A. Internet of plants application for smart agriculture. Int. J. Adv. Comput. Sci. Appl. 2018, 9, 421–429. [Google Scholar] [CrossRef]
- Estrada-Lopez, J.; Castillo-Atoche, A.; Vazquez-Castillo, J.; Sanchez-Sinencio, E. Smart soil parameters estimation system using an autonomous wireless sensor network with dynamic power management strategy. IEEE Sens. J. 2018, 18, 8913–8923. [Google Scholar] [CrossRef]
- Gao, J.; Nuyttens, D.; Lootens, P.; He, Y.; Pieters, J. Recognising weeds in a maize crop using a random forest machine-learning algorithm and near-infrared snapshot mosaic hyperspectral imagery. Biosyst. Eng. 2018, 170, 39–50. [Google Scholar] [CrossRef]
- Shamshiri, R.R.; Hameed, I.A.; Balasundram, S.K.; Ahmad, D.; Weltzien, C.; Yamin, M. Fundamental Research on Unmanned Aerial Vehicles to Support Precision Agriculture in Oil Palm Plantations, 2018. Available online: https://www.intechopen.com/books/agricultural-robots-fundamentals-and-applications/fundamental-research-on-unmanned-aerial-vehicles-to-support-precision-agriculture-in-oil-palm-planta (accessed on 23 November 2020).
- Pimentel, D.; Zuniga, R.; Morrison, D. Update on the environmental and economic costs associated with alien-invasive species in the United States. Ecol. Econ. 2005, 52, 273–288. [Google Scholar] [CrossRef]
- de Castro, A.; Torres-Sánchez, J.; Peña, J.; Jiménez-Brenes, F.; Csillik, O.; López-Granados, F. An automatic random forest-OBIA algorithm for early weed mapping between and within crop rows using UAV imagery. Remote Sens. 2018, 10, 285. [Google Scholar] [CrossRef] [Green Version]
- Guillen-Climent, M.; Zarco-Tejada, P.; Berni, J.; North, P.; Villalobos, F. Mapping radiation interception in row-structured orchards using 3D simulation and high-resolution airborne imagery acquired from a UAV. Precis. Agric. 2012, 13, 473–500. [Google Scholar] [CrossRef] [Green Version]
- Tellaeche, A.; Burgos-Artizzu, X.; Pajares, G.; Ribeiro, A.; Fernández-Quintanilla, C. A new vision-based approach to differential spraying in precision agriculture. Comput. Electron. Agric. 2008, 60, 144–155. [Google Scholar] [CrossRef] [Green Version]
- Pan, Z.; Lie, D.; Qiang, L.; Shaolan, H.; Shilai, Y.; Yande, L.; Yongxu, Y.; Haiyang, P. Effects of citrus tree-shape and spraying height of small unmanned aerial vehicle on droplet distribution. Int. J. Agric. Biol. Eng. 2016, 9, 45–52. [Google Scholar]
- Abdul-Salaam, G.; Hanan Abdullah, A.; Hossein Anisi, M. Energy-efficient data reporting for navigation in position-free hybrid wireless sensor networks. IEEE Sens. J. 2017, 17, 2289–2297. [Google Scholar] [CrossRef]
- Chandrappa, V.Y.; Ray, B.; Ashwath, N.; Shrestha, P. Application of Internet of Things (IoT) to develop a smart watering system for cairns parklands—A case study. In Proceedings of the 2020 IEEE Region 10 Symposium (TENSYMP), Dhaka, Bangladesh, 5–7 June 2020; p. 1118. [Google Scholar]
- Balendonck, J.; Hemming, J.; Tuijl, B.; Incrocci, L.; Pardossi, A.; Marzialetti, P. Sensors and Wireless Sensor Networks for Irrigation Management Under Deficit Conditions (FLOW-AID), Research@WUR, 2020. Available online: https://research.wur.nl/en/publications/sensors-and-wireless-sensor-networks-for-irrigation-management-un. (accessed on 23 November 2020).
- Rowlandson, T. Leaf Wetness: Implications for Agriculture and Remote Sensing, 2020. Available online: https://lib.dr.iastate.edu/etd/12054/ (accessed on 23 November 2020).
- Dadshani, S.; Kurakin, A.; Amanov, S.; Hein, B.; Rongen, H.; Cranstone, S.; Blievernicht, U.; Menzel, E.; Léon, J.; Klein, N.; et al. Non-invasive assessment of leaf water status using a dual-mode microwave resonator. Plant Methods 2015, 11, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Dey, S.; Amin, E.; Karmakar, N. Paper based Chipless RFID Leaf wetness detector for plant health monitoring. IEEE Access 2020, 8, 191986–191996. [Google Scholar] [CrossRef]
- Dey, S.; Bhattacharyya, R.; Karmakar, N.; Sarma, S. A Folded Monopole Shaped Novel Soil Moisture and Salinity Sensor for Precision Agriculture Based Chipless RFID Applications. In Proceedings of the 2019 IEEE MTT-S International Microwave and RF Conference (IMARC), Mumbai, India, 13–15 December 2019; pp. 1–4. [Google Scholar] [CrossRef]
- Impacts of Salinity. Qld.gov.au, 2020. Available online: https://www.qld.gov.au/environment/land/management/soil/salinity/impacts (accessed on 23 November 2020).
- Vineyard Activities 3: Measuring Soil Salinity. Wineaustralia.com, 2020. Available online: https://www.wineaustralia.com/getmedia/3f3c63ea-46db-48b3-9f6a-a9ee6b1babe4/Soil-salinity.pdf (accessed on 23 November 2020).
- Lasne, Y.; Paillou, P.; Freeman, A.; Farr, T.; McDonald, K.C.; Ruffie, G.; Malezieux, J.-M.; Chapman, B.; Demontoux, F. Effect of salinity on the dielectric properties of geological materials: Implication for soil moisture detection by means of radar remote sensing. IEEE Trans. Geosci. Remote Sens. 2008, 46, 1674–1688. [Google Scholar] [CrossRef]
- Martinez, C.; Hancock, R.; Wells, T.; Kalma, D.; Modelling & Simulation Soc Australia & New Zealand Inc. An Assessment of the Variability of Soil Temperature at the Catchment Scale. In Proceedings of the International Congress on Modelling and Simulation (MODSIM07), Christchurch, New Zealand, 10–13 December 2007; Available online: https://espace.library.uq.edu.au/view/UQ:541572 (accessed on 23 November 2020).
- The Importance of Soil Temperature to Growing Plants. ThriftyFun, 2020. Available online: https://www.thriftyfun.com/The-Importance-of-Soil-Temperature-to-Growing-Plants-1.html (accessed on 23 November 2020).
- Singh, P.; Saikia, S. Arduino-based smart irrigation using water flow sensor, soil moisture sensor, temperature sensor and ESP8266 WiFi module. In Proceedings of the 2016 IEEE Region 10 Humanitarian Technology Conference (R10-HTC), Agra, India, 21–23 December 2016; pp. 1–4. Available online: https://ieeexplore.ieee.org/abstract/document/7906792?casa_token=Bo0IHZ6brFMAAAAA:C1SN9-MvI0TLPORf4mUKdS1GmbPkDVh1j06j88ElsIUdR7DlN3q1ttIxDtOrs1RkofG0zb-gsqQ (accessed on 23 November 2020).
- Fountas, S.; Sorensen, C.G.; Tsiropoulos, Z.; Cavalaris, C.; Liakos, V.; Gemtos, T. Farm machinery management information system. Comput. Electron. Agric. 2015, 110, 131–138. [Google Scholar] [CrossRef]
- Paraforos, D.S.; Vassiliadis, V.; Kortenbruck, D.; Stamkopoulos, K.; Ziogas, V.; Sapounas, A.A.; Griepentrog, H.W. A farm management information system using future internet technologies. IFAC PapersOnLine 2016, 49, 324–329. [Google Scholar] [CrossRef]
- Villa-Henriksen, A.; Edwards, G.; Pesonen, L.; Green, O.; Sørensen, C. Internet of Things in arable farming: Implementation, applications, challenges and potential. Biosyst. Eng. 2020, 191, 60–84. [Google Scholar] [CrossRef]
- Saha, K.; Mollah, K. Smart Irrigation Technology for Sustainable Agriculture. The Financial Express, 2020. Available online: https://thefinancialexpress.com.bd/views/smart-irrigation-technology-for-sustainable-agriculture-1575815684 (accessed on 23 November 2020).
- Agarwal, P.; Singh, V.; Saini, G.; Panwar, D. Sustainable Smart-Farming Framework, IGA Global, 2020. Available online: http://igi-global.com/chapter/sustainable-smart-farming-framework/209549 (accessed on 23 November 2020).
- Haque, A.; Fernando, M.; Caputi, P. Responsible leadership, affective commitment and intention to quit: An individual level analysis. Leadersh. Org. Dev. J. 2019, 40, 45–64. [Google Scholar] [CrossRef]
- Waldman, D.; Siegel, D.; Stahl, G. Defining the socially responsible leader: Revisiting issues in responsible leadership. J. Leadersh. Organ. Stud. 2019, 27, 5–20. [Google Scholar] [CrossRef]
- Maak, T.; Pless, N. Responsible leadership in a stakeholder society—A relational perspective. J. Bus. Ethics 2006, 66, 99–115. [Google Scholar] [CrossRef] [Green Version]
- Noor-E-Sabiha; Rahman, S. Environment-smart agriculture and mapping of interactions among environmental factors at the farm level: A directed graph approach. Sustainability 2018, 10, 1580. [Google Scholar] [CrossRef] [Green Version]
- Undp.org, 2020. Available online: https://www.undp.org/content/dam/undp/library/MDG/english/MDG%20Country%20Reports/Bangladesh/MDG%20Progress%20Report%2011.pdf (accessed on 23 November 2020).
- Sobhani, F.A.; Haque, A.; Rahman, S. Socially responsible HRM, employee attitude, and bank reputation: The rise of CSR in Bangladesh. Sustainability 2021, 13, 2753. [Google Scholar] [CrossRef]
- United States Department of Agriculture (USDA); Natural Resources Conservation Service; East National Technology Support Center; Soil Quality National Technology Development Team. Precision Agriculture: NRCS Support for Emerging Technologies; United States Department of Agriculture: Hermon, ME, USA, 2007.
- Whelan, B.M.; Mcbratney, A.B.; Boydell, B.C. The impact of precision agriculture. In Proceedings of the ABARE Outlook Conference, ‘The Future of Cropping in NW NSW’, Moree, UK, 15 July 1997; p. 5. [Google Scholar]
- Whelan, B.; Taylor, J. Precision Agriculture for Grain Production Systems; CSIRO Publishing: Collingwood, Australia, 2013; p. 208. [Google Scholar]
- Zhang, N.; Wang, M.; Wang, N. Precision agriculture—A worldwide overview. Comput. Electron. Agric. 2002, 36, 113–132. [Google Scholar] [CrossRef]
- Lee, W.S.; Alchanatis, V.; Yang, C.; Hirafuji, M.; Moshou, D.; Li, C. Sensing technologies for precision specialty crop production. Comput. Electron. Agric. 2010, 74, 2–33. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Haque, A.; Islam, N.; Samrat, N.H.; Dey, S.; Ray, B. Smart Farming through Responsible Leadership in Bangladesh: Possibilities, Opportunities, and Beyond. Sustainability 2021, 13, 4511. https://doi.org/10.3390/su13084511
Haque A, Islam N, Samrat NH, Dey S, Ray B. Smart Farming through Responsible Leadership in Bangladesh: Possibilities, Opportunities, and Beyond. Sustainability. 2021; 13(8):4511. https://doi.org/10.3390/su13084511
Chicago/Turabian StyleHaque, Amlan, Nahina Islam, Nahidul Hoque Samrat, Shuvashis Dey, and Biplob Ray. 2021. "Smart Farming through Responsible Leadership in Bangladesh: Possibilities, Opportunities, and Beyond" Sustainability 13, no. 8: 4511. https://doi.org/10.3390/su13084511