How to Measure Environmental Performance in Ports
Abstract
:Featured Application
Abstract
1. Introduction
1.1. The Oceans and the Blue Economy
1.1.1. Blue Economy Management
1.1.2. Blue Economy Cases
1.2. Green Ports and Environmental Performance in Ports (EPP)
1.2.1. Clean Energies in Port Environments
1.2.2. Environmental Performance Indicators in the World’s Ports
2. Methods
3. Results
3.1. Qualitative Review Analysis
3.2. Quantitative Review Analysis
- Does the port have an environmental monitoring program?
- Does the program address air quality?
- Does the program address the carbon footprint?
- Does the program address energy consumption?
- Does the program address marine ecosystems?
- Does the program address noise?
- Does the program address sediment quality?
- Does the program address soil quality?
- Does the program address terrestrial habitats?
- Does the program address waste?
- Does the program address water consumption?
- Does the program address water quality?
- Has the port identified environmental performance indicators (EPIs) to monitor trends in environmental performance?
- Level 1—Monitoring of regulations.
- Level 2—Systematic use of a defined number of best practices.
- Level 3—Integration of best practices into an adopted management plan and quantifiable understanding of environmental impacts.
- Level 4—Introduction of new technologies.
- Level 5—Excellence and leadership.
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Goal 14 Targets (Extracted from the United Nations SDGs)
Appendix B. Get to Know the Sustainable Small-Scale Fisheries (SSF) Guidelines
Appendix C. EcoPorts Self Diagnosis Method (SDM) Tools
- -
- The SDM checklist: Filling in the SDM checklist is your ‘passport’ to the EcoPorts network.
- -
- SDM Comparison: Compare your SDM score with the European average
- -
- SDM Review: Review your SDM score and receive expert’s advice and customized recommendations.” [97]
Appendix D. Green Marine Environmental Program
Appendix E
References
- Visbeck, M.; Kronfeld-Goharani, U.; Neumann, B.; Rickels, W.; Schmidt, J.; van Doorn, E.; Matz-Lück, N.; Ott, K.; Quaas, M.F. Securing blue wealth: The need for a special sustainable development goal for the ocean and coasts. Mar. Policy 2014, 48, 184–191. [Google Scholar] [CrossRef][Green Version]
- García-Llave, R.; Piniella, F.; Acosta-Sánchez, M. Maritime Interdiction on The High Seas: A Case Study of Spain and The Concept of ‘Universal Jurisdiction. J. Marit. Res. 2015, 12, 77–88. [Google Scholar]
- Okafor-Yarwood, I. Illegal, unreported and unregulated fishing, and the complexities of the sustainable development goals (SDGs) for countries in the Gulf of Guinea. Mar. Policy 2019, 99, 414–422. [Google Scholar] [CrossRef][Green Version]
- Visbeck, M.; Kronfeld-Goharani, U.; Neumann, B.; Rickels, W.; Schmidt, J.; Van Doorn, E.; Matz-Lück, N.; Proelss, A. A Sustainable Development Goal for the Ocean and Coasts: Global ocean challenges benefit from regional initiatives supporting globally coordinated solutions. Mar. Policy 2014, 49, 87–89. [Google Scholar] [CrossRef]
- Gifford, E.; McKelvey, M. Knowledge-Intensive Entrepreneurship and S3: Conceptualizing Strategies for Sustainability. Sustainability 2019, 11, 4824. [Google Scholar] [CrossRef][Green Version]
- Hermann, L.; Kraus, F.; Hermann, R. Phosphorus Processing—Potentials for Higher Efficiency. Sustainability 2018, 10, 1482. [Google Scholar] [CrossRef][Green Version]
- Arana-Landin, S. Social Economy as the Means to Help Achieve the Targets of Sustainable Development Goal 14. Sustainability 2020, 12, 4529. [Google Scholar] [CrossRef]
- Said, A.; Chuenpagdee, R. Aligning the sustainable development goals to the small-scale fisheries guidelines: A case for EU fisheries governance. Mar. Policy 2019, 107. [Google Scholar] [CrossRef]
- Haas, B.; Fleming, A.; Haward, M.; McGee, J. Big fishing: The role of the large-scale commercial fishing industry in achieving Sustainable Development Goal 14. Rev. Fish Biol. Fish. 2019, 29, 161–175. [Google Scholar] [CrossRef]
- Haas, B.; Haward, M.; McGee, J.; Fleming, A. Explicit targets and cooperation: Regional fisheries management organizations and the sustainable development goals. Int. Environ. Agreem. PoliticsLaw Econ. 2014, 1–13. [Google Scholar] [CrossRef]
- González-Del-Campo, A.; Gazzola, P.; Onyango, V. The mutualism of strategic environmental assessment and sustainable development goals. Environ. Impact Assess. Rev. 2020, 82. [Google Scholar] [CrossRef]
- Pedercini, M.; Zuellich, G.; Dianati, K.; Arquitt, S. Toward achieving Sustainable Development Goals in Ivory Coast: Simulating pathways to sustainable development. Sustain. Dev. 2018, 26, 588–595. [Google Scholar] [CrossRef]
- Mohammed, E.Y.; Steinbach, D.; Steele, P. Fiscal reforms for sustainable marine fisheries governance: Delivering the SDGs and ensuring no one is left behind. Mar. Policy 2018, 93, 262–270. [Google Scholar] [CrossRef]
- Garland, M.; Axon, S.; Graziano, M.; Morrissey, J.; Heidkamp, C.P. The blue economy: Identifying geographic concepts and sensitivities. Geogr. Compass. 2019, 13, e12445. [Google Scholar] [CrossRef][Green Version]
- Winder, G.M.; Le Heron, R. Assembling a Blue Economy moment? Geographic engagement with globalizing biological-economic relations in multi-use marine environments. Dialogues Hum. Geogr. 2017, 7, 3–26. [Google Scholar] [CrossRef][Green Version]
- McKinley, E.; Aller-Rojas, O.; Hattam, C.; Germond-Duret, C.; San Martín, I.; Hopkins, C.; Aponte, H.; Potts, T. Charting the course for a blue economy in Peru: A research agenda. Environ. Dev. Sustain. 2019, 21, 2253–2275. [Google Scholar] [CrossRef][Green Version]
- Mulazzani, L.; Malorgio, G. Blue growth and ecosystem services. Mar. Policy 2017, 85, 17–24. [Google Scholar] [CrossRef]
- Sarker, S.; Bhuyan, A.; Rahman, M.M.; Islam, M.A.; Hossain, M.S.; Basak, S.C.; Islam, M.M. From science to action: Exploring the potentials of Blue Economy for enhancing economic sustainability in Bangladesh. Ocean Coast. Manag. 2018, 157, 180–192. [Google Scholar] [CrossRef]
- Voyer, M.; van Leeuwen, J. Social license to operate’ in the Blue Economy. Resour. Policy 2019, 62, 102–113. [Google Scholar] [CrossRef]
- Voyer, M.; Farmery, A.K.; Kajlich, L.; Vachette, A.; Quirk, G. Assessing policy coherence and coordination in the sustainable development of a Blue Economy. A case study from Timor Leste. Ocean Coast. Manag. 2020, 192, 105187. [Google Scholar] [CrossRef]
- Mallin, F.; Barbesgaard, M. Awash with contradiction: Capital, ocean space and the logics of the Blue Economy Paradigm. Geoforum 2020, 113, 121–132. [Google Scholar] [CrossRef]
- Bennett, N.J. Marine Social Science for the Peopled Seas. Coast. Manag. 2019, 47, 244–252. [Google Scholar] [CrossRef][Green Version]
- Katila, J.; Ala-Rami, K.; Repka, S.; Rendon, E.; Torronen, J. Defining and quantifying the sea-based economy to support regional blue growth strategies—Case Gulf of Bothnia. Mar. Policy 2019, 100, 215–225. [Google Scholar] [CrossRef]
- Akpomera, E. Africa’s Blue Economy: Potentials and challenges for more locally beneficial development. Rev. Afr. Political Econ. 2020, 47, 651–661. [Google Scholar] [CrossRef]
- Hassanali, K. CARICOM and the blue economy—Multiple understandings and their implications for global engagement. Mar. Policy 2020, 120. [Google Scholar] [CrossRef]
- Pinto, H.; Cruz, A.R.; Combe, C. Cooperation and the emergence of maritime clusters in the Atlantic: Analysis and implications of innovation and human capital for blue growth. Mar. Policy 2015, 57, 167–177. [Google Scholar] [CrossRef][Green Version]
- Hoerterer, C.; Schupp, M.F.; Benkens, A.; Nickiewicz, D.; Krause, G.; Buck, B.H. Stakeholder Perspectives on Opportunities and Challenges in Achieving Sustainable Growth of the Blue Economy in a Changing Climate. Front. Mar. Sci. 2020, 6, 795. [Google Scholar] [CrossRef]
- Zheng, Y.; Zhao, J.; Shao, G. Port City Sustainability: A Review of Its Research Trends. Sustainability 2020, 12, 8355. [Google Scholar] [CrossRef]
- Norshafinas, B.A.; Mohamad, R.O.; Mohd, S.I.; Saadon, D.A.; Mohamed, N. Sustainable development goal of the recreation port: The case study of the Duyong marina & resort, Terengganu, Malaysia. J. Crit. Rev. 2020, 7, 1449–1454. [Google Scholar] [CrossRef]
- Dong, G.; Zhu, J.; Li, J.; Wang, H.; Gajpal, Y. Evaluating the Environmental Performance and Operational Efficiency of Container Ports: An Application to the Maritime Silk Road. Int. J. Environ. Res. Public Health 2019, 16, 2226. [Google Scholar] [CrossRef][Green Version]
- Lawer, E.T. Transnational networks for the ‘greening’ of ports: Learning from best practice? GeoJournal 2019. [Google Scholar] [CrossRef]
- Stein, M.; Acciaro, M. Value Creation through Corporate Sustainability in the Port Sector: A Structured Literature Analysis. Sustainability 2020, 12, 5504. [Google Scholar] [CrossRef]
- Karani, P.; Failler, P. Comparative coastal and marine tourism, climate change, and blue economy in African Large Marine Ecosystems. Environ. Dev. 2020, 100572. [Google Scholar] [CrossRef]
- Novaglio, C.; Bax, N.; Boschetti, F.; Emad, G.R.; Frusher, S.; Fullbrook, L.; Hemer, M.; Jennings, S.; Van Putten, I.; Robinson, L.M.; et al. Deep aspirations: Towards a sustainable offshore Blue Economy. Rev. Fish Biol. Fish. 2021, 21, 1–22. [Google Scholar] [CrossRef]
- Slišković, M.; Ukić Boljat, H.; Jelaska, I.; Jelić Mrčelić, G. Review of Generated Waste from Cruisers: Dubrovnik, Split, and Zadar Port Case Studies. Resources 2018, 7, 72. [Google Scholar] [CrossRef][Green Version]
- Wu, X.; Zhang, L.; Yang, H.-C. Integration of Eco-centric Views of Sustainability in Port Planning. Sustainability 2020, 12, 2971. [Google Scholar] [CrossRef][Green Version]
- Lawer, E.T.; Herbeck, J.; Flitner, M. Selective Adoption: How Port Authorities in Europe and West Africa Engage with the Globalizing ‘Green Port’ Idea. Sustainability 2019, 11, 5119. [Google Scholar] [CrossRef][Green Version]
- Wooldridge, C.F.; McMullen, C.; Howe, V. Environmental management of ports and harbours—Implementation of policy through scientific monitoring. Mar. Policy 1999, 23, 413–425. [Google Scholar] [CrossRef]
- Di Vaio, A.; Varriale, L. Management Innovation for Environmental Sustainability in Seaports: Managerial Accounting Instruments and Training for Competitive Green Ports beyond the Regulations. Sustainability 2018, 10, 783. [Google Scholar] [CrossRef][Green Version]
- Cavagnaro, R.J.; Copping, A.E.; Green, R.; Greene, D.; Jenne, S.; Rose, D.; Overhus, D. Powering the Blue Economy: Progress Exploring Marine Renewable Energy Integration With Ocean Observations. Mar. Technol. Soc. J. 2020, 54, 114–125. [Google Scholar] [CrossRef]
- Yigit, K.; Kokkulunk, G.; Parlak, A.; Karakas, A. Energy cost assessment of shoreside power supply considering the smart grid concept: A case study for a bulk carrier ship. Marit. Policy Manag. 2016, 43, 469–482. [Google Scholar] [CrossRef]
- Le, X.Q.; Hens, L.; Stoyanov, S. Water management in the framework of environmental management systems in Bulgarian seaports. Phys. Chem. EarthParts A/B/C 2011, 36, 141–149. [Google Scholar] [CrossRef]
- Balbaa, A.; Swief, R.A.; El-Amary, N.H. Smart Integration Based on Hybrid Particle Swarm Optimization Technique for Carbon Dioxide Emission Reduction in Eco-Ports. Sustainability 2019, 11, 2218. [Google Scholar] [CrossRef][Green Version]
- Contestabile, P.; Vicinanza, D. Coastal Defence Integrating Wave-Energy-Based Desalination: A Case Study in Madagascar. J. Mar. Sci. Eng. 2018, 6, 64. [Google Scholar] [CrossRef][Green Version]
- Contestabile, P.; Di Lauro, E.; Buccino, M.; Vicinanza, D. Economic Assessment of Overtopping BReakwater for Energy Conversion (OBREC): A Case Study in Western Australia. Sustainability 2017, 9, 51. [Google Scholar] [CrossRef]
- Esteban, M.D.; López-Gutiérrez, J.-S.; Negro, V. Gravity-Based Foundations in the Offshore Wind Sector. J. Mar. Sci. Eng. 2019, 7, 64. [Google Scholar] [CrossRef][Green Version]
- Li, L.; Zhu, J.; Ye, G.; Feng, X. Development of Green Ports with the Consideration of Coastal Wave Energy. Sustainability 2018, 10, 4270. [Google Scholar] [CrossRef][Green Version]
- Yu, J.; Voß, S.; Tang, G. Strategy development for retrofitting ships for implementing shore side electricity. Transp. Res. Part D Transp. Environ. 2019, 74, 201–213. [Google Scholar] [CrossRef]
- Simonsen, M.; Gossling, S.; Walnum, H.J. Cruise ship emissions in Norwegian waters: A geographical analysis. J. Transp. Geogr. 2019, 78, 87–97. [Google Scholar] [CrossRef]
- Sanabra, M.C.; Santamaria, J.J.U.; De Oses, F.X.M. Manoeuvring and hotelling external costs: Enough for alternative energy sources? Marit. Policy Manag. 2014, 41, 42–60. [Google Scholar] [CrossRef][Green Version]
- Široka, M.; Pilicic, S.; Milosevic, T.; Lacalle, I.; Traven, L. A novel approach for assessing the ports’ environmental impacts in real time—The IoT based port environmental index. Ecol. Indic. 2021, 120, 106949. [Google Scholar] [CrossRef]
- Fazia, C.; Errigo, M.F. The coastal port landscape: New opportunities for tourism and challenges for clean energy. Int. J. Urban Plan. 2017, 10, 57–74. [Google Scholar]
- Cloquell-Ballester, V.; Lo-Iacono-Ferreira, V.G.; Artacho-Ramírez, M.Á.; Capuz-Rizo, S.F. The Carbon Footprint of Valencia Port: A Case Study of the Port Authority of Valencia (Spain). Int. J. Environ. Res. Public Health 2020, 17, 8157. [Google Scholar] [CrossRef] [PubMed]
- Poulsen, R.T.; Ponte, S.; Sornn-Friese, H. Environmental upgrading in global value chains: The potential and limitations of ports in the greening of maritime transport. Geoforum 2018, 89, 83–95. [Google Scholar] [CrossRef][Green Version]
- Cammin, P.; Yu, J.; Heilig, L.; Voss, S. Monitoring of air emissions in maritime ports. Transp. Res. Part D Transp. Environ. 2020, 87. [Google Scholar] [CrossRef]
- Lee, T.; Yeo, G.T.; Thai, V. Environmental efficiency analysis of port cities: Slacks-based measure data envelopment analysis approach. Transp. Policy 2014, 33, 82–88. [Google Scholar] [CrossRef]
- Zhu, M.; Yuen, K.F.; Ge, J.; Li, K. Impact of maritime emissions trading system on fleet deployment and mitigation of CO2 emission. Transp. Res. Part D Transp. Environ. 2018, 62, 474–488. [Google Scholar] [CrossRef]
- Wang, T.; Du, Y.; Fang, D.; Li, Z.C. Berth Allocation and Quay Crane Assignment for the Trade-off Between Service Efficiency and Operating Cost Considering Carbon Emission Taxation. Transp. Sci. 2020, 54. [Google Scholar] [CrossRef]
- Mjelde, A.; Endresen, O.; Bjorshol, E.; Gierloff, C.W.; Husby, E.; Solheim, J.; Mjos, N.; Eide, M.S. Differentiating on port fees to accelerate the green maritime transition. Mar. Pollut. Bull. 2019, 149, 110561. [Google Scholar] [CrossRef] [PubMed]
- Taljaard, S.; Slinger, J.H.; Arabi, S.; Weerts, S. The natural environment in port development: A ‘green handbrake’ or an equal partner? Ocean Coast. Manag. 2021, 199. [Google Scholar] [CrossRef]
- Klopott, M. Restructuring of environmental management in Baltic ports: Case of Poland. Marit. Policy Manag. 2013, 40, 439–450. [Google Scholar] [CrossRef]
- Stanković, J.J.; Marjanović, I.; Papathanasiou, J.; Drezgić, S. Social, Economic and Environmental Sustainability of Port Regions: MCDM Approach in Composite Index Creation. J. Mar. Sci. Eng. 2021, 9, 74. [Google Scholar] [CrossRef]
- Liao, M.S.; Ding, J.F.; Liang, G.S.; Lee, K.L. Key Criteria for Evaluating the Green Performance of Ports. J. Test. Eval. 2016, 44, 20140354. [Google Scholar] [CrossRef]
- Wan, C.P.; Zhang, D.; Yan, X.P.; Yang, Z.L. A novel model for the quantitative evaluation of green port development—A case study of major ports in China. Transp. Res. Part D Transp. Environ. 2017, 61. [Google Scholar] [CrossRef]
- Puig, M.; Michail, A.; Wooldridge, C.; Darbra, R. Benchmark dynamics in the environmental performance of ports. Mar. Pollut. Bull. 2017, 121. [Google Scholar] [CrossRef]
- Puig, M.; Raptis, S.; Wooldridge, C.; Darbra, R.M. Performance trends of environmental management in European ports. Mar. Pollut. Bull. 2020, 111686. [Google Scholar] [CrossRef]
- Walker, T. Green Marine: An environmental program to establish sustainability in marine transportation. Mar. Pollut. Bull. 2016, 105, 199–207. [Google Scholar] [CrossRef] [PubMed]
- Hossain, T.; Adams, M.; Walker, T. Sustainability initiatives in Canadian ports. Mar. Policy 2019. [Google Scholar] [CrossRef]
- Hall, P.; O’Brien, T.; Woudsma, C. Environmental innovation and the role of stakeholder collaboration in West Coast port gateways. Res. Transp. Econ. 2013, 42, 87–96. [Google Scholar] [CrossRef]
- Polanco-Pérez, J.; Search, F.V.; Winckler, P.; Ochoa-Muñoz, M.J.; Landaeta, M. Unexpected effects of coastal storms on trophic ecology of two rocky reef fish species. Mar. Biol. 2021, 168, 20. [Google Scholar] [CrossRef]
- Valenzuela, V.P.B.; Samarasekara, R.S.M.; Kularathna, A.H.T.S.; Perez, G.C.C.; Norikazu, F.; Crichton, R.N.; Quiroz, M.; Yavar, R.; Izumi, I.; Aranguiz, R.; et al. Comparative Analysis of Tsunami Recovery Strategies in Small Communities in Japan and Chile. Geosciences 2019, 9, 26. [Google Scholar] [CrossRef][Green Version]
- Seisdedos, M.; Carrasco, P. Port Projects in Blue Economy: Port of Motril-Granada. J. Coast. Res. 2020, 95, 940. [Google Scholar] [CrossRef]
- Khaslavskaya, A.; Roso, V. Outcome-Driven Supply Chain Perspective on Dry Ports. Sustainability 2019, 11, 1492. [Google Scholar] [CrossRef][Green Version]
- Kotowska, I.; Mańkowska, M.; Pluciński, M. Inland Shipping to Serve the Hinterland: The Challenge for Seaport Authorities. Sustainability 2018, 10, 3468. [Google Scholar] [CrossRef][Green Version]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; The PRISMA Group. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Methley, A.M.; Campbell, S.; Chew-Graham, C.; McNally, R.; Cheraghi-Sohi, S. PICO, PICOS and SPIDER: A comparison study of specificity and sensitivity in three search tools for qualitative systematic reviews. BMC Health Serv. Res. 2014, 14, 579. [Google Scholar] [CrossRef][Green Version]
- Solé, L.; Ariza, E. A wider view of assessments of ecosystem services in coastal areas: The perspective of social-ecological complexity. Ecol. Soc. 2019, 24. [Google Scholar] [CrossRef]
- Porter, A.L.; Kongthon, A.; Lu, J.C. Research profiling: Improving the literature review. Scientometrics 2002, 53, 351–370. [Google Scholar] [CrossRef]
- Sun, J.; Wang, M.-H.; Ho, Y.-S. A historical review and bibliometric analysis of research on estuary pollution. Mar. Pollut. Bull. 2012, 64, 13–21. [Google Scholar] [CrossRef] [PubMed]
- Stojanovic, T.; McNae, H.; Tett, P.; Potts, T.W.; Reis, J.; Smith, H.D.; Dillingham, I. The “social” aspect of social-ecological systems: A critique of analytical frameworks and findings from a multisite study of coastal sustainability. Ecol. Soc. 2016, 21. [Google Scholar] [CrossRef][Green Version]
- Wang, L.; Xue, X.; Zhao, Z.; Wang, Z. The Impacts of Transportation Infrastructure on Sustainable Development: Emerging Trends and Challenges. Int. J. Environ. Res. Public Health 2018, 15, 1172. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Vega-Muñoz, A.; Arjona-Fuentes, J.M.; Ariza-Montes, A.; Han, H.; Law, R. In search of ‘a research front’ in cruise tourism studies. Int. J. Hosp. Manag. 2020, 85, 102353. [Google Scholar] [CrossRef]
- Kullenberg, C.; Kasperowski, D. What Is Citizen Science? A Scientometric Meta-Analysis. PLoS ONE 2016, 11, e0147152. [Google Scholar] [CrossRef][Green Version]
- Mikhaylov, A.; Mikhaylova, A.; Hvaley, D. Knowledge Hubs of Russia: Bibliometric Mapping of Research Activity. J. Scientometr. Res. 2020, 9, 1–10. [Google Scholar] [CrossRef]
- Albort-Morant, G.; Henseler, J.; Leal-Millán, A.; Cepeda-Carrión, G. Mapping the Field: A Bibliometric Analysis of Green Innovation. Sustainability 2017, 9, 1011. [Google Scholar] [CrossRef][Green Version]
- Vega-Muñoz, A.; Arjona-Fuentes, J.M. Social Networks and Graph Theory in the Search for Distant Knowledge in the Field of Industrial Engineering. In Advanced Applications of Graph Theory in Modern Society; Pal, M., Samanta, S., Pal, A., Eds.; IGI-Global: Hershey, PA, USA, 2020; pp. 397–418. [Google Scholar] [CrossRef]
- Kazerani, M.; Davoudian, A.; Zayeri, F.; Soori, H. Assessing abstracts of Iranian systematic reviews and meta-analysis indexed in WOS and Scopus using PRISMA. Med. J. Islam Repub. Iran 2017, 31, 104–109. [Google Scholar] [CrossRef] [PubMed]
- Sott, M.K.; Furstenau, L.B.; Kipper, L.M.; Giraldo, F.D.; Lopez-Robles, J.R.; Cobo, M.J.; Zahid, A.; Abbasi, Q.H.; Imran, M.A. Precision Techniques and Agriculture 4.0 Technologies to Promote Sustainability in the Coffee Sector: State of the Art, Challenges and Future Trends. IEEE Access 2020, 8, 149854–149867. [Google Scholar] [CrossRef]
- Carlucci, S.; De-Simone, M.; Firth, S.K.; Kjærgaard, M.B.; Markovic, R.; Rahaman, M.S.; Annaqeeb, M.K.; Biandrate, S.; Das, A.; Dziedzic, J.W.; et al. Modeling occupant behavior in buildings. Build. Environ. 2020, 174, 106768. [Google Scholar] [CrossRef]
- Oliveira, T. Scientific policies in the knowledge age: A conjuncture analysis of the global scientific ecosystem. Perspectivas em Ciência da Informação 2019, 24, 191–215. [Google Scholar] [CrossRef]
- Chadegani, A.A.; Salehi, H.; Yunus, M.M.; Farhadi, H.; Fooladi, M.; Maryam Farhadi, M.; Nader Ale Ebrahim, N.A. A Comparison between Two Main Academic Literature Collections: Web of Science and Scopus Databases. Asian Soc. Sci. 2013, 9, 18–26. [Google Scholar] [CrossRef][Green Version]
- Lloyd’s List’s One Hundred Ports. Available online: https://lloydslist.maritimeintelligence.informa.com/one-hundred-container-ports-2020 (accessed on 27 February 2021).
- UNCTAD Stat Maritime Profile. Available online: https://unctadstat.unctad.org/CountryProfile/MaritimeProfile/en-GB/004/index.html (accessed on 27 February 2021).
- Darbra, R.M.; Ronza, A.; Casal, J.; Stojanovic, T.A.; Wooldridge, C. The Self Diagnosis Method. A new methodology to assess environmental management in sea ports. Mar. Pollut. Bull. 2004, 48, 420–428. [Google Scholar] [CrossRef] [PubMed]
- United Nations. Goal 14: Conserve and Sustainably Use the Oceans, Seas and Marine Resources. Available online: https://www.un.org/sustainabledevelopment/oceans/ (accessed on 26 March 2021).
- Food and Agriculture Organization. Get to Know the SSF Guidelines. Available online: http://www.fao.org/voluntary-guidelines-small-scale-fisheries/guidelines/en/ (accessed on 26 March 2021).
- EcoPorts Tools. Self Diagnosis Method (SDM): The User-Friendly Environmental Checklist. Available online: https://www.ecoports.com/sdm (accessed on 26 March 2021).
- Green Marine Environmental Certification Program. Available online: https://green-marine.org/certification/scope-and-criteria/ (accessed on 26 March 2021).
PICOS | Description |
---|---|
Population | Port companies or port authorities (only seaports and maritime ports, considered ports in inland waterways). |
Interventions | Measurement of port environmental performance. |
Comparator | Presence of port environmental performance indicators (definition, validation, or application) |
Outcomes | An environmental performance evaluation of one or a group of ports at the company or port authority level in terms of ownership. Their current performance is identified or performance is compared over time or between ports. |
Study designs | Only quantitative study types are included (survey datasets, cohort studies, cross-sectional studies). |
First Author | Journal | Publ. Year | Affiliation Author | WoS: Category and Accession Number |
---|---|---|---|---|
Wooldridge et al. | Mar. Pol. | 1999 | Cardiff Univ. (UK) | Environ. Stu.; Int. Relat./000081998200010 |
Le et al. | Phys. Chem. Earth | 2011 | Vrije Univ. Brussel (BE), Univ. Chem. Technol. & Metall. (BG) | Geosci., Multidiscip.; Meteorol. & Atmos. Sci.; Water Resour./000288689700004 |
Klopott | Marit. Policy Manag. | 2013 | Gdynia Marit. Univ. (PL) | Transp./000322696900004 |
Walker et al. | Mar. Pollut. Bull. | 2016 | Dalhousie Univ. (CA) | Environ. Sci.; Mar. & Freshw. Biol./000375816000037 |
Puig et al. | Mar. Pollut. Bull. | 2017 | Polytech. Univ. Catalonia (SP), ESPO 1 (BE), Cardiff Univ. (UK) | Environ. Sci.; Mar. & Freshw. Biol./000407529200024 |
Dong et al. | Int. J. Environ. Res. Public Health | 2019 | Shanghai Marit. Univ. (CN), Southwestern Univ. Financ. & Econ. (CN), Zhejiang Gongshang Univ. (CN), Univ. Manitoba (CA) | Environ. Sci.; Public, Environ. & Occup. Health/000473750500160 |
Hossain et al. | Mar. Pol. | 2019 | Gov. of Nfld. and Labrador (CA), Dalhousie Univ. (CA) | Environ. Stud.; Int. Relat./000474313500005 |
Cloquell-Ballester et al. | Int. J. Environ. Res. Public Health | 2020 | Polytech. Univ. Valencia (SP) | Environ. Sci.; Public, Environ. & Occup. Health/000589167700001 |
Puig et al. | Mar. Pollut. Bull. | 2020 | Polytech. Univ. Catalonia (SP), ESPO (BE), Cardiff Univ. (UK) | Environ. Sci.; Mar. & Freshw. Biol./000587626600014 |
Široka et al. | Ecol. Indic. | 2021 | Univ. Rijeka (HR), Polytech. Univ. Valencia (SP) | Biodivers. Conserv.; Environ. Sci./000591903100003 |
Thematic and Geographic Coverage | Le, Hens, and Stoyanov (2011) | Klopott (2013) | Walker (2016) | Puig, Michail, Wooldridge, and Darbra (2017) | Hossain, Adams, and Walker (2019) | Puig, Raptis, Wooldridge, and Darbra (2020) | Mean |
---|---|---|---|---|---|---|---|
Phys. Chem. Earth | Marit. Policy Manag. | Mar. Pollut. Bull. | Mar. Pollut. Bull. | Mar. Pol. | Mar. Pollut. Bull. | ||
SDG 6: Clean Water and Sanitation | 7 | 0 | 0 | 2 | 0 | 2 | 2 |
SDG 7: Affordable and Clean Energy | 0 | 1 | 0 | 1 | 0 | 1 | 1 |
SDG 12: Responsible Consumption and Production | 4 | 1 | 1 | 2 | 1 | 2 | 2 |
SDG 14: Life Below Water | 2 | 1 | 1 | 2 | 1 | 2 | 2 |
Total SDG Resources | 13 | 4 | 2 | 7 | 2 | 7 | 6 |
SDG 13: Climate Action | 2 | 1 | 1 | 2 | 1 | 2 | 2 |
SDG 15: Life and Land | 0 | 1 | 1 | 2 | 1 | 2 | 1 |
Total SDG Environments | 2 | 2 | 2 | 4 | 2 | 4 | 3 |
Total Environmental SDGs | 15 | 6 | 4 | 11 | 4 | 11 | 9 |
GM/GMEP Framework | No | No | Yes | No | Yes | No | |
ESPO/EcoPorts Framework | Yes | Yes | No | Yes | No | Yes | |
Complexity of measurement scales | Ratio | Dichotomy/ Ordinal | Ordinal | Dichotomy | Ordinal | Dichotomy | |
Statistical tests | n.a.3 | n.a. | n.a. | n.a. | n.a. | n.a. | |
Number of ports studied | 2 | 4 | 26 | 91 | 18 | 90 | |
Number of ports in Lloyd’s List’s One Hundred Ports 1 | 0 | 1 | 2 | 2 | n.a. | ||
Port throughput 2019 1, coverage range (thousands of TEUs and low standard port coding) | --- | 2073 (DDN) | 1745 (YVR)—3399 (YUL) | n.a. | 1745 (YVR)—3399 (YUL) | n.a. | |
Number of countries | 1 | 1 | 2 | 20 | 1 | 19 | |
Country port throughput 2019 2, coverage range (thousands of TEUs and ISO 3166-1-alpha-2 code) | 263 | 3046 | 7004 (CA)—55,519 (US) | 223 (EE)—19,596 (DE) | 7004 | 223 (EE)—19,596 (DE) | |
Area/Countries (ISO 3166-1-alpha-2 code) | BG | PL | CA, US | Europe | CA | Europe |
Aspect | Indicators | Specific Parameters |
---|---|---|
Environmental conditions in and around the ports | ||
Water quality | Physico-chemical parameters | Temperature (C), turbidity (NTU), total dissolved solids (TDS), and total suspended solids TSS (mg/L) |
Organic and inorganic pollution | DO, BOD, COD, nitrite, nitrate, ammoniac, phosphate, and coliforms (MPN/100 mL) | |
Metals in water (mg/L) | Chromium (Cr), cadmium (Cd), copper (Cu), lead (Pb), manganese (Mn), zinc (Zn), iron (Fe), arsenic (As), mercury (Hg), oil (mg/L) | |
Persistent organic compounds (lg/L) | Lindane, aldrin, dieldrin, endrin, DDT and metabolites (DDD and DDE), organotins (TBT and derivatives) | |
Soil and sediment quality | Metals in sediments (water bottom) (mg/kg dry) | Cadmium (Cd), copper (Cu), lead (Pb), zinc (Zn), arsenic (As), mercury (Hg) |
Oil (mg/g dry) and cyanide (mg/kg dry) | ||
Persistent organic compounds (lg/kg dry weight) | Lindane, aldrin, dieldrin, endrin, DDT and metabolites (DDD and DDE), organotins (TBT and derivatives) | |
Air quality | Micro-climate conditions | Temperature (ºC), humidity (%), wind velocity (m/s), CO, NO2, SO2, Pb, VOC, dusts (mg/m3) |
Noise (dBA) | ||
Biological resources | Degradation of ecosystems | |
Presence of pollutant in biological indicative species (clam, mussels, fish, and resident bird) (mg/kg dry tissue) | Metals, persistent organic compounds | |
Emissions from the port: | ||
Into the air | Emissions into the air (tonnes/year) | CO, CO2, NOx, SO2, VOC, dust, PM |
Into the water | Amount of household wastewater (m3/year) | |
Amount of oily waste from ship (m3/year) | Bilge, oil sludge | |
Solid waste | From ships and port’s operations | Type; amount (tonnes/year) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vega-Muñoz, A.; Salazar-Sepulveda, G.; Espinosa-Cristia, J.F.; Sanhueza-Vergara, J. How to Measure Environmental Performance in Ports. Sustainability 2021, 13, 4035. https://doi.org/10.3390/su13074035
Vega-Muñoz A, Salazar-Sepulveda G, Espinosa-Cristia JF, Sanhueza-Vergara J. How to Measure Environmental Performance in Ports. Sustainability. 2021; 13(7):4035. https://doi.org/10.3390/su13074035
Chicago/Turabian StyleVega-Muñoz, Alejandro, Guido Salazar-Sepulveda, Juan Felipe Espinosa-Cristia, and Jonathan Sanhueza-Vergara. 2021. "How to Measure Environmental Performance in Ports" Sustainability 13, no. 7: 4035. https://doi.org/10.3390/su13074035