Development of an Improved Bonobo Optimizer and Its Application for Solar Cell Parameter Estimation
Abstract
:1. Introduction
- -
- The proposed IBO algorithm was able to improve the performance of the traditional BO by adjusting the exploitation and exploration phases to reach an appropriate balance.
- -
- The proposed IBO was used to estimate the parameters of the solar cells.
- -
- The proposed IBO was validated using single diode, double diode, and triple diode models.
2. PV Modeling and the Optimization Problem
2.1. The Single Diode Model
2.2. The Double Diode Model
2.3. The Triple Diode Model
2.4. The Optimization Problem
3. Optimization Algorithms
3.1. The Bonobo Optimizer
- (1)
- Initialization of the Undefined BO Parameters
- (2)
- The Positive and Negative Phases
- (3)
- The Bonobo Selection Using the Strategy of Fission–Fusion
- (4)
- New Bonobo Creation Using Various Mating Strategies
- a.
- Promiscuous and Restrictive Mating Strategies
- b.
- The Strategies of Consortship and Extra-Group Mating
- (5)
- Variable Boundary Limiting Conditions
- (6)
- Offspring Acceptance Criteria
- (7)
- Parameters’ Updating
- Step 1. Initialization of the parameters of the BO.
- Step 2. Evaluate the fitness values of all bonobos.
- Step 3. Identify the alpha bonobo.
- Step 4. Choose the bonobo using the fission–fusion society strategy.
- Step 5. Is a random number ?
- Step 6. In case true, create a new bonobo by the promiscuous/restrictive mating strategy.
- Step 7. In case false, create a new bonobo by the consortship/extra group mating strategy.
- Step 8. Determine the fitness values of new bonobos and determine the alpha bonobo.
- Step 9. Update the used parameters.
- Step 10. Calculate the objective function.
3.2. The Improved Bonobo Optimizer
- -
- Improving the exploration phase of the BO by applying a random walk strategy known as Levy flights.
- -
- Improving the exploitation phase of the BO by applying a sine–cosine function.
4. Results
- The single-diode model
- The double-diode model
- The triple-diode model
4.1. The Single Diode Model
4.2. The Double Diode Model
4.3. The Triple Diode Model
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liao, Z.; Chen, Z.; Li, S. Parameters Extraction of Photovoltaic Models Using Triple-Phase Teaching-Learning-Based Optimization. IEEE Access 2020, 8, 69937–69952. [Google Scholar] [CrossRef]
- Xu, S.; Wang, Y. Parameter estimation of photovoltaic modules using a hybrid flower pollination algorithm. Energy Convers. Manag. 2017, 144, 53–68. [Google Scholar] [CrossRef]
- El Chaar, L.; Lamont, L.; El Zein, N. Review of photovoltaic technologies. Renew. Sustain. Energy Rev. 2011, 15, 2165–2175. [Google Scholar] [CrossRef]
- Ramadan, A.; Kamel, S.; Korashy, A.; Yu, J. Photovoltaic Cells Parameter Estimation Using an Enhanced Teaching–Learning-Based Optimization Algorithm. Iran. J. Sci. Technol. Trans. Electr. Eng. 2019, 44, 767–779. [Google Scholar] [CrossRef]
- Yu, K.; Qu, B.; Yue, C.; Ge, S.; Chen, X.; Liang, J. A performance-guided JAYA algorithm for parameters identification of photovoltaic cell and module. Appl. Energy 2019, 237, 241–257. [Google Scholar] [CrossRef]
- Oliva, D.; El Aziz, M.A.; Hassanien, A.E. Parameter estimation of photovoltaic cells using an improved chaotic whale optimization algorithm. Appl. Energy 2017, 200, 141–154. [Google Scholar] [CrossRef]
- Li, Y.; Huang, W.; Huang, H.; Hewitt, C.; Chen, Y.; Fang, G.; Carroll, D.L. Evaluation of methods to extract parameters from current–voltage characteristics of solar cells. Sol. Energy 2013, 90, 51–57. [Google Scholar] [CrossRef]
- Askarzadeh, A.; Rezazadeh, A. Parameter identification for solar cell models using harmony search-based algorithms. Sol. Energy 2012, 86, 3241–3249. [Google Scholar] [CrossRef]
- Gupta, S.; Tiwari, H.; Fozdar, M.; Chandna, V. Development of a Two Diode Model for Photovoltaic Modules Suitable for Use in Simulation Studies. In Proceedings of the 2012 Asia-Pacific Power and Energy Engineering Conference, Shanghai, China, 27–29 March 2012; pp. 1–4. [Google Scholar]
- Jamadi, M.; Merrikh-Bayat, F.; Bigdeli, M. Very accurate parameter estimation of single- and double-diode solar cell models using a modified artificial bee colony algorithm. Int. J. Energy Environ. Eng. 2015, 7, 13–25. [Google Scholar] [CrossRef] [Green Version]
- Zagrouba, M.; Sellami, A.; Bouaïcha, M.; Ksouri, M. Identification of PV solar cells and modules parameters using the genetic algorithms: Application to maximum power extraction. Sol. Energy 2010, 84, 860–866. [Google Scholar] [CrossRef]
- Wei, H.; Cong, J.; Lingyun, X.; Deyun, S. Extracting solar cell model parameters based on chaos particle swarm algorithm. In Proceedings of the 2011 International Conference on Electric Information and Control Engineering, Wuhan, China, 15–17 April 2011; pp. 398–402. [Google Scholar]
- Yu, K.; Liang, J.; Qu, B.; Chen, X.; Wang, H. Parameters identification of photovoltaic models using an improved JAYA optimization algorithm. Energy Convers. Manag. 2017, 150, 742–753. [Google Scholar] [CrossRef]
- Oliva, D.; Cuevas, E.; Pajares, G. Parameter identification of solar cells using artificial bee colony optimization. Energy 2014, 72, 93–102. [Google Scholar] [CrossRef]
- Ram, J.P.; Babu, T.S.; Dragicevic, T.; Rajasekar, N. A new hybrid bee pollinator flower pollination algorithm for solar PV parameter estimation. Energy Convers. Manag. 2017, 135, 463–476. [Google Scholar] [CrossRef]
- Allam, D.; Yousri, D.; Eteiba, M. Parameters extraction of the three diode model for the multi-crystalline solar cell/module using Moth-Flame Optimization Algorithm. Energy Convers. Manag. 2016, 123, 535–548. [Google Scholar] [CrossRef]
- Chen, X.; Yu, K. Hybridizing cuckoo search algorithm with biogeography-based optimization for estimating photovoltaic model parameters. Sol. Energy 2019, 180, 192–206. [Google Scholar] [CrossRef]
- Guo, L.; Meng, Z.; Sun, Y.; Wang, L. Parameter identification and sensitivity analysis of solar cell models with cat swarm optimization algorithm. Energy Convers. Manag. 2016, 108, 520–528. [Google Scholar] [CrossRef]
- Rao, R.; Savsani, V.; Vakharia, D. Teaching–learning-based optimization: A novel method for constrained mechanical design optimization problems. Comput. Des. 2011, 43, 303–315. [Google Scholar] [CrossRef]
- Yuan, X.; Xiang, Y.; He, Y. Parameter extraction of solar cell models using mutative-scale parallel chaos optimization algorithm. Sol. Energy 2014, 108, 238–251. [Google Scholar] [CrossRef]
- Fathy, A.; Rezk, H. Parameter estimation of photovoltaic system using imperialist competitive algorithm. Renew. Energy 2017, 111, 307–320. [Google Scholar] [CrossRef]
- Diab, A.A.Z.; Sultan, H.M.; Do, T.D.; Kamel, O.M.; Mossa, M.A. Coyote Optimization Algorithm for Parameters Estimation of Various Models of Solar Cells and PV Modules. IEEE Access 2020, 8, 111102–111140. [Google Scholar] [CrossRef]
- Diab, A.A.Z.; Sultan, H.M.; Aljendy, R.; Al-Sumaiti, A.S.; Shoyama, M.; Ali, Z.M. Tree Growth Based Optimization Algorithm for Parameter Extraction of Different Models of Photovoltaic Cells and Modules. IEEE Access 2020, 8, 119668–119687. [Google Scholar] [CrossRef]
- Das, A.K.; Pratihar, D.K. A New Bonobo optimizer (BO) for Real-Parameter optimization. In Proceedings of the 2019 IEEE Region 10 Symposium (TENSYMP), Kolkata, India, 7–9 June 2019; pp. 108–113. [Google Scholar]
- Das, A.K.; Pratihar, D.K. Optimal preventive maintenance interval for a Crankshaft balancing machine under reliability constraint using Bonobo Optimizer. In Proceedings of the IFToMM World Congress on Mechanism and Machine Science, Krakow, Poland, 15–18 July 2019; pp. 1659–1668. [Google Scholar]
- Mohammadi, B.; Linh, N.T.T.; Pham, Q.B.; Ahmed, A.N.; Vojteková, J.; Guan, Y.; Abba, S.; El-Shafie, A. Adaptive neuro-fuzzy inference system coupled with shuffled frog leaping algorithm for predicting river streamflow time series. Hydrol. Sci. J. 2020, 65, 1738–1751. [Google Scholar] [CrossRef]
- Menesy, A.S.; Sultan, H.M.; Korashy, A.; Kamel, S.; Jurado, F. A modified farmland fertility optimizer for parameters estimation of fuel cell models. Neural Comput. Appl. 2021, 1–22. Available online: https://www.researchgate.net/publication/349144239_A_Modified_Farmland_Fertility_Optimizer_for_Parameters_Estimation_of_Fuel_Cell_Models (accessed on 22 March 2021).
- Oliva, D.; Ewees, A.A.; El Aziz, M.A.; Hassanien, A.E.; Peréz-Cisneros, M. A Chaotic Improved Artificial Bee Colony for Parameter Estimation of Photovoltaic Cells. Energies 2017, 10, 865. [Google Scholar] [CrossRef] [Green Version]
- Sabudin, S.N.M.; Jamil, N.M. Parameter Estimation in Mathematical Modelling for Photovoltaic Panel. In Proceedings of the IOP Conference Series: Materials Science and Engineering, Paris, France, 23–25 July 2019; p. 012001. [Google Scholar]
- De Waal, F.B.M. Bonobo Sex and Society. Sci. Am. 1995, 272, 82–88. [Google Scholar] [CrossRef] [PubMed]
- Das, A.K.; Nikum, A.K.; Krishnan, S.V.; Pratihar, D.K. Multi-objective Bonobo Optimizer (MOBO): An intelligent heuristic for multi-criteria optimization. Knowl. Inf. Syst. 2020, 62, 4407–4444. [Google Scholar] [CrossRef]
Parameter | Lower Value | Upper Value |
---|---|---|
0 | 0.5 | |
0 | 100 | |
0 | 1 | |
0 | 1 | |
0 | 1 | |
0 | 1 | |
1 | 2 | |
1 | 2 | |
1 | 2 |
Measures | BO | IBO |
---|---|---|
Min. | 0.000986021877891511 | 0.000986021877891504 |
Worst | 0.000986021877892065 | 0.000986021877895150 |
Mean | 0.000986021877891611 | 0.000986021877891938 |
Median | 0.000986021877891600 | 0.000986021877891635 |
STD | 1.17635780565586 e−14 | 8.57137311152287 e−14 |
RE | 2.02453219826016 e−12 | 8.79745666513143 e−12 |
MAE | 1.99623303998031 e−17 | 8.67448474162202 e−17 |
RMSE | 6.79832768683650 e−17 | 4.20967187227626 e−16 |
Efficiency | 99.9999999999899 | 99.9999999999560 |
Method | Rs (Ω) | Rsh (Ω) | Iph (A) | Id (A) | n | RMSE |
---|---|---|---|---|---|---|
ETLBO | 0.0364 | 53.7191 | 0.7608 | 0 | 1.4769 | 9.86022 e−4 |
TLBO | 0.0364 | 53.7197 | 0.7608 | 0.0000 | 1.4769 | 9.86022 e−4 |
ABC [10] | 0.0364 | 53.6433 | 0.7608 | 0.3251 | 1.4817 | 9.8602 e−4 |
CSO [13] | 0.0364 | 53.7185 | 0.76078 | 0.3230 | 1.4812 | 9.8602 e−4 |
IJAYA [16] | 0.0364 | 53.7595 | 0.7608 | 0.3228 | 1.4811 | 9.8603 e−4 |
PGJAYA [20] | 0.0364 | 53.71850 | 0.7608 | 1.48120 | 1.48120 | 9.8602 e−4 |
TLABC [21] | 0.0364 | 53.71636 | 0.76078 | 0.32302 | 1.4812 | 9.86022 e−4 |
SATLBO [21] | 0.0364 | 53.72560 | 0.7608 | 0.32315 | 1.4812 | 9.86022 e−4 |
BHCS [21] | 0.0364 | 53.71852 | 0.76078 | 0.32302 | 1.4812 | 9.86022 e−4 |
GOTLBO [29] | 0.0364 | 54.11543 | 0.760780 | 0.33155 | 1.4838 | 9.87442 e−4 |
CIABC [31] | 0.0364 | 53.71867 | 0.760776 | 0.32302 | 1.4810 | 9.8602 e−4 |
GSA [31] | 0.0347 | 67.70030 | 0.76037 | 4.75 × 10−7 | 1.5191 | 2.6140 e−3 |
BO | 0.0354756 | 57.6104 | 0.760366 | 3.8086 × 10−7 | 1.2295 | 9.8602 e−4 |
IBO | 0.0363771 | 53.7185 | 0.760776 | 3.2302 × 10−7 | 1.21567 | 9.8602 e−4 |
Measures | BO | IBO |
---|---|---|
Min. | 0.000977088321488726 | 0.000977088321514344 |
Worst | 0.000986021877893467 | 0.000986021877900693 |
Mean | 0.000980850577605764 | 0.000981064808651406 |
Median | 0.000978278332104993 | 0.000977089747736947 |
STD | 0.000423632509066615 | 0.000451183565687315 |
RE | 0.0770095401673857 | 0.0813946303421039 |
MAE | 7.52451223407695 e−7 | 7.95297427412468 e−7 |
RMSE | 2.49814726748887 e−6 | 2.65146291303962 e−6 |
Efficiency | 99.6181922108548 | 99.5966757340291 |
Method | Rs (Ω) | Rsh (Ω) | Iph (A) | Id1 (A) | Id2 (A) | n1 | n2 | RMSE |
---|---|---|---|---|---|---|---|---|
ETLBO | 0.0363 | 55.2169 | 0.7607 | 0.0000 | 0 | 1.4789 | 2 | 9.8241 e−4 |
TLBO | 0.0364 | 53.7184 | 0.7608 | 0.0000 | 0 | 1.4769 | 1.0000 | 9.8602 e−4 |
ABC [10] | 0.0364 | 53.7804 | 0.7608 | 0.0407 | 0.2874 | 1.4495 | 1.4885 | 9.861 e−4 |
CSO [13] | 0.0367 | 55.3813 | 0.7608 | 0.2273 | 0.72785 | 1.4515 | 1.9976 | 9.8251 e−4 |
IJAYA [16] | 0.0376 | 77.8519 | 0.7601 | 0.0050 | 0.75094 | 1.2186 | 1.6247 | 9.823 e−4 |
TLABC [21] | 0.0367 | 54.6680 | 0.7608 | 0.4239 | 0.24011 | 1.9075 | 1.45671 | 9.8414 e−4 |
PGJAYA [20] | 0.0368 | 55.8135 | 0.7608 | 0.2103 | 0.88534 | 1.4450 | 2.00000 | 9.8263 e−4 |
SATLBO [21] | 0.0366 | 55.0494 | 0.7608 | 0.2671 | 0.545418 | 2.0000 | 1.99941 | 9.8280 e−4 |
BHCS [21] | 0.0367 | 55.4854 | 0.7608 | 0.7494 | 0.22597 | 2.0000 | 1.45102 | 9.8248 e−4 |
GOTLBO [29] | 0.0368 | 56.0753 | 0.7608 | 0.8002 | 0.220462 | 1.9999 | 1.44897 | 9.83177 e−4 |
CIABC [31] | 0.0367 | 55.3783 | 0.7608 | 0.2278 | 0.647650 | 1.4516 | 1.9883 | 9.8262 e−4 |
GSA [31] | 0.0339 | 81.6876 | 0.7603 | 5.66 × 10−3 | 6.9 × 10−8 | 1.5386 | 1.93118 | 1.3089 e−3 |
BO | 0.0363426 | 54.2353 | 0.76077 | 3.23016 × 10−7 | 1.34222 × 10−7 | 1.21577 | 2 | 9.8565 e−4 |
IBO | 0.0368679 | 57.1026 | 0.760789 | 2.31715 × 10−7 | 3.05367 × 10−6 | 1.19108 | 2 | 9.7709 e−4 |
Measures | BO | IBO |
---|---|---|
Min. | 9.7709 e−4 | 9.7709 e−4 |
Worst | 9.8601 e−4 | 9.8602 e−4 |
Mean | 9.8194 e−4 | 9.7849 e−4 |
Median | 9.8411 e−4 | 9.7709 e−4 |
STD | 4.0862 e−4 | 3.1524 e−4 |
RE | 0.0994 | 0.0288 |
MAE | 9.7102 e−7 | 2.8110 e−7 |
RMSE | 2.8084 e−6 | 1.5110 e−6 |
Efficiency | 99.5072 | 99.8573 |
Method | Rs (Ω) | Rsh (Ω) | Iph(A) | Id1(A) | Id2(A) | Id3(A) | n1 | n2 | n3 | RMSE |
---|---|---|---|---|---|---|---|---|---|---|
EHHA | 0.0368247 | 130.9152 | 0.7609674 | 1.43 e−16 | 2.72 × 10−7 | 3.1156 e−3 | 5.452853 | 1.46025 | 15.18492 | 9.503 e−4 |
HHA | 0.017431 | 28.26 | 0.768106 | 2.38 e−10 | 8.89 × 10−7 | 6.12 e−6 | 12.41 | 6.76475 | 1.85013 | 9.610 e−3 |
TLBO | 0.0366 | 800 | 0.7608 | 0.0089 | 0 | 5.1 e−3 | 25.8033 | 1.4676 | 250 | 9.5 762 e−4 |
FFA | 0.013315 | 2.756 | 0.7504 | 0.04 | 1.03 | 0.89519 | 94.75 | 125.873 | 143.42 | 0.22813 |
PSO | 0.0363 | 7.9988 | 0.7608 | 2.0493 e−30 | 0.0215 | 3.2267 e−6 | 119.01 | 53.106 | 1.4769 | 0.0009 |
BO | 0.0363777 | 53.7639 | 0.760774 | 0 | 3.2302 e−7 | 1.58273 e−9 | 1.92132 | 1.21567 | 2 | 9.8602 e−4 |
IBO | 0.0368702 | 57.1258 | 0.760789 | 2.31318 e−7 | 3.0694 e−6 | 0 | 1.19095 | 2 | 1.50349 | 9.7709 e−4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdelghany, R.Y.; Kamel, S.; Sultan, H.M.; Khorasy, A.; Elsayed, S.K.; Ahmed, M. Development of an Improved Bonobo Optimizer and Its Application for Solar Cell Parameter Estimation. Sustainability 2021, 13, 3863. https://doi.org/10.3390/su13073863
Abdelghany RY, Kamel S, Sultan HM, Khorasy A, Elsayed SK, Ahmed M. Development of an Improved Bonobo Optimizer and Its Application for Solar Cell Parameter Estimation. Sustainability. 2021; 13(7):3863. https://doi.org/10.3390/su13073863
Chicago/Turabian StyleAbdelghany, Reem Y., Salah Kamel, Hamdy M. Sultan, Ahmed Khorasy, Salah K. Elsayed, and Mahrous Ahmed. 2021. "Development of an Improved Bonobo Optimizer and Its Application for Solar Cell Parameter Estimation" Sustainability 13, no. 7: 3863. https://doi.org/10.3390/su13073863
APA StyleAbdelghany, R. Y., Kamel, S., Sultan, H. M., Khorasy, A., Elsayed, S. K., & Ahmed, M. (2021). Development of an Improved Bonobo Optimizer and Its Application for Solar Cell Parameter Estimation. Sustainability, 13(7), 3863. https://doi.org/10.3390/su13073863