Greening the Brownfields of Thermal Power Plants in Rural Areas, an Example from Romania, Set in the Context of Developments in the Industrialized Country of Germany
Abstract
:1. Introduction
2. Review of Approaches to Coal-Related Energy Shift Generated Brownfields
2.1. Industrial Heritage
2.1.1. IBA Emscher Park—Coal Power Industrial Heritage
- Emscher landscape park, including thematic parks. Such a thematic park connected to the topic of this article was the ash dump event Emscherblick (Emscher look) in Bottrop (with the tethraeder). There are 46 ash dumps in the Ruhr Area, many of them converted into land art works [43]. At the final of the IBA in Palace Oberhausen, an information event took place on “Art sets signs”, presenting how dumps and other industrial buildings (towers, gasometers, etc.), became artistical shapes. Blue-green infrastructure was already followed in this early project according to the thesis for the free space, which will become the infrastructure of the future. Green corridors from A to F were made, as well as an east–west corridor. One hundred years ago, in the 1920s, Robert Schmidt had already seen the coming crisis, but it was not yet time for his ideas.
- The reconfiguration of the water system of the Emscher River.
- The experience space Rhine-Herne channel.
- Industry monuments as bearers of culture, such as, for example, the Zeche Zollverein.
- “Working in the park” (22 sites), in the brownfields of mountain industry. This was intended to create workplaces. Following types were followed: cross-region science parks with high state investment, industry parks for new neighborhoods, founder centers for small enterprises, revitalization of industrial zones. The new centers had to radiate new developments in the areas. An example of creating new places was “Die Fraueninitiative zur Entwicklung dauerhafter Arbeitsplätze” FRIDA (women’s initiative for developing permanent working places) in Oberhausen. Seventeen technology centers were created.
- New housing (3000 new dwellings) and modernization (another 3000 according to monument status for garden cities of the workers) of housing (26 projects), through competitions, with participative planning (e.g., Women plan, build, dwell in Bergkamen).
- New offers for social and cultural activities, which also included art on the dumps. It included social initiatives, employment and qualification. This way, long time unemployed personnel could be helped.
- Since 1993: integrated neighborhood development.
2.1.2. Other Urban Dimensions of Industrial Heritage in Germany
2.1.3. Protection Issues
2.1.4. Industrial Heritage in Romania, an Example of Successful Conversion
2.2. The Shift in Energy
2.3. Introduction of the Romanian Research Case Studies in This Paper
3. Materials and Methods
3.1. Materials
- Cereal crops: dented sedge, tick sedge, creeping sedge, non-aerated brome grass.
- Vegetable crops: white melilot, bird’s foot trefoil, creeping white trefoil.
3.2. Methods
Laboratory Testing
- Testing the perennial plant varieties which can grow in the given conditions.
- Determining how the geo-composite decays and integrates in the soil.
4. Results
4.1. Site Location
4.1.1. Mintia
4.1.2. Doicești
4.2. Laboratory Research
4.3. In Situ Research
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pidon, A.; Niemiec, D.; Sabourault, P. Mise en sécurité d’un dépôt de résidus de traitement de minerai de plomb-argentifère, Pontgibaud, Auvergne. In Proceedings of the Journées Nationales de Géotechnique et de Géologie de l’Ingénieur, Nancy, France, 6–8 July 2016. [Google Scholar]
- Roth, M.; Eiter, S.; Röhner, S.; Kruse, A.; Schmitz, S.; Frantál, B.; Centeri, C.; Frolova, M.; Buchecker, M.; Stober, D.; et al. (Eds.) Renewable Energy and Landscape Quality; Jovis: Berlin, Germany, 2018. [Google Scholar]
- Bulearca, M.; Popescu, C. Gas and coal extractive industry during the socialist industrialization period (1948–1989). Ann. Constantin Brâncuşi Univ. Târgu Jiu Econ. Ser. 2015, 394–398. [Google Scholar]
- Štanzel, A. Wasserträume und Wasserräume im Staatssozialismus. Ein umwelthistorischer Vergleich anhand der tschechoslowakischen und rumänischen Wasserwirtschaft 1948–1989; Vandenhoeck & Ruprecht: Göttingen, Germany, 2017. [Google Scholar]
- Preda, C.-E. Impactul Poluantilor Produsi de Termocentralele pe Cărbune Asupra Solurilor. Studii de Caz: Termocentralele Doicești, Rovinari si Mintia. Ph.D. Thesis, Faculty of Geography, University of Bucharest, Bucharest, Romania, 2011. [Google Scholar]
- Plesea, S.M. Potențialul Zonelor Industriale Abandonate în Context Rural. Master’s Thesis, “Ion Mincu” University of Architecture and Urbanism, Bucharest, Romania, 2019. [Google Scholar]
- Silvia Mihaela Pleșea—Regenerare Rurală—Termocentrala Doicești. Available online: https://diplomafestival.ro/portofolii/regenerare-rurala-termocentrala-doicesti (accessed on 4 February 2021).
- Alexandru Tzigara-Samurcaș Archive. Romania, Dâmboviţa County. Available online: https://tzigara-samurcas.uauim.ro/en/architecture-settlement/romania/db/ (accessed on 4 February 2021).
- Cherulescu, M. Releveu nr. Rv.487. Curtea Brâncovenească, Sat Doicești, Comuna Doicești, Jud. Dâmboviţa, Cod LMI: DB-II-m-A-17465. Available online: https://relevee.uauim.ro/487/ (accessed on 4 February 2021).
- Shaw, R. The International Building Exhibition (IBA) Emscher Park, Germany: A Model for Sustainable Restructuring? Eur. Plan. Stud. 2002, 10, 77–97. [Google Scholar] [CrossRef]
- Bostenaru Dan, M. Von den Partizipationsmodellen der 70er Jahre zu Kommunikationsformen Ende des XXten Jahrhunderts in Architektur und Städtebau; Cuvillier: Göttingen, Germany, 2007. [Google Scholar]
- Jeng, Y.R. The Legacy of International Building Exhibition Emscher Park: AReview Project 20 Years Later. Master’s Thesis, Radboud University Nijmegen, Nijmegen, The Netherlands, Cardiff University, Cardiff, UK, 2018. [Google Scholar]
- Pope Francis. Encyclical Letter Laudato si’ of the Holy Father Francis on Care for Our Common Home. 24 May 2015. Available online: http://www.vatican.va/content/francesco/en/encyclicals/documents/papa-francesco_20150524_enciclica-laudato-si.html (accessed on 4 February 2021).
- Cui, R.Y.; Hultman, N.; Edwards, M.R.; He, L.; Sen, A.; Surana, K.; McJeon, H.; Iyer, G.; Patel, P.; Yu, S.; et al. Quantifying operational lifetimes for coal power plants under the Paris goals. Nat. Commun. 2019, 10, 4759. [Google Scholar] [CrossRef] [Green Version]
- Feng, S.; Hou, W.; Chang, J. Changing Coal Mining Brownfields into Green Infrastructure Based on Ecological Potential Assessment in Xuzhou, Eastern China. Sustainability 2019, 11, 2252. [Google Scholar] [CrossRef] [Green Version]
- Zhang, G.; Zhang, Y.; Tian, W.; Li, H.; Guo, P.; Ye, F. Bridging the Intention–Behavior Gap: Effect of Altruistic Motives on Developers’ Action towards Green Redevelopment of Industrial Brownfields. Sustainability 2021, 13, 977. [Google Scholar] [CrossRef]
- Chowdhury, S.; Kain, J.-H.; Adelfio, M.; Volchko, Y.; Norrman, J. Greening the Browns: A Bio-Based Land Use Framework for Analysing the Potential of Urban Brownfields in an Urban Circular Economy. Sustainability 2020, 12, 6278. [Google Scholar] [CrossRef]
- Vâlceanu, D.-G.; Suditu, B.; Petrişor, A.-I. Romanian technological risk objectives (SEVESO). Effects on land use and territorial planning. Carpathian J. Earth Environ. Sci. 2015, 10, 201–208. [Google Scholar]
- Gajić, G.; Djurdjević, L.; Kostić, O.; Jarić, S.; Mitrović, M.; Pavlović, P. Ecological Potential of Plants for Phytoremediation and Ecorestoration of Fly Ash Deposits and Mine Wastes. Front. Environ. Sci. 2018, 6, 124. [Google Scholar] [CrossRef] [Green Version]
- Song, Y.; Kirkwood, N.; Maksimović, Č.; Zheng, X.; O’Connor, D.; Jin, Y.; Hou, D. Nature based solutions for contaminated land remediation and brownfield redevelopment in cities: A review. Sci. Total Environ. 2019, 663, 568–579. [Google Scholar] [CrossRef]
- Zhong, Q.; Zhang, L.; Zhu, Y.; van den Bosch, C.K.; Han, J.; Zhang, G.; Li, Y. A conceptual framework for ex ante valuation of ecosystem services of brownfield greening from a systematic perspective. Ecosyst. Health Sustain. 2020, 6. [Google Scholar] [CrossRef] [Green Version]
- Hou, W.; Zhai, L.; Feng, S.; Walz, U. Restoration priority assessment of coal mining brownfields from the perspective of enhancing the connectivity of green infrastructure networks. J. Environ. Manag. 2021, 277, 111289. [Google Scholar] [CrossRef] [PubMed]
- Assi, A.; Bilo, F.; Zanoletti, A.; Ponti, J.; Valsesia, A.; la Spina, R.; Depero, L.E.; Bontempi, E. Review of the Reuse Possibilities Concerning Ash Residues from Thermal Process in a Medium-Sized Urban System in Northern Italy. Sustainability 2020, 12, 4193. [Google Scholar] [CrossRef]
- Cortinovis, C.; Geneletti, D. Mapping and assessing ecosystem services to support urban planning: A case study on brownfield regeneration in Trento, Italy. One Ecosyst. 2018, 3, e25477. [Google Scholar] [CrossRef]
- Lu, X.; Zhou, W.; Qi, C.; Yang, M. Enhanced Plant Restoration in Open-Pit Mines Using Maize Straw and Ultrasonically Pre-Treated Coal Fly Ash. Sustainability 2020, 12, 9307. [Google Scholar] [CrossRef]
- Ou, Y.; Ma, S.; Zhou, X.; Wang, X.; Shi, J.; Zhang, Y. The Effect of a Fly Ash-Based Soil Conditioner on Corn and Wheat Yield and Risk Analysis of Heavy Metal Contamination. Sustainability 2020, 12, 7281. [Google Scholar] [CrossRef]
- Prambauera, M.; Wendeler, C.; Weitzenböck, J.; Burgstaller, C. Biodegradable geotextiles—An overview of existing and potential materials. Geotext. Geomembr. 2019, 47, 48–59. [Google Scholar] [CrossRef]
- Marczak, D.; Lejcuś, K.; Misiewicz, J. Characteristics of biodegradable textiles used in environmental engineering: A comprehensive review. J. Clean. Prod. 2020, 268, 122129. [Google Scholar] [CrossRef]
- Wu, H.; Yao, C.; Li, C.; Miao, M.; Zhong, Y.; Lu, Y.; Liu, T. Review of Application and Innovation of Geotextiles in Geotechnical Engineering. Materials 2020, 13, 1774. [Google Scholar] [CrossRef] [Green Version]
- Shirazi, M.G.; Rashid, A.S.B.A.; Nazir, R.B.; Rashid, A.H.B.A.; Moayedi, H.; Horpibulsuk, S.; Samingthong, W. Sustainable Soil Bearing Capacity Improvement Using Natural Limited Life Geotextile Reinforcement—A Review. Minerals 2020, 10, 479. [Google Scholar] [CrossRef]
- Tauro, F.; Cornelini, P.; Grimaldi, S.; Petroselli, A. Field studies on the soil loss reduction effectiveness of three biodegradable geotextiles. J. Agric. Eng. 2018, 49, 117–123. [Google Scholar] [CrossRef]
- Li, L.; Zhang, J.; Xiao, H.; Hu, Z.; Wang, Z. Experimental Investigation of Mechanical Behaviors of Fiber-Reinforced Fly Ash-Soil Mixture. Adv. Mater. Sci. Eng. 2019, 2019, 1050536. [Google Scholar] [CrossRef] [Green Version]
- Robu, I.; Ilie, G.; Pordea, I. Assessment of radiologic risk arising from the use of thermo-power plant ash in building materials. Rom. J. Mater. 2011, 41, 110–117. [Google Scholar]
- Loures, L. Post-industrial landscapes as drivers for urban redevelopment: Public versus expert perspectives towards the benefits and barriers of the reuse of post-industrial sites in urban areas. Habitat Int. 2015, 45 Pt 2, 72–81. [Google Scholar] [CrossRef]
- Loures, L.; Panagopoulos, T. Reclamation of derelict industrial land in Portugal: Greening is not enough. Int. J. Sustain. Dev. Plan. 2010, 5, 343–350. [Google Scholar] [CrossRef] [Green Version]
- Duží, B.; Jakubínský, J. Brownfield dilemmas in the transformation of post-communist cities: A case study of Ostrava, Czech Republic. Hum. Geogr. J. Stud. Res. Hum. Geogr. 2013, 7, 53–64. [Google Scholar] [CrossRef] [Green Version]
- Cehlár, M.; Janočko, J.; Šimková, Z.; Pavlik, T.; Tyulenev, M.; Zhironkin, S.; Gasanov, M. Mine Sited after Mine Activity: The Brownfields Methodology and Kuzbass Coal Mining Case. Resources 2019, 8, 21. [Google Scholar] [CrossRef] [Green Version]
- Chapman, A.; Fraser, T.; Dennis, M. Investigating Ties between Energy Policy and Social Equity Research: A Citation Network Analysis. Soc. Sci. 2019, 8, 135. [Google Scholar] [CrossRef] [Green Version]
- Silverthorne, T. What Constitutes Success in Brownfield Redevelopment? A Review. WIT Trans. Ecol. Environ. 2006, 94. [Google Scholar] [CrossRef] [Green Version]
- Doick, K.J.; Sellers, G.; Hutchings, T.R.; Moffat, A.J. Brownfield Sites Turned Green: Realising Sustainability. Urban. Revival WIT Trans. Ecol. Environ. 2006, 94. [Google Scholar] [CrossRef] [Green Version]
- “Energy System 2050”: The Next Step of the Energy Transition, looKIT 2020, (4), 30–35. Available online: https://www.sek.kit.edu/downloads/lookkit-202004.pdf (accessed on 4 February 2021).
- Helmholtz Gesellschaft. Energy System 2050. Available online: https://www.helmholtz.de/forschung/energie/energie-system-2050/ (accessed on 4 February 2021).
- Halden im Ruhrgebiet. Available online: https://www.halden.ruhr/halden.html (accessed on 5 February 2021).
- Lam, C.H.K.; Ip, A.W.M.; Barford, J.P.; McKay, G. Use of Incineration MSW Ash: A Review. Sustainability 2010, 2, 1943–1968. [Google Scholar] [CrossRef] [Green Version]
- Feodorov, V. Two decades of design and execution of modern landfills in Romania. Sci. Pap. Ser. E Land Reclam. Earth Obs. Surv. Environ. Eng. 2015, IV, 9–18. [Google Scholar]
- Procopianu, A.; Pantea, I.C. Un Model de Regenerare urbană: O Uzină de Apă sau Un Centru de Arhitectură, Cultură Urbană şi Peisaj? A Model for Urban Regeneration: A Water Plant or a Centre for Architecture, Urban Culture, and Landscape? Sociol. Românească 2012, 10, 109–122. [Google Scholar]
- Germany to Close All 84 of Its Coal-Fired Power Plants, Will Rely Primarily on Renewable Energy. Available online: https://www.latimes.com/world/europe/la-fg-germany-coal-power-20190126-story.html (accessed on 13 February 2021).
- Vögele, S.; Kunz, P.; Rübbelke, D.; Stahlke, T. Transformation pathways of phasing out coal-fired power plants in Germany. Energy Sustain. Soc. 2018, 8, 25. [Google Scholar] [CrossRef] [Green Version]
- Grunwald, A. Die Ambivalenz technikzentrierter Visionen als Herausforderung für die Technikfolgenabschätzung. In Erdacht, Gemacht und in die Welt gestellt: Technik-Konzeptionen zwischen Risiko und Utopie. Festschrift für Gerhard Banse; Petsche, H.-J., Bartíková, M., Kiepas, A., Eds.; Trafo: Berlin, Germany, 2006; pp. 287–304. [Google Scholar]
- KIT—ITAS—Topics—Sustainability and Transformation of the Energy System. Available online: https://www.itas.kit.edu/english/topic_sustainability.php (accessed on 5 February 2021).
- Siminea, I.; Bostenaru, M. Biodegradable geocomposite a material for the future, to be applied in slope protection and recovery of waste dumps. Sci. Bull. Politeh. Univ. Timişoara Rom. Trans. Hydrotech. 2008, 53/67, 75–78. [Google Scholar]
- Stoica, A. Thermal Power Plants in Romania. How to Cope with New European Pollution Standards. Available online: https://energyindustryreview.com/analysis/thermal-power-plants-in-romania/ (accessed on 14 March 2021).
- Bostenaru Dan, M.B. Innovative Geotextile Materials for the Extension of Urban Green Space—Contribution to Urban Sustainability. Rev. Environ. Sci. Biotechnol. 2014, 13, 5–9. [Google Scholar] [CrossRef]
- Bostenaru Dan, M.B. Green walls. In Planning and Designing Sustainable and Resilient Landscapes; Crăciun, C., Dan, M.B., Eds.; Springer: Dordrecht, The Netherlands, 2014; pp. 143–183. [Google Scholar] [CrossRef]
- Siminea, I. Research on the use of biodegradable geocomposite for power plant ash dumps stabilization. Sci. Works E Ser. 1994, XXXVII, 101–110. [Google Scholar]
- Siminea, I.; Bostenaru, M. The first Romanian test concerning utilization of sowed biodegradable geocomosite for fixing the ash dump of coal and preventing environmental pollution. In Proceedings of the EuroGeo 2000—Second European Geosynthetics, Conference and Exhibition, Bologna, Italy, 15–18 October 2000. [Google Scholar]
- Berger, S. (Ed.) Constructing Industrial Pasts: Heritage, Historical Culture and Identity in Regions Undergoing Structural Economic Transformation; Berghahn Books: New York, NY, USA, 2020. [Google Scholar] [CrossRef]
- Constantinescu, I. Shrinking Cities in Romania: Former Mining Cities in Valea Jiului. Built Environ. 2012, 38, 214–228. [Google Scholar] [CrossRef]
- Păun, I.C. Shrinking Cities in Romania: Volume 1: Research and Analysis; Volume 2: Responses and Interventions; DOM Publishers: Berlin, Germany, 2019. [Google Scholar]
- Dascalescu, A. Planeta Petrila, 2016 (Film). Available online: https://hbogo.ro/filme/planeta-petrila (accessed on 28 March 2021).
- Hillinger, N.; Olaru, M.; Turnock, D. The Role of Industrial Archaeology in Conservation: The Reşiţa Area of the Romanian Carpathians. Geo J. 2001, 55, 607–630. Available online: http://www.jstor.org/stable/41147655 (accessed on 20 February 2021).
- Iamandescu, I. Arheologia Industrială, Recuperarea Patrimoniului Industrial și Problematica Domeniului în România. Ph.D. Thesis, “Ion Mincu” University of Architecture and Urbanism, Bucharest, Romania, 2015. [Google Scholar]
- Zahariade, A.M. Architecture in the Communist Project. Romania 1944–1989; Simetria: Bucharest, Romania, 2011. [Google Scholar]
- Tulbure, I. From Casa Scânteii to Casa Poporului and Back. Architecture as Icon of a Totalitarian Regime. sITA 2013, 1, 78–89. [Google Scholar]
- Lakatos, A. Spațiile cu Valență Cultural în Contextual Conversiei Funcționale a Patrimoniului Industrial. Ph.D. Thesis, “Ion Mincu” University of Architecture and Urbanism, Bucharest, Romania, 2011. [Google Scholar]
- Sencovici, M. The condition of the environment in Dâmboviţa county related to the main economic activities. Geogr. Phorum Geogr. Stud. Environ. Prot. Res. 2005, 4, 141–151. [Google Scholar]
Characteristics | U:M | Value |
---|---|---|
Total weight | g/m2 | 300 ± 10% |
Wet weight | g/m2 | 2000 ± 200 |
Initial thickness | mm | 3.5 ± 1 |
Wet thickness | mm | 3 ± 1 |
Initial porosity | % | 93 ± 5 |
Water saturation capacity | % | 40% ± 5% |
Saturation capacity | % | 200% ± 100 |
Air permeability | L/m2s | 1000 ± 10% |
Resistance to micro-organisms’ action | medium behavior |
Thermal Power Plant | Oxide Compounds, % | PC | Salts | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
SiO2 | Al2O3 | FeO3 | CaO | MfO | SO3 | Na2O | K2O | TiO2 | |||
Mintia | 50.9 | 36.5 | 10.7 | 5.9 | 2.1 | 0.9 | 0.9 | 1.9 | 1.21 | 1.59 | 0.0809 |
Doicești | 48 | 23 | 8.1 | 9.2 | 3.0 | 3.7 | 0.4 | 1.7 | 1.58 | 3.11 | 0.0419 |
Thermal Power Plant | Grain Size Composition % | Density g/cm3 | Hygroscopy Coefficient | ||||
---|---|---|---|---|---|---|---|
2–0.2 mm | 0.2–0.02 mm | 0.02–0.01 mm | 0.01–0.002 mm | <0.002 mm | |||
Mintia | 7.8–9.1 | 0.55–0.85 | 2.8 | 12.3–16.8 | 9.8–14.2 | 0.55–0.85 | 2.8 |
Doicești | 8.2–11.5 | 0.63–0.87 | 6.7 | 7.1–9.9 | 3.7–5.2 | 0.63–0.87 | 6.7 |
Sample | No. of Bacteria million/g | No. of Fungi Thousands/g |
---|---|---|
Doicești ash | 18.2 | 25.3 |
Mintia ash | 13.5 | 19.6 |
Cultivated geo-textile | 31.5 | 51.5 |
Sample | No. of Bacteria million/g | No. Microscopic Fungi Thousands/g | Hydrogenozic Activity Formazan mg/100 g |
---|---|---|---|
Doicești ash | 15.3–17.8 | 20.1–23.3 | 38.5–39.1 |
Geo-textile | 25.6–26.8 | 41.3–42.8 | 58.6–61.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bostenaru Dan, M.; Bostenaru-Dan, M.M. Greening the Brownfields of Thermal Power Plants in Rural Areas, an Example from Romania, Set in the Context of Developments in the Industrialized Country of Germany. Sustainability 2021, 13, 3800. https://doi.org/10.3390/su13073800
Bostenaru Dan M, Bostenaru-Dan MM. Greening the Brownfields of Thermal Power Plants in Rural Areas, an Example from Romania, Set in the Context of Developments in the Industrialized Country of Germany. Sustainability. 2021; 13(7):3800. https://doi.org/10.3390/su13073800
Chicago/Turabian StyleBostenaru Dan, Maria, and Magdalena Maria Bostenaru-Dan. 2021. "Greening the Brownfields of Thermal Power Plants in Rural Areas, an Example from Romania, Set in the Context of Developments in the Industrialized Country of Germany" Sustainability 13, no. 7: 3800. https://doi.org/10.3390/su13073800
APA StyleBostenaru Dan, M., & Bostenaru-Dan, M. M. (2021). Greening the Brownfields of Thermal Power Plants in Rural Areas, an Example from Romania, Set in the Context of Developments in the Industrialized Country of Germany. Sustainability, 13(7), 3800. https://doi.org/10.3390/su13073800