Climate Change Mitigation Pathways for the Aviation Sector
Abstract
:1. Introduction
2. Analysis of Aviation Emissions
2.1. Factors of Aviation Emissions
2.2. Emissions from Aircrafts
2.3. Oil Demand and Emissions
2.4. National and Regional Mitigation Measures
2.5. Achievements in Mitigation
3. Integrated Mitigation Pathways in the Aviation Sector
3.1. Alternate Fuels and Fuel Switching
3.2. Fuel Cells
3.3. Solar Power
3.4. Efficiency Measures
3.5. Market-Based Policy
3.6. Improved Intermodal Transportation Planning
3.7. Fleet Modernization and Operational Approach
3.8. Integrated Mitigation Pathways
4. The Feasibility of Proposed Mitigation Pathways
4.1. Barriers to Mitigation Options
4.2. Challenges for the ICAO
4.3. Approach to Overcome Mitigation Barriers
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ASBU | Aviation system block upgrades |
ATM | Air traffic management |
BAU | Business as usual |
CAEP | Committee on aviation environmental protection |
CO2 | Carbon dioxide |
CORSIA | Carbon Offsetting and Reduction Scheme for International Aviation |
EEA | European economic area |
ETS | Emissions trading scheme |
EU ETS | European Union emissions trading scheme |
FAA | Federal aviation administration |
FGBs | Fourth generation biofuels |
FT | Fischer-Tropsch |
Gen II | Generation II |
GHG | Greenhouse gas |
GM | Genetically modified |
IATA | International air transport association |
ICAO | International civil aviation organization |
IEA | International energy agency |
ktCO2 | Kilo-tonnes of CO2 |
MBMs | Market-based measures |
MCMOED | Million cubic meters of oil equivalent per day |
MtCO2 | Million tonnes of CO2 |
Mtoe | Million tonnes of oil equivalent |
NOx | Nitrogen oxide gases |
OECD | Organization for economic co-operation and development |
PM | Particulate matters |
PtL | Power to liquid |
R&D | Research and development |
RVSM | Reduced vertical separation minimums |
SAF | Sustainable aviation fuels |
UNFCCC | United Nations Framework Convention on Climate Change |
References
- IEA. Global Energy and CO2 Status Report. Available online: https://www.eenews.net/assets/2019/03/26/document_cw_01.pdf (accessed on 3 March 2021).
- Nasreen, S.; Saidi, S.; Ozturk, I. Assessing links between energy consumption, freight transport, and economic growth: Evidence from dynamic simultaneous equation models. Environ. Sci. Pollut. Res. 2018, 25, 16825–16841. [Google Scholar] [CrossRef]
- ATAG. Facts & Figures. Available online: https://www.atag.org/facts-figures.html (accessed on 8 March 2021).
- ICAO. Effects of Novel Coronavirus (COVID-19) on Civil Aviation: Economic Impact Analysis. Available online: https://www.icao.int/sustainability/Documents/Covid-19/ICAO_coronavirus_Econ_Impact.pdf (accessed on 8 March 2021).
- IATA. Industry Statistics: Fact Sheet. Available online: https://www.iata.org/en/iata-repository/pressroom/fact-sheets/industry-statistics/ (accessed on 9 March 2021).
- Lee, D.; Pitari, G.; Grewe, V.; Gierens, K.; Penner, J.; Petzold, A.; Prather, M.; Schumann, U.; Bais, A.; Berntsen, T. Transport impacts on atmosphere and climate: Aviation. Atmos. Environ. 2010, 44, 4678–4734. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, D.; Fahey, D.; Skowron, A.; Allen, M.; Burkhardt, U.; Chen, Q.; Doherty, S.; Freeman, S.; Forster, P.; Fuglestvedt, J. The contribution of global aviation to anthropogenic climate forcing for 2000 to 2018. Atmos. Environ. 2021, 244, 117834. [Google Scholar] [CrossRef] [PubMed]
- Ozturk, I.; Al-Mulali, U.; Saboori, B. Investigating the environmental Kuznets curve hypothesis: The role of tourism and ecological footprint. Environ. Sci. Pollut. Res. 2016, 23, 1916–1928. [Google Scholar] [CrossRef]
- Kurniawan, J.S.; Khardi, S. Comparison of methodologies estimating emissions of aircraft pollutants, environmental impact assessment around airports. Environ. Impact Assess. Rev. 2011, 31, 240–252. [Google Scholar] [CrossRef]
- IEA. Global Energy Review 2020. Available online: https://www.iea.org/reports/global-energy-review-2020 (accessed on 2 March 2021).
- Graver, B.; Rutherford, D.; Zheng, S. CO2 Emissions From Commercial Aviation: 2013, 2018, and 2019. Available online: https://theicct.org/publications/ (accessed on 7 March 2021).
- Ahmed, K.; Bhattacharya, M.; Shaikh, Z.; Ramzan, M.; Ozturk, I. Emission intensive growth and trade in the era of the Association of Southeast Asian Nations (ASEAN) integration: An empirical investigation from ASEAN-8. J. Clean. Prod. 2017, 154, 530–540. [Google Scholar] [CrossRef]
- IATA. Halving Emissions by 2050—Aviation Brings Its Targets to Copenhagen. Available online: https://www.iata.org/en/pressroom/pr/2009-12-08-01/ (accessed on 5 March 2021).
- Oberthür, S. Institutional interaction to address greenhouse gas emissions from international transport: ICAO, IMO and the Kyoto Protocol. Clim. Policy 2003, 3, 191–205. [Google Scholar] [CrossRef]
- Environmental and Energy Study Institute. Fact Sheet: The Growth in Greenhouse Gas Emissions from Commercial Aviation. Available online: https://www.eesi.org/ (accessed on 8 March 2021).
- Poll, D. 21st-Century civil aviation: Is it on course or is it over-confident and complacent?-thoughts on the conundrum of aviation and the environment. Aeronaut. J. 2017, 121, 115. [Google Scholar] [CrossRef]
- Gray, N.; McDonagh, S.; O’Shea, R.; Smyth, B.; Murphy, J.D. Decarbonising Ships, Planes and Trucks: An Analysis of Suitable Low-Carbon Fuels for the Maritime, Aviation and Haulage Sectors. Adv. Appl. Energy 2021, 1, 100008. [Google Scholar] [CrossRef]
- Scheelhaase, J.; Maertens, S.; Grimme, W.; Jung, M. EU ETS versus CORSIA–A critical assessment of two approaches to limit air transport’s CO2 emissions by market-based measures. J. Air Transp. Manag. 2018, 67, 55–62. [Google Scholar] [CrossRef]
- Jungbluth, N.; Meili, C. Recommendations for calculation of the global warming potential of aviation including the radiative forcing index. Int. J. Life Cycle Assess 2019, 24, 404–411. [Google Scholar] [CrossRef]
- Zhang, C.; Hui, X.; Lin, Y.; Sung, C.-J. Recent development in studies of alternative jet fuel combustion: Progress, challenges, and opportunities. Renew. Sust. Energy Rev. 2016, 54, 120–138. [Google Scholar] [CrossRef] [Green Version]
- Skowron, A.; Lee, D.S.; De León, R.R.; Lim, L.L.; Owen, B. Greater fuel efficiency is potentially preferable to reducing NO x emissions for aviation’s climate impacts. Nat. Commun. 2021, 12, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Holmes, C.D.; Tang, Q.; Prather, M.J. Uncertainties in climate assessment for the case of aviation NO. Proc. Natl. Acad. Sci. USA 2011, 108, 10997–11002. [Google Scholar] [CrossRef] [Green Version]
- Grewe, V.; Dahlmann, K.; Flink, J.; Frömming, C.; Ghosh, R.; Gierens, K.; Heller, R.; Hendricks, J.; Jöckel, P.; Kaufmann, S. Mitigating the climate impact from aviation: Achievements and results of the DLR WeCare project. Aerospace 2017, 4, 34. [Google Scholar] [CrossRef]
- Cziczo, D.J.; Froyd, K.D. Sampling the composition of cirrus ice residuals. Atmos. Res. 2014, 142, 15–31. [Google Scholar] [CrossRef] [Green Version]
- Zhou, C.; Penner, J.E. Aircraft soot indirect effect on large-scale cirrus clouds: Is the indirect forcing by aircraft soot positive or negative? J. Geophys. Res. Atmos. 2014, 119, 303–311, 320. [Google Scholar]
- Kärcher, B. Cirrus clouds and their response to anthropogenic activities. Curr. Clim. Chang. Rep. 2017, 3, 45–57. [Google Scholar] [CrossRef] [Green Version]
- Kärcher, B. Formation and radiative forcing of contrail cirrus. Nat. Commun. 2018, 9, 1–17. [Google Scholar] [CrossRef]
- Schumann, U.; Heymsfield, A.J. On the life cycle of individual contrails and contrail cirrus. Meteorol. Monogr. 2017, 58, 3.1–3.24. [Google Scholar] [CrossRef]
- Schumann, U. On conditions for contrail formation from aircraft exhausts. Meteorol. Z. 1996, 5, 4–23. [Google Scholar] [CrossRef]
- Beyersdorf, A.; Timko, M.; Ziemba, L.; Bulzan, D.; Corporan, E.; Herndon, S.; Howard, R.; Miake-Lye, R.; Thornhill, K.; Winstead, E. Reductions in aircraft particulate emissions due to the use of Fischer–Tropsch fuels. Atmos. Chem. Phys. 2014, 14, 11–23. [Google Scholar] [CrossRef] [Green Version]
- Nojoumi, H.; Dincer, I.; Naterer, G. Greenhouse gas emissions assessment of hydrogen and kerosene-fueled aircraft propulsion. Int. J. Hydrogen Energy 2009, 34, 1363–1369. [Google Scholar] [CrossRef]
- Granovskii, M.; Dincer, I.; Rosen, M.A. Greenhouse gas emissions reduction by use of wind and solar energies for hydrogen and electricity production: Economic factors. Int. J. Hydrogen Energy 2007, 32, 927–931. [Google Scholar] [CrossRef]
- McCollum, D.L.; Wilson, C.; Bevione, M.; Carrara, S.; Edelenbosch, O.Y.; Emmerling, J.; Guivarch, C.; Karkatsoulis, P.; Keppo, I.; Krey, V. Interaction of consumer preferences and climate policies in the global transition to low-carbon vehicles. Nat. Energy 2018, 3, 664. [Google Scholar] [CrossRef]
- IEA. Total Final Consumption (TFC) by Source. Available online: https://www.iea.org/statistics (accessed on 9 March 2021).
- ICAO. On Board a Sustainable Future. Available online: https://www.icao.int (accessed on 3 March 2021).
- ICAO. United States Aviation Greenhouse Gas Emissions Reduction Plan. Available online: https://www.faa.gov (accessed on 2 March 2021).
- Department of Infrastructure and Regional Development. Managing the Carbon Footprint of Australian Aviation. Available online: https://www.infrastructure.gov.au (accessed on 13 July 2019).
- Anger, A.; Köhler, J. Including Aviation Emissions in the EU ETS: Much Ado about Nothing? A Review. Transp. Policy 2010, 17, 38–46. [Google Scholar] [CrossRef]
- Scheelhaase, J.D. How to regulate aviation’s full climate impact as intended by the EU council from 2020 onwards. J. Air Transp. Manag. 2019, 75, 68–74. [Google Scholar] [CrossRef]
- Adaptation Clearinghouse. Transportation and Climate Change Clearinghouse. Available online: https://www.adaptationclearinghouse.org (accessed on 7 March 2021).
- ATAG. Reducing Emissions from Aviation through Carbon Neutral Growth from 2020. Available online: https://www.realwire.com/writeitfiles/PositionPaper_ICAO-ASBY_2013_mediumres.pdf (accessed on 9 March 2021).
- IATA. Technology Roadmap. Available online: https://www.iata.org/whatwedo/environment/Documents/technology-roadmap-2013.pdf (accessed on 4 March 2021).
- Sgouridis, S.; Bonnefoy, P.A.; Hansman, R.J. Air transportation in a carbon constrained world: Long-term dynamics of policies and strategies for mitigating the carbon footprint of commercial aviation. Transp. Res. Part A Policy Pract. 2011, 45, 1077–1091. [Google Scholar] [CrossRef]
- ICAO. Global Air Navigation Plan. Available online: https://www.icao.int/airnavigation/Pages/GANP-Resources.aspx (accessed on 19 August 2019).
- ICAO. ICAO CORSIA CO2 Estimation and Reporting Tool. Available online: https://www.icao.int/environmental-protection/CORSIA/Pages/CERT.aspx (accessed on 19 August 2019).
- ATAG. Aviation: Benefits beyond Borders. Available online: https://aviationbenefits.org/media/166344/abbb18_full-report_web.pdf (accessed on 5 March 2021).
- Moore, R.H.; Thornhill, K.L.; Weinzierl, B.; Sauer, D.; D’Ascoli, E.; Kim, J.; Lichtenstern, M.; Scheibe, M.; Beaton, B.; Beyersdorf, A.J. Biofuel blending reduces particle emissions from aircraft engines at cruise conditions. Nature 2017, 543, 411–415. [Google Scholar] [CrossRef] [Green Version]
- Marsh, G. Biofuels: Aviation alternative? Renew. Energy Focus 2008, 9, 48–51. [Google Scholar] [CrossRef]
- Blakey, S.; Rye, L.; Wilson, C.W. Aviation gas turbine alternative fuels: A review. Proc. Combust. Inst. 2011, 33, 2863–2885. [Google Scholar] [CrossRef]
- Williams, P.I.; Allan, J.D.; Lobo, P.; Coe, H.; Christie, S.; Wilson, C.; Hagen, D.; Whitefield, P.; Raper, D.; Rye, L. Impact of alternative fuels on emissions characteristics of a gas turbine engine–Part 2: Volatile and semivolatile particulate matter emissions. Environ. Sci. Technol. 2012, 46, 10812–10819. [Google Scholar] [CrossRef] [PubMed]
- Corporan, E.; Edwards, T.; Shafer, L.; DeWitt, M.J.; Klingshirn, C.; Zabarnick, S.; West, Z.; Striebich, R.; Graham, J.; Klein, J. Chemical, thermal stability, seal swell, and emissions studies of alternative jet fuels. Energy Fuels 2011, 25, 955–966. [Google Scholar] [CrossRef]
- Murgan, M.; Hamid, A.; Mustapha, M. Rethinking the potency of ICAO SARPS on global reduction of aviation emission and protection of global environment. Bratisl. Law Rev. 2017, 1, 28–37. [Google Scholar] [CrossRef]
- Liu, G.; Yan, B.; Chen, G. Technical review on jet fuel production. Renew. Sust. Energy Rev. 2013, 25, 59–70. [Google Scholar] [CrossRef]
- Lobo, P.; Hagen, D.E.; Whitefield, P.D. Comparison of PM emissions from a commercial jet engine burning conventional, biomass, and Fischer–Tropsch fuels. Environ. Sci. Technol. 2011, 45, 10744–10749. [Google Scholar] [CrossRef]
- Lee, J.J.; Lukachko, S.P.; Waitz, I.A. Aircraft and Energy Use. In Encyclopedia of Energy; Cleveland, C.J., Ed.; Elsevier: New York, NY, USA, 2004; pp. 29–38. [Google Scholar] [CrossRef]
- Lee, D.S.; Fahey, D.W.; Skowron, A.; Allen, M.R.; Burkhardt, U.; Chen, Q.; Doherty, S.J.; Freeman, S.; Forster, P.M.; Fuglestvedt, J.; et al. Aviation and global climate change in the 21st century. Atmos. Environ. 2009, 43, 3520–3537. [Google Scholar] [CrossRef] [Green Version]
- Momirlan, M.; Veziroglu, T. Current status of hydrogen energy. Renew. Sust. Energy Rev. 2002, 6, 141–179. [Google Scholar] [CrossRef]
- Ponater, M.; Pechtl, S.; Sausen, R.; Schumann, U.; Hüttig, G. Potential of the cryoplane technology to reduce aircraft climate impact: A state-of-the-art assessment. Atmos. Environ. 2006, 40, 6928–6944. [Google Scholar] [CrossRef] [Green Version]
- IATA. Annual Review 2018. Available online: https://www.iata.org/publications/Documents/iata-annual-review-2018.pdf (accessed on 2 March 2021).
- McElroy, P. Boeing and Sustainable Aviation Biofuel Development. Available online: https://www.boeing.com/ (accessed on 19 August 2019).
- Keramidas, K.; Tchung-Ming, S.; Diaz-Vazquez, A.R.; Weitzel, M.; Vandyck, T.; Despres, J.; Schmitz, A.; Rey Los Santos, L.; Wojtowicz, K.; Schade, B. Global Energy and Climate Outlook 2018. Available online: https://publications.europa.eu (accessed on 19 August 2019).
- Greene, D.; Baker, H.; Plotkin, S. Reducing Greenhouse Gas Emissions from US Transportation. Available online: https://www.c2es.org (accessed on 19 August 2019).
- Azami, M.H.; Zaki, M.; Savill, M.; Li, Y.-G. Modelling the performance of aero-gas turbine engine using algae-based biofuel with emission prediction. IOP Publ. 2019, 488, 012007. [Google Scholar] [CrossRef]
- Abdullah, B.; Syed Muhammad, S.A.F.a.; Shokravi, Z.; Ismail, S.; Kassim, K.A.; Mahmood, A.N.; Aziz, M.M.A. Fourth generation biofuel: A review on risks and mitigation strategies. Renew. Sustain. Energy Rev. 2019, 107, 37–50. [Google Scholar] [CrossRef]
- Peña, N. Biofuels for transpo#rtation: A clima4te perspe4ctive. Available online: http://olli.erg.berkeley.edu/sites/default/files/pew%20BiofuelsFINAL.pdf (accessed on 19 August 2019).
- IEA. World Energy Model. Available online: https://www.iea.org/reports/world-energy-model (accessed on 12 April 2020).
- Searchinger, T.; Heimlich, R.; Houghton, R.A.; Dong, F.; Elobeid, A.; Fabiosa, J.; Tokgoz, S.; Hayes, D.; Yu, T.-H. Use of US croplands for biofuels increases greenhouse gases through emissions from land-use change. Science 2008, 319, 1238–1240. [Google Scholar] [CrossRef]
- Fargione, J.; Hill, J.; Tilman, D.; Polasky, S.; Hawthorne, P. Land clearing and the biofuel carbon debt. Science 2008, 319, 1235–1238. [Google Scholar] [CrossRef] [Green Version]
- Daggett, D.L.; Hendricks, R.C.; Walther, R.; Corporan, E. Alternate Fuels for Use in Commercial Aircraft. Available online: https://ntrs.nasa.gov/search.jsp?R=20080018472 (accessed on 13 April 2019).
- Veziroğlu, T.N. 21st Century’s energy: Hydrogen energy system. Energy Convers. Manag. 2008, 49, 1820–1831. [Google Scholar] [CrossRef]
- IEA. Transport, Energy and CO2: Moving towards Sustainability. Available online: https://www.iea.org/publications/freepublications/publication/transport2009.pdf (accessed on 2 March 2021).
- Janic, M. The potential of liquid hydrogen for the future ‘carbon-neutral’air transport system. Transp. Res. Part D Transp. Environ. 2008, 13, 428–435. [Google Scholar] [CrossRef]
- Brdnik, P.A.; Kamnik, R.; Marksel, M.; Božičnik, S. Market and Technological Perspectives for the New Generation of Regional Passenger Aircraft. Energies 2019, 12, 1864. [Google Scholar] [CrossRef] [Green Version]
- Abbe, G.; Smith, H. Technological development trends in Solar-powered Aircraft Systems. Renew. Sust. Energy Rev. 2016, 60, 770–783. [Google Scholar] [CrossRef]
- Gao, X.-Z.; Hou, Z.-X.; Guo, Z.; Liu, J.-X.; Chen, X.-Q. Energy management strategy for solar-powered high-altitude long-endurance aircraft. Energy Convers. Manag. 2013, 70, 20–30. [Google Scholar] [CrossRef]
- Jalalian, M.; Gholami, S.; Ramezanian, R. Analyzing the trade-off between CO2 emissions and passenger service level in the airline industry: Mathematical modeling and constructive heuristic. J. Clean. Prod. 2019, 206, 251–266. [Google Scholar] [CrossRef]
- Boeing. Curresnt Market Outlook: 2017–2036. Available online: http://www.boeing.com (accessed on 13 August 2019).
- Davis, S.C.; Diegel, S.W.; Boundy, R.G. Transportation Energy Data Book. Available online: https://tedb.ornl.gov/ (accessed on 18 August 2019).
- Schäfer, A.; Heywood, J.B.; Jacoby, H.D.; Waitz, I.A. Transportation in a Climate-Constrained World; MIT Press: Cambridge, MA, USA, 2009. [Google Scholar]
- ACARE. European Aeronautics: A Vision for 2020. Available online: https://www.acare4europe.org/sites/acare4europe.org/files/document/Vision%202020_0.pdf (accessed on 11 March 2021).
- Becken, S.; Mackey, B. What role for offsetting aviation greenhouse gas emissions in a deep-cut carbon world? J. Air Transp. Manag. 2017, 63, 71–83. [Google Scholar] [CrossRef]
- IATA. Aviation Carbon Offset Programmes. Available online: https://www.iata.org/ (accessed on 10 March 2021).
- Tang, B.-J.; Hu, Y.-J. How to Allocate the Allowance for the Aviation Industry in China’s Emissions Trading System. Sustainability 2019, 11, 2541. [Google Scholar] [CrossRef] [Green Version]
- IATA. Carbon Offsetting for International Aviation. Available online: https://www.iata.org/contentassets/fb745460050c48089597a3ef1b9fe7a8/paper-offsetting-for-aviation.pdf (accessed on 12 April 2020).
- Corbett, J.J.; Winebrake, J.J.; Green, E.H.; Kasibhatla, P.; Eyring, V.; Lauer, A. Mortality from ship emissions: A global assessment. Environ. Sci. Technol. 2007, 41, 8512–8518. [Google Scholar] [CrossRef]
- Vedantham, A.; Oppenheimer, M. Long-term scenarios for aviation: Demand and emissions of CO2 and NOx. Energy Policy 1998, 26, 625–641. [Google Scholar] [CrossRef] [Green Version]
- Scholl, L.; Schipper, L.; Kiang, N. CO2 emissions from passenger transport: A comparison of international trends from 1973 to 1992. Energy Policy 1996, 24, 17–30. [Google Scholar] [CrossRef]
- Staples, M.D.; Malina, R.; Suresh, P.; Hileman, J.I.; Barrett, S.R. Aviation CO2 emissions reductions from the use of alternative jet fuels. Energy Policy 2018, 114, 342–354. [Google Scholar] [CrossRef]
- Cash, S.; Zhou, Q.; Olatunbosun, O.; Xu, H.; Davis, S.; Shaw, R. Development of a Series Hybrid Electric Aircraft Pushback Vehicle: A Case Study. Engineering 2019, 11, 33–47. [Google Scholar] [CrossRef] [Green Version]
- Dahlmann, K.; Koch, A.; Linke, F.; Lührs, B.; Grewe, V.; Otten, T.; Seider, D.; Gollnick, V.; Schumann, U. Climate-Compatible Air Transport System—Climate Impact Mitigation Potential for Actual and Future Aircraft. Aerospace 2016, 3, 38. [Google Scholar] [CrossRef] [Green Version]
- Airbus. Commercial Aircraft. Available online: https://www.airbus.com/aircraft.html (accessed on 20 August 2019).
- Müller, C.; Kieckhäfer, K.; Spengler, T.S. The influence of emission thresholds and retrofit options on airline fleet planning: An optimization approach. Energy Policy 2018, 112, 242–257. [Google Scholar] [CrossRef]
- Kieckhäfer, K.; Quante, G.; Müller, C.; Spengler, T.; Lossau, M.; Jonas, W. Simulation-Based Analysis of the Potential of Alternative Fuels towards Reducing CO2 Emissions from Aviation. Energies 2018, 11, 186. [Google Scholar] [CrossRef] [Green Version]
- Cansino, J.M.; Román, R. Energy efficiency improvements in air traffic: The case of Airbus A320 in Spain. Energy Policy 2017, 101, 109–122. [Google Scholar] [CrossRef]
- Cox, B.; Jemiolo, W.; Mutel, C. Life cycle assessment of air transportation and the Swiss commercial air transport fleet. Transp. Res. Part D Transp. Environ. 2018, 58, 1–13. [Google Scholar] [CrossRef]
- Köhler, J. Air Transport: Marginal Abatement Costs and Cost Reduction through Learning. Available online: https://www.ghg-transpord.eu (accessed on 19 August 2019).
- UNFCCC. Contribution of the Global Aviation Sector to Achieving Paris Agreement Climate Objectives. Available online: https://unfccc.int/sites/default/files/resource/156_CAN%20ICSA%20Aviation%20TD%20submission.pdf (accessed on 22 May 2019).
- Climate Watch. Data Explorer: Historial Emissions. Available online: https://www.climatewatchdata.org/ (accessed on 6 March 2021).
- Casas, M.J.d.V.; Kuramochi, T.; Höhne, N. Realizing the Promise of Paris: Roadmap to a Safer Climate. Available online: https://www.nrdc.org/ (accessed on 19 August 2019).
- UNEP. Emissions Gap Report 2018. Available online: https://www.unenvironment.org/resources/emissions-gap-report-2018 (accessed on 1 March 2021).
- IATA. Aircraft Technology Roadmap to 2050. Available online: https://www.iata.org/contentassets/8d19e716636a47c184e7221c77563c93/technology20roadmap20to20205020no20foreword.pdf (accessed on 12 March 2021).
- Transport and Environment. Roadmap to Decarbonising European Aviation. Available online: https://www.transportenvironment.org/sites/te/files/publications/2018_10_Aviation_decarbonisation_paper_final.pdf (accessed on 22 May 2019).
- Blanco, H.; Nijs, W.; Ruf, J.; Faaij, A. Potential for hydrogen and Power-to-Liquid in a low-carbon EU energy system using cost optimization. Appl. Energy 2018, 232, 617–639. [Google Scholar] [CrossRef]
- Hasan, M.A. Understanding the Costs, Benefits, Mitigation Potentials and Ethical Aspects of New Zealand’s Transport Emissions Reduction Policies. Available online: http://hdl.handle.net/10063/9120 (accessed on 27 September 2020).
- Rahman, M.M.; Rahman, S.M.; Rahman, M.S.; Hasan, M.A.; Shoaib, S.A.; Rushd, S. Greenhouse Gas Emissions from Solid Waste Management in Saudi Arabia—Analysis of Growth Dynamics and Mitigation Opportunities. Appl. Sci. 2021, 11, 1737. [Google Scholar] [CrossRef]
- Hong, Y.; Cui, H.; Dai, J.; Ge, Q. Estimating the cost of biofuel use to mitigate international air transport emissions: A case study in Palau and Seychelles. Sustainability 2019, 11, 3545. [Google Scholar] [CrossRef] [Green Version]
- Hasan, M.A.; Frame, D.J.; Chapman, R.; Archie, K.M. Curbing the car: The mitigation potential of a higher carbon price in the New Zealand transport sector. Clim. Policy 2020, 20, 563–576. [Google Scholar] [CrossRef]
- Nordhaus, W.D. Revisiting the social cost of carbon. Proc. Natl. Acad. Sci. USA 2017, 114, 1518–1523. [Google Scholar] [CrossRef] [Green Version]
- IEA. Energy Technology Perspectives 2012: Pathways to a Clean Energy System; International Energy Agency: Paris, France, 2012; ISBN 978-92-64-17488-7. [Google Scholar]
- Kharina, A.; Rutherford, D.; Zeinali, M. Cost Assessment of Near and Mid-Term Technologies to Improve New Aircraft Fuel Efficiency. Available online: https://theicct.org/sites/default/files/publications/ICCT%20aircraft%20fuel%20efficiency%20cost%20assessment_final_09272016.pdf (accessed on 12 March 2021).
- Transport & Environment. How to Reduce Airline Emissions. Available online: https://www.transportenvironment.org/what-we-do/aviation-and-eu-ets (accessed on 5 May 2020).
- Rahman, S.M.; Khondaker, A.; Hasan, M.A.; Reza, I. Greenhouse gas emissions from road transportation in Saudi Arabia-a challenging frontier. Renew. Sust. Energy Rev. 2017, 69, 812–821. [Google Scholar] [CrossRef]
- Hasan, M.A.; Chapman, R.; Frame, D.J. Acceptability of transport emissions reduction policies: A multi-criteria analysis. Renew. Sust. Energy Rev. 2020, 133, 110298. [Google Scholar] [CrossRef]
- Lutsey, N.P.; Sperling, D. Transportation and Greenhouse Gas Mitigation. Available online: https://escholarship.org/uc/item/6fz1z05g (accessed on 6 July 2019).
- Cui, Q.; Li, Y. Investigating the impacts of the EU ETS emission rights on airline environmental efficiency via a Network Environmental SBM model. J. Environ. Plan. Manag. 2019, 62, 1465–1488. [Google Scholar] [CrossRef]
- Joltreau, E.; Sommerfeld, K. Why does emissions trading under the EU Emissions Trading System (ETS) not affect firms’ competitiveness? Empirical findings from the literature. Clim. Policy 2019, 19, 453–471. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Tian, H.; Hao, Y.; Liu, S.; Liu, X.; Zhu, C.; Wu, Y.; Liu, W.; Bai, X.; Wu, B. Atmospheric emission inventory of multiple pollutants from civil aviation in China: Temporal trend, spatial distribution characteristics and emission features analysis. Sci. Total Environ. 2019, 648, 871–879. [Google Scholar] [CrossRef]
- Lee, J.J.; Lukachko, S.P.; Waitz, I.A.; Schafer, A. Historical and future trends in aircraft performance, cost, and emissions. Annu. Rev. Energy Environ. 2001, 26, 167–200. [Google Scholar] [CrossRef] [Green Version]
- IIASA. Understanding the Sustainable Aviation Biofuel Potential in Sub-Saharan Africa. Available online: http://www.iiasa.ac.at/ (accessed on 2 March 2021).
- Badami, M.; Nuccio, P.; Pastrone, D.; Signoretto, A. Performance of a small-scale turbojet engine fed with traditional and alternative fuels. Energy Convers. Manag. 2014, 82, 219–228. [Google Scholar] [CrossRef]
- Palash, S.; Kalam, M.; Masjuki, H.; Masum, B.; Fattah, I.R.; Mofijur, M. Impacts of biodiesel combustion on NOx emissions and their reduction approaches. Renew. Sust. Energy Rev. 2013, 23, 473–490. [Google Scholar] [CrossRef]
- Appavu, P.; Ramanan, M.V.; Jayaraman, J.; Venu, H. NOx emission reduction techniques in biodiesel-fuelled CI engine: A review. Aust. J. Mech. Eng. 2019, 1–11. [Google Scholar] [CrossRef]
- O’Connell, A.; Kousoulidou, M.; Lonza, L.; Weindorf, W. Considerations on GHG emissions and energy balances of promising aviation biofuel pathways. Renew. Sust. Energy Rev. 2019, 101, 504–515. [Google Scholar] [CrossRef]
- Alalwan, H.A.; Alminshid, A.H.; Aljaafari, H.A. Promising evolution of biofuel generations. Subject review. Renew. Energy Focus 2019, 28, 127–139. [Google Scholar] [CrossRef]
- Baledon, M.S.; Kosoy, N. “Problematizing” carbon emissions from international aviation and the role of alternative jet fuels in meeting ICAO’s mid-century aspirational goals. J. Air Transp. Manag. 2018, 71, 130–137. [Google Scholar] [CrossRef] [PubMed]
- Koistinen, K.; Upham, P.; Bögel, P. Stakeholder signalling and strategic niche management: The case of aviation biokerosene. J. Clean. Prod. 2019, 225, 72–81. [Google Scholar] [CrossRef]
- Hari, T.K.; Yaakob, Z.; Binitha, N.N. Aviation biofuel from renewable resources: Routes, opportunities and challenges. Renew. Sust. Energy Rev. 2015, 42, 1234–1244. [Google Scholar] [CrossRef]
- Tongpun, P.; Wang, W.-C.; Srinophakun, P. Techno-economic analysis of renewable aviation fuel production: From farming to refinery processes. J. Clean. Prod. 2019, 226, 6–17. [Google Scholar] [CrossRef]
- Chiaramonti, D. Sustainable Aviation Fuels: The challenge of decarbonization. Energy Procedia 2019, 158, 1202–1207. [Google Scholar] [CrossRef]
- Deane, J.; Pye, S. Europe’s ambition for biofuels in aviation-A strategic review of challenges and opportunities. Energy Strategy Rev. 2018, 20, 1–5. [Google Scholar] [CrossRef]
- Strouhal, M. CORSIA-Carbon Offsetting and Reduction Scheme for International Aviation. Mad. Mag. Aviat. Dev. 2020, 8, 23–28. [Google Scholar] [CrossRef]
- Transport & Environment. Grounded: How ICAO Failed to Tackle Aviation and Climate Change and What Should Happen Now. Available online: https://www.transportenvironment.org/sites/te/files/media/2010_09_icao_grounded.pdf (accessed on 19 August 2019).
- Petsonk, A.; Piris-Cabezas, P. Bridging the Allocation Gap in the ICAO MBM: A New Proposal. Carbon Clim. Law Rev. 2016, 10, 127–133. [Google Scholar]
- Havenl, B.F.; Sanchez, G.S. Toward an International Aviation Emissions Agreement. Harv. Environ. Law Rev. 2012, 36, 351–386. [Google Scholar]
- Maertens, S.; Grimme, W.; Scheelhaase, J.; Jung, M. Options to Continue the EU ETS for Aviation in a CORSIA-World. Sustainability 2019, 11, 5703. [Google Scholar] [CrossRef] [Green Version]
- Efthymiou, M.; Papatheodorou, A. EU Emissions Trading scheme in aviation: Policy analysis and suggestions. J. Clean. Prod. 2019, 237, 117734. [Google Scholar] [CrossRef]
- Cui, Q. Investigating the airlines emission reduction through carbon trading under CNG2020 strategy via a Network Weak Disposability DEA. Energy 2019, 180, 763–771. [Google Scholar] [CrossRef]
- Abeyratne, R. The Challenge Faced by ICAO. In Aviation and Climate Change: In Search of a Global Market Based Measure; Springer International Publishing: Cham, Switzerland, 2014; pp. 83–105. [Google Scholar] [CrossRef]
- Dray, L.; Doyme, K. Carbon leakage in aviation policy. Clim. Policy 2019, 19, 1284–1296. [Google Scholar] [CrossRef]
- Cho, K.S.; Li, G.; Bardell, N. Towards meeting the IATA-agreed 1.5% average annual fuel efficiency improvements between 2010 and 2020: The current progress being made by US air carriers. Aviation 2019, 23, 123–132. [Google Scholar]
- ICAO. Air Navigation Report. Available online: https://www.icao.int/airnavigation/Documents/ICAO_AN%202016_final_19July.pdf (accessed on 1 March 2021).
- Winchester, N. A win-win solution to abate aviation CO2 emissions. J. Air Transp. Manag. 2019, 80, 101692. [Google Scholar] [CrossRef] [Green Version]
- Gössling, S.; Hanna, P.; Higham, J.; Cohen, S.; Hopkins, D. Can we fly less? Evaluating the ‘necessity’of air travel. J. Air Transp. Manag. 2019, 81, 101722. [Google Scholar] [CrossRef]
- Lu, J.-L.; Wang, C.-Y. Investigating the impacts of air travellers’ environmental knowledge on attitudes toward carbon offsetting and willingness to mitigate the environmental impacts of aviation. Transp. Res. Part D Transp. Environ. 2018, 59, 96–107. [Google Scholar] [CrossRef]
- Kantenbacher, J.; Hanna, P.; Cohen, S.; Miller, G.; Scarles, C. Public attitudes about climate policy options for aviation. Environ. Sci. Policy 2018, 81, 46–53. [Google Scholar] [CrossRef]
- Ritchie, B.W.; Sie, L.; Gössling, S.; Dwyer, L. Effects of climate change policies on aviation carbon offsetting: A three-year panel study. J. Sustain. Tour. 2020, 28, 337–360. [Google Scholar] [CrossRef]
- Wells, C.A.; Williams, P.D.; Nichols, N.K.; Kalise, D.; Poll, I. Reducing transatlantic flight emissions by fuel-optimised routing. Environ. Res. Lett. 2021, 16, 025002. [Google Scholar] [CrossRef]
- Chiaramonti, D.; Buffi, M.; Rizzo, A.M.; Lotti, G.; Prussi, M. Bio-hydrocarbons through catalytic pyrolysis of used cooking oils and fatty acids for sustainable jet and road fuel production. Biomass Bioenergy 2016, 95, 424–435. [Google Scholar] [CrossRef]
- Zech, K.M.; Dietrich, S.; Reichmuth, M.; Weindorf, W.; Müller-Langer, F. Techno-economic assessment of a renewable bio-jet-fuel production using power-to-gas. Appl. Energy 2018, 231, 997–1006. [Google Scholar] [CrossRef]
- Napp, T.; Few, S.; Sood, A.; Bernie, D.; Hawkes, A.; Gambhir, A. The role of advanced demand-sector technologies and energy demand reduction in achieving ambitious carbon budgets. Appl. Energy 2019, 238, 351–367. [Google Scholar] [CrossRef]
- Correa, D.F.; Beyer, H.L.; Fargione, J.E.; Hill, J.D.; Possingham, H.P.; Thomas-Hall, S.R.; Schenk, P.M. Towards the implementation of sustainable biofuel production systems. Renew. Sust. Energy Rev. 2019, 107, 250–263. [Google Scholar] [CrossRef]
- Lo, P.L.; Martini, G.; Porta, F.; Scotti, D. The determinants of CO2 emissions of air transport passenger traffic: An analysis of Lombardy (Italy). Transp. Policy 2018, 91, 108–119. [Google Scholar] [CrossRef]
- Ciers, J.; Mandic, A.; Toth, L.; Op’t Veld, G. Carbon Footprint of Academic Air Travel: A Case Study in Switzerland. Sustainability 2019, 11, 80. [Google Scholar] [CrossRef] [Green Version]
- Baumeister, S. Replacing short-haul flights with land-based transportation modes to reduce greenhouse gas emissions: The case of Finland. J. Clean. Prod. 2019, 225, 262–269. [Google Scholar] [CrossRef]
- Hasan, M.A.; Frame, D.J.; Chapman, R.; Archie, K.M. Emissions from the road transport sector of New Zealand: Key drivers and challenges. Environ. Sci. Pollut. Res. 2019, 26, 23937–23957. [Google Scholar] [CrossRef]
- Zannat, K.E.; Akhter, K.; Hasan, M.A.; Mitra, S.K. Impact of telecommunication on transportation system of Dhaka City. J. Bangladesh Inst. Plan. 2013, 6, 125–135. [Google Scholar]
- IATA. Annual Review 2013. Available online: https://www.iata.org/about/Documents/iata-annual-review-2013-en.pdf (accessed on 7 March 2021).
Fuel Stock | Airline | Aircraft | Route |
---|---|---|---|
Used cooking oil | Jetstar Airways | A320 | Melbourne–Hobart |
KLM Royal Dutch Airlines | B737 | Amsterdam–Paris | |
KLM Royal Dutch Airlines | B777 | Amsterdam–Rio de Janeiro | |
LAN Airlines | A320 | Santiago–Concepcion | |
Qantas Airways | A320 | Sydney–Adelaide | |
Thai Airways International | B777 | Bangkok–Chiang Mai | |
Thomson Airways | B757 | Birmingham–Arrecife | |
Air Canada | A319 | Toronto Pearson–Mexico City | |
Air France | A321 | Toulouse–Paris | |
Alaska Airlines | B737 | Seattle–Washington | |
Alaska Airlines | Q400 | Seattle–Portland | |
Camelina | Iberia | A320 | Madrid–Barcelona |
Porter Airlines | Q400 | Toronto–Ottawa | |
Porter Airlines | Q400 | Montreal–Toronto | |
Aeroméxico | B737 | Mexico City–San Jose | |
Jatropha | Finnair | A319 | Amsterdam–Helsinki |
Interjet | A320 | Mexico City–Tuxtla Gutierrez | |
Aeroméxico | B777 | Mexico City–Madrid | |
Jatropha, camelina, and used cooking oil | Aeroméxico | B777 | Mexico City–São Paulo |
Lufthansa | A321 | Hamburg–Frankfurt | |
Lufthansa | B747 | Frankfurt–Washington |
Year | Low Aircraft Technology | 1.39% Per Year Fuel Efficiency Goal | 2% Per Year Fuel Efficiency Goal |
---|---|---|---|
2020 | 0 | 0 | 1.2 |
2030 | 0.2 | 2 | 3.2 |
2040 | 0.7 | 3.2 | 4.9 |
2050 | 3.4 | 6.6 | 9.8 |
Measure | Marginal Abatement Costs in EUR/tCO2 by the Year 2020 | Possible Abated CO2 Emissions in Mto by the Year 2020 |
---|---|---|
New aircraft: early retirement of aircraft | 1556.8 | 12.2 |
Rfit: Engine replacement | 964.3 | 0.5 |
Refit: Engine upgrades | 789.4 | 0.1 |
New aircraft: light weighting | 415.9 | 6.6 |
Refit: winglets | 203.8 | 1.3 |
Current fleet: light weighting | 81.1 | 1.8 |
Polishing instead of painting | 19.8 | 0.2 |
Taxi-in/out: Ground towing | 405 | 0.2 |
Reduction of Auxiliary Power Unit used | 223.7 | 0.9 |
Taxi-in/out: Single Engine Taxi | 162.4 | 0.7 |
ATM improvement: SESAR system | 109.2 | 21.9 |
Reduction of contingency fuel | −5.9 | 1.9 |
Cyclic engine Wash | −18.4 | 0.8 |
Improve load factor | −105.6 | 7.3 |
Measures | Policy | Assumptions | Impact by 2050 |
---|---|---|---|
Fleet efficiency | Improve fleet efficiency by 0.5% per year on top of the current fleet fuel efficiency of 1% per year | There will be no rebound effect (i.e., fuel efficiency might reduce ticket prices and lead passengers to travel more) | Around 6.3% of the 2050 emissions reduction target is expected to be achieved (Figure 6). |
Gen II aircrafts from 2040 | By 2050, 1% of air travel demand will be met through Gen II aircrafts | Gen II aircrafts are expected to be in operation on a large scale from 2040 and assumed to be 30% more efficient than conventional aircrafts. | It is expected to contribute to achieving 4.2% of the 2050 emissions reduction target. |
Carbon price | Introduction of a high carbon price equivalent to USD 190/tCO2 for 2050 | The price elasticity of demand for fuel is adjusted by income elasticities and assumed to be −0.48. It indicates that a 10% increase in price will reduce demand by 4.8%. | Around 12% of the 2050 emissions reduction target is expected to be achieved. |
Biofuels uptake | Increase the share of biofuels in the aviation energy mix to 11.4% by 2050 | Biofuels will be produced from general wastes and residues, and not from crops. | It is expected to contribute to achieving 11% of the 2050 emissions reduction target. |
Renewable power to liquid (PtL) | Increase the share of PtL in the aviation energy mix to 44% by 2050 | The primary source for PtL will be renewables and the PtL is expected to be 66% more efficient than regular aviation fuels. | It might help to achieve 66.5% of the required emissions reduction target by 2050. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hasan, M.A.; Mamun, A.A.; Rahman, S.M.; Malik, K.; Al Amran, M.I.U.; Khondaker, A.N.; Reshi, O.; Tiwari, S.P.; Alismail, F.S. Climate Change Mitigation Pathways for the Aviation Sector. Sustainability 2021, 13, 3656. https://doi.org/10.3390/su13073656
Hasan MA, Mamun AA, Rahman SM, Malik K, Al Amran MIU, Khondaker AN, Reshi O, Tiwari SP, Alismail FS. Climate Change Mitigation Pathways for the Aviation Sector. Sustainability. 2021; 13(7):3656. https://doi.org/10.3390/su13073656
Chicago/Turabian StyleHasan, Md Arif, Abdullah Al Mamun, Syed Masiur Rahman, Karim Malik, Md. Iqram Uddin Al Amran, Abu Nasser Khondaker, Omer Reshi, Surya Prakash Tiwari, and Fahad Saleh Alismail. 2021. "Climate Change Mitigation Pathways for the Aviation Sector" Sustainability 13, no. 7: 3656. https://doi.org/10.3390/su13073656
APA StyleHasan, M. A., Mamun, A. A., Rahman, S. M., Malik, K., Al Amran, M. I. U., Khondaker, A. N., Reshi, O., Tiwari, S. P., & Alismail, F. S. (2021). Climate Change Mitigation Pathways for the Aviation Sector. Sustainability, 13(7), 3656. https://doi.org/10.3390/su13073656