How Green Possibilities Can Help in a Future Sustainable Conservation of Cultural Heritage in Europe
Abstract
:1. Introduction
2. Sustainable Conservation through a Chemical Approach
3. Modelling and Prediction of Climate Impact as Tool for Sustainable Conservation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Brundtland, G. Harlem Earth and Us: Population—Resources—Environment—Development. In United Nation Environment Programme; Kaml Torba, M., Biswas, A.K., Eds.; Butterworth—Heinemann: Oxford, UK, 1987; pp. 29–31. [Google Scholar]
- Costanza, R.; Patten, B.C. Defining and predicting sustainability. Ecol. Econ. 1995, 15, 193–196. [Google Scholar] [CrossRef]
- Little, D. Defining Sustainability in Meaningful Ways for Educators. J. Sustain. Educ. 2014, 7, 1–18. [Google Scholar]
- Moore, J.E.; Mascarenhas, A.; Bain, J.; Straus, S.E. Developing a comprehensive definition of sustainability. Implement. Sci. 2017, 12, 1–8. [Google Scholar] [CrossRef]
- Russo, A.P. The “vicious circle” of tourism development in heritage cities. Ann. Tour. Res. 2002, 29, 165–182. [Google Scholar] [CrossRef]
- Soini, K.; Birkeland, I. Exploring the scientific discourse on cultural sustainability. Geoforum 2014, 51, 213–223. [Google Scholar] [CrossRef]
- Cesare Brandi. Il Restauro. Teoria e Pratica (1939–1986); Saggi Arte; Editori Riuniti: Roma, Italy, 2009; ISBN 9788835980094. [Google Scholar]
- International Charters for Conservation and Restoration = Chartes Internationales sur la Conservation et la Restauration = Cartas Internacionales Sobre la Conservación y la Restauración—ICOMOS Open Archive: EPrints on Cultural Heritage. Available online: http://openarchive.icomos.org/id/eprint/431/ (accessed on 19 February 2021).
- Hosagrahar, J.; Soule, J.; Girard, L.; Potts, A. Cultural Heritage, the UN Sustainable Development Goals, and the New Urban Agenda. In Proceedings of the ICOMOS Concept Note United Nations Agenda 2030 Third United Nations Conference on Housing and Sustainable Urban Development (HABITAT III), Quito, Ecuador, 25 January 2016; Girard, L.F., Ed.; Università degli Studi di Napoli Federico II: Naples, Iatly, 2016. [Google Scholar]
- Hassan, N. Introducing Cultural Heritage into the Sustainable Development Agenda. In Proceedings of the Hangzhou International Congress, Hangzhou, China, 15–17 May 2013; pp. 1–5. [Google Scholar]
- Nocca, F. The role of cultural heritage in sustainable development: Multidimensional indicators as decision-making tool. Sustainability 2017, 9, 1882. [Google Scholar] [CrossRef] [Green Version]
- Fyall, A.; Garrod, B. Heritage tourism: At what price? Manag. Leis. 1998, 3, 213–228. [Google Scholar] [CrossRef]
- Screpanti, A.; De Marco, A.; Marco, A. De Corrosion on cultural heritage buildings in Italy: A role for ozone? Environ. Pollut. 2009, 157, 1513–1520. [Google Scholar] [CrossRef] [PubMed]
- Reimann, L.; Vafeidis, A.T.; Brown, S.; Hinkel, J.; Tol, R.S.J. Mediterranean UNESCO World Heritage at risk from coastal flooding and erosion due to sea-level rise. Nat. Commun. 2018, 9, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Luca, G.; Dastgerdi, A.S.; Francini, C.; Liberatore, G. Sustainable cultural heritage planning and management of overtourism in art cities: Lessons from atlas world heritage. Sustainability 2020, 12, 3929. [Google Scholar] [CrossRef]
- Di Turo, F.; Proietti, C.; Screpanti, A.; Fornasier, M.F.; Cionni, I.; Favero, G.; De Marco, A. Impacts of air pollution on cultural heritage corrosion at European level: What has been achieved and what are the future scenarios. Environ. Pollut. 2016, 218, 586–594. [Google Scholar] [CrossRef]
- Varotsos, C.; Tzanis, C.; Cracknell, A. The enhanced deterioration of the cultural heritage monuments due to air pollution. Environ. Sci. Pollut. Res. 2009, 16, 590–592. [Google Scholar] [CrossRef]
- Bertolin, C. Preservation of cultural heritage and resources threatened by climate change. Geosciences 2019, 9, 250. [Google Scholar] [CrossRef] [Green Version]
- Guzmán, P.C.; Roders, A.R.P.; Colenbrander, B.J.F. Measuring links between cultural heritage management and sustainable urban development: An overview of global monitoring tools. Cities 2017, 60, 192–201. [Google Scholar] [CrossRef]
- Sartori, A. Horizon 2020 e COSME: Ricerca, Innovazione, Competitività e Accesso al Credito per il Rilancio Dell’industria e delle PMI; Università Cattolica del Sacro Cuore, Centro di Ricerche in Analisi Economica e Sviluppo Economico Internazionale (CRANEC): Milano, Italy, 2014. [Google Scholar]
- Conde, M.; Horizon Europe. The next EU Research & Innovation Investment Programme (2021–2027); Bruxelles 2019. Available online: https://ec.europa.eu/info/horizon-europe_en (accessed on 19 February 2021).
- Ghahramani, L.; McArdle, K.; Fatoric, S. Minority community resilience and cultural heritage preservation: A case study of the gullah geechee community. Sustainablity 2020, 12, 2266. [Google Scholar] [CrossRef] [Green Version]
- Bushozi, P.M. Towards sustainable cultural heritage management in Tanzania: A case study of Kalenga and Mlambalasi sites in Iringa, Southern Tanzania. S. Afr. Archaeol. Bull. 2014, 69, 136–141. [Google Scholar]
- Du Cros, H.; Bauer, T.; Lo, C.; Rui, S. Cultural Heritage Assets in China as Sustainable Tourism Products: Case Studies of the Hutongs and the Huanghua Section of the Great Wall. J. Sustain. Tour. 2005, 13, 171–194. [Google Scholar] [CrossRef]
- Wai-yin, C.; Shu-yun, M. Heritage Preservation and Sustainability of China’s Development. Sustain. Dev. 2004, 31, 15–31. [Google Scholar] [CrossRef]
- Sinamai, A. African Cultural Heritage Conservation and Management: Theory and Practice from Southern Africa; Springer: Cham, Switzerland, 2018; Volume 20, ISBN 9783319320151. [Google Scholar]
- Molofsky, L.J.; Killick, D.; Ducea, M.N.; Macovei, M.; Chesley, J.T.; Ruiz, J.; Thibodeau, A.; Popescu, G.C. A novel approach to lead isotope provenance studies of tin and bronze: Applications to South African, Botswanan and Romanian artifacts. J. Archaeol. Sci. 2014, 50, 440–450. [Google Scholar] [CrossRef]
- Cataldo, R.; De Donno, A.; De Nunzio, G.; Leucci, G.; Nuzzo, L.; Siviero, S. Integrated methods for analysis of deterioration of cultural heritage: The Crypt of “Cattedrale di Otranto”. J. Cult. Herit. 2005, 6, 29–38. [Google Scholar] [CrossRef]
- Caneve, L.; Guarneri, M.; Lai, A.; Spizzichino, V.; Ceccarelli, S.; Mazzei, B. Non-destructive laser based techniques for biodegradation analysis in cultural heritage. Ndt E Int. 2019, 104, 108–113. [Google Scholar] [CrossRef]
- Negi, A.; Sarethy, I.P. Microbial Biodeterioration of Cultural Heritage: Events, Colonization, and Analyses. Microb. Ecol. 2019, 78, 1014–1029. [Google Scholar] [CrossRef]
- Moropoulou, A.; Labropoulos, K.C.; Delegou, E.T.; Karoglou, M.; Bakolas, A. Non-destructive techniques as a tool for the protection of built cultural heritage. Constr. Build. Mater. 2013, 48, 1222–1239. [Google Scholar] [CrossRef]
- Ciferri, O. The role of microorganisms in the degradation of cultural heritage. Stud. Conserv. 2002, 47, 35–45. [Google Scholar] [CrossRef]
- Alfano, G.; Lustrato, G.; Belli, C.; Zanardini, E.; Cappitelli, F.; Mello, E.; Sorlini, C.; Ranalli, G. The bioremoval of nitrate and sulfate alterations on artistic stonework: The case-study of Matera Cathedral after six years from the treatment. Int. Biodeterior. Biodegrad. 2011, 65, 1004–1011. [Google Scholar] [CrossRef]
- Gioventù, E.; Lorenzi, P.F.; Villa, F.; Sorlini, C.; Rizzi, M.; Cagnini, A.; Griffo, A.; Cappitelli, F. Comparing the bioremoval of black crusts on colored artistic lithotypes of the Cathedral of Florence with chemical and laser treatment. Int. Biodeterior. Biodegrad. 2011, 65, 832–839. [Google Scholar] [CrossRef]
- Artesani, A.; Di Turo, F.; Zucchelli, M.; Traviglia, A. Recent Advances in Protective Coatings for Cultural Heritage–An Overview. Coatings 2020, 10, 217. [Google Scholar] [CrossRef] [Green Version]
- Albini, M.; Letardi, P.; Mathys, L.; Brambilla, L.; Schröter, J.; Junier, P.; Joseph, E. Comparison of a bio-based corrosion inhibitor versus benzotriazole on corroded copper surfaces. Corros. Sci. 2018, 143, 84–92. [Google Scholar] [CrossRef]
- Chemat, F.; Abert-Vian, M.; Fabiano-Tixier, A.S.; Strube, J.; Uhlenbrock, L.; Gunjevic, V.; Cravotto, G. Green extraction of natural products. Origins, current status, and future challenges. TrAC Trends Anal. Chem. 2019, 118, 248–263. [Google Scholar] [CrossRef]
- Herremans, I.M.; Reid, R.E. Developing awareness of the sustainability concept. J. Environ. Educ. 2002, 34, 16–20. [Google Scholar] [CrossRef]
- Arreche, R.; Vázquez, P. Green biocides to control biodeterioration in materials science and the example of preserving World Heritage Monuments. Curr. Opin. Green Sustain. Chem. 2020, 25, 100359. [Google Scholar] [CrossRef]
- Ismail, K.M. Evaluation of cysteine as environmentally friendly corrosion inhibitor for copper in neutral and acidic chloride solutions. Electrochim. Acta 2007, 52, 7811–7819. [Google Scholar] [CrossRef]
- Varvara, S.; Muresan, L.M.; Rahmouni, K.; Takenouti, H. Evaluation of some non-toxic thiadiazole derivatives as bronze corrosion inhibitors in aqueous solution. Corros. Sci. 2008, 50, 2596–2604. [Google Scholar] [CrossRef]
- Kirchhoff, M.M. Promoting sustainability through green chemistry. Resour. Conserv. Recycl. 2005, 44, 237–243. [Google Scholar] [CrossRef]
- Sheldon, R.A. Metrics of Green Chemistry and Sustainability: Past, Present, and Future. ACS Sustain. Chem. Eng. 2018, 6, 32–48. [Google Scholar] [CrossRef] [Green Version]
- García-Serna, J.; Pérez-Barrigón, L.; Cocero, M.J. New trends for design towards sustainability in chemical engineering: Green engineering. Chem. Eng. J. 2007, 133, 7–30. [Google Scholar] [CrossRef]
- Lo Schiavo, S.; De Leo, F.; Urzì, C. Present and future perspectives for biocides and antifouling products for stone-built cultural heritage: Ionic liquids as a challenging alternative. Appl. Sci. 2020, 10, 6568. [Google Scholar] [CrossRef]
- De Silva, M.; Henderson, J. Sustainability in conservation practice. J. Inst. Conserv. 2011, 34, 5–15. [Google Scholar] [CrossRef]
- Finšgar, M.; Milošev, I. Inhibition of copper corrosion by 1,2,3-benzotriazole: A review. Corros. Sci. 2010, 52, 2737–2749. [Google Scholar] [CrossRef]
- Giuntoli, G.; Rosi, L.; Frediani, M.; Sacchi, B.; Salvadori, B.; Porcinai, S.; Frediani, P. Novel coatings from renewable resources for the protection of bronzes. Prog. Org. Coat. 2014, 77, 892–903. [Google Scholar] [CrossRef]
- Baglioni, M.; Berti, D.; Teixeira, J.; Giorgi, R.; Baglioni, P. Nanostructured surfactant-based systems for the removal of polymers from wall paintings: A small-angle neutron scattering study. Langmuir 2012, 28, 15193–15202. [Google Scholar] [CrossRef]
- Domingues, J.A.L.; Bonelli, N.; Giorgi, R.; Fratini, E.; Gorel, F.; Baglioni, P. Innovative hydrogels based on semi-interpenetrating p(HEMA)/PVP networks for the cleaning of water-sensitive cultural heritage artifacts. Langmuir 2013, 29, 2746–2755. [Google Scholar] [CrossRef]
- Baglioni, P.; Chelazzi, D.; Giorgi, R.; Poggi, G. Colloid and materials science for the conservation of cultural heritage: Cleaning, consolidation, and deacidification. Langmuir 2013, 29, 5110–5122. [Google Scholar] [CrossRef]
- Carretti, E.; Chelazzi, D.; Rocchigiani, G.; Baglioni, P.; Poggi, G.; Dei, L. Interactions between nanostructured calcium hydroxide and acrylate copolymers: Implications in cultural heritage conservation. Langmuir 2013, 29, 9881–9890. [Google Scholar] [CrossRef]
- Zarzuela, R.; Luna, M.; Carrascosa, L.M.; Yeste, M.P.; Garcia-Lodeiro, I.; Blanco-Varela, M.T.; Cauqui, M.A.; Rodríguez-Izquierdo, J.M.; Mosquera, M.J. Producing C-S-H gel by reaction between silica oligomers and portlandite: A promising approach to repair cementitious materials. Cem. Concr. Res. 2020, 130, 106008. [Google Scholar] [CrossRef]
- La Russa, M.F.; Ruffolo, S.A.; Rovella, N.; Belfiore, C.M.; Palermo, A.M.; Guzzi, M.T.; Crisci, G.M. Multifunctional TiO2 coatings for Cultural Heritage. Prog. Org. Coat. 2012, 74, 186–191. [Google Scholar] [CrossRef]
- Bergamonti, L.; Predieri, G.; Paz, Y.; Fornasini, L.; Lottici, P.P.; Bondioli, F. Enhanced self-cleaning properties of N-doped TiO2 coating for Cultural Heritage. Microchem. J. 2017, 133, 1–12. [Google Scholar] [CrossRef]
- Quagliarini, E.; Graziani, L.; Diso, D.; Licciulli, A.; D’Orazio, M. Is nano-TiO2 alone an effective strategy for the maintenance of stones in Cultural Heritage? J. Cult. Herit. 2018, 30, 81–91. [Google Scholar] [CrossRef]
- Lazzeri, A.; Bianchi, S.; Castelvetro, V.; Chiantore, O.; Coltelli, M.B.; Gherardi, F.; Lezzerini, M.; Poli, T.; Signori, F.; Smacchia, D.; et al. New polymer architectures for architectural stone preservation. In Proceedings of the Science and Art: A Future for Stone, Paisley, Scotland, 5–10 September 2016; Howind, J.J.H.T., Ed.; University of the West of Scotland: Paisley, Scotland, 2016; p. 12. [Google Scholar]
- Gherardi, F.; Roveri, M.; Goidanich, S.; Toniolo, L. Photocatalytic nanocomposites for the protection of European architectural heritage. Materials 2018, 11, 65. [Google Scholar] [CrossRef] [Green Version]
- Roveri, M.; Gherardi, F.; Goidanich, S.; Gulotta, D.; Castelvetro, V.; Fischer, R.; Winandy, L.; Weber, J.; Toniolo, L. Self-cleaning and antifouling nanocomposites for stone protection: Properties and performances of stone-nanomaterial systems. In Proceedings of the IOP Conference Series: Materials Science and Engineering, Florence, Italy, 16–18 May 2018; Volume 364. [Google Scholar] [CrossRef]
- Ferrari, A.M.; Pini, M.; Neri, P.; Bondioli, F. Nano-TiO2 Coatings for Limestone: Which Sustainability for Cultural Heritage? Coatings 2015, 5, 232–245. [Google Scholar] [CrossRef]
- Manoudis, P.N.; Karapanagiotis, I.; Tsakalof, A.; Zuburtikudis, I.; Kolinkeová, B.; Panayiotou, C. Superhydrophobic films for the protection of outdoor cultural heritage assets. Appl. Phys. A Mater. Sci. Process. 2009, 97, 351–360. [Google Scholar] [CrossRef]
- Bradley, S. Preventive conservation research and practice at the British Museum. J. Am. Inst. Conserv. 2005, 44, 159–173. [Google Scholar] [CrossRef]
- Krupinska, B.; Van Grieken, R.; De Wael, K. Air quality monitoring in a museum for preventive conservation: Results of a three-year study in the Plantin-Moretus Museum in Antwerp, Belgium. Microchem. J. 2013, 110, 350–360. [Google Scholar] [CrossRef]
- Del Hoyo-Meléndez, J.M.; Mecklenburg, M.F.; Doménech-Carbó, M.T. An evaluation of daylight distribution as an initial preventive conservation measure at two Smithsonian Institution Museums, Washington DC, USA. J. Cult. Herit. 2011, 12, 54–64. [Google Scholar] [CrossRef]
- Balocco, C.; Volante, G. A Method for Sustainable Lighting, Preventive Conservation, Energy Design and Technology—Lighting a Historical Church Converted into a University Library. Sustainability 2019, 11, 3145. [Google Scholar] [CrossRef] [Green Version]
- Balocco, C.; Petrone, G.; Maggi, O.; Pasquariello, G.; Albertini, R.; Pasquarella, C. Indoor microclimatic study for Cultural Heritage protection and preventive conservation in the Palatina Library. J. Cult. Herit. 2016, 22, 956–967. [Google Scholar] [CrossRef]
- Sahoo, J. Preservation of library materials: Some preventive measures. Orissa Hist. Res. J. 2004, 47, 105–114. [Google Scholar]
- Sahin, C.D.; Coşkun, T.; Arsan, Z.D.; Gökçen Akkurt, G. Investigation of indoor microclimate of historic libraries for preventive conservation of manuscripts. Case Study: Tire Necip Paşa Library, İzmir-Turkey. Sustain. Cities Soc. 2017, 30, 66–78. [Google Scholar] [CrossRef]
- Bucur, E.; Vasile, A.; Diodiu, R.; Catrangiu, A.; Petrescu, M. Assessment of indoor air quality in a wooden church for preventive conservation. J. Environ. Prot. Ecol. 2015, 16, 7–17. [Google Scholar]
- Allegretti, O.; De Vincenzi, M.; Uzielli, L.; Dionisi-Vici, P. Long-term hygromechanical monitoring of Wooden Objects of Art (WOA): A tool for preventive conservation. J. Cult. Herit. 2013, 14, e161–e164. [Google Scholar] [CrossRef]
- Schalm, O.; Anaf, W. Laminated altered layers in historical glass: Density variations of silica nanoparticle random packings as explanation for the observed lamellae. J. Non Cryst. Solids 2016, 442, 1–16. [Google Scholar] [CrossRef]
- Lucchi, E. Review of preventive conservation in museum buildings. J. Cult. Herit. 2018, 29, 180–193. [Google Scholar] [CrossRef]
- Van Balen, K. Preventive Conservation of Historic Buildings. Restor. Build. Monum. 2015, 21, 99–104. [Google Scholar] [CrossRef]
- Ghedini, N.; Ozga, I.; Bonazza, A.; Dilillo, M.; Cachier, H.; Sabbioni, C. Atmospheric aerosol monitoring as a strategy for the preventive conservation of urban monumental heritage: The Florence Baptistery. Atmos. Environ. 2011, 45, 5979–5987. [Google Scholar] [CrossRef]
- Waller, R. Conservation risk assessment: A strategy for managing resources for preventive conservation. Stud. Conserv. 1994, 39, 12–16. [Google Scholar] [CrossRef]
- Silva, H.E.; Henriques, F.M.A.A. Preventive conservation of historic buildings in temperate climates. The importance of a risk-based analysis on the decision-making process. Energy Build. 2015, 107, 26–36. [Google Scholar] [CrossRef]
- Bichlmair, S.; Raffler, S.; Kilian, R. The Temperierung heating systems as a retrofitting tool for the preventive conservation of historic museums buildings and exhibits. Energy Build. 2014, 95, 80–85. [Google Scholar] [CrossRef]
- Di Carlo, E.; Chisesi, R.; Barresi, G.; Barbaro, S.; Lombardo, G.; Rotolo, V.; Sebastianelli, M.; Travagliato, G.; Palla, F. Fungi and Bacteria in Indoor Cultural Heritage Environments: Microbial-related Risks for Artworks and Human Health. Environ. Ecol. Res. 2016, 4, 257–264. [Google Scholar] [CrossRef]
- Bonora, A.; Fabbri, K. Two new indices for preventive conservation of the cultural heritage: Predicted risk of damage and heritage microclimate risk. J. Cult. Herit. 2020, 47, 208–217. [Google Scholar] [CrossRef]
- Brimblecombe, P.; Grossi, C.M. Millennium long damage to building materials in London. Sci. Total Environ. 2009, 407, 1354–1361. [Google Scholar] [CrossRef]
- Inkpen, R.; Viles, H.; Moses, C.; Baily, B. Modelling the impact of changing atmospheric pollution levels on limestone erosion rates in central London, 1980–2010. Atmos. Environ. 2012, 61, 476–481. [Google Scholar] [CrossRef]
- Wang, J.J. Flood risk maps to cultural heritage: Measures and process. J. Cult. Herit. 2015, 16, 210–220. [Google Scholar] [CrossRef]
- MULTI ASSESS. Available online: https://cordis.europa.eu/project/id/EVK4-CT-2001-00044/fr (accessed on 23 December 2020).
- CULT STRAT. Available online: https://cordis.europa.eu/project/id/501609/reporting/it (accessed on 23 December 2020).
- Tidblad, J.; Kucera, V.; Mikhailov, A.; Knotkova, D. Improvement of the ISO classification system based on dose-response functions describing the corrosivity of outdoor atmospheres. In Outdoor Atmospheric Corrosion; Townsend, H., Ed.; ASTM International: West Conshohocken, PA, USA, 2002; pp. 73–87. [Google Scholar]
- Tidblad, J.; Kucera, V.; No, A.M.-R. Undefined UNECE international co-operative programme on effects on materials, including historic and cultural monuments. Swed. Corros. Inst. 1998, 1, 68. [Google Scholar]
- Tidblad, J. Atmospheric corrosion of metals in 2010–2039 and 2070–2099. Atmos. Environ. 2012, 55, 1–6. [Google Scholar] [CrossRef]
- Kucera, V.; Fitz, S. Direct and indirect air pollution effects on materials including cultural monuments. Water Air Soil Pollut. 1995, 85, 153–165. [Google Scholar] [CrossRef]
- Bonazza, A.; Messina, P.; Sabbioni, C.; Grossi, C.M.; Brimblecombe, P. Mapping the impact of climate change on surface recession of carbonate buildings in Europe. Sci. Total Environ. 2009, 407, 2039–2050. [Google Scholar] [CrossRef]
- Bonazza, A.; Sabbioni, C.; Messina, P.; Guaraldi, C.; De Nuntiis, P. Climate change impact: Mapping thermal stress on Carrara marble in Europe. Sci. Total Environ. 2009, 407, 4506–4512. [Google Scholar] [CrossRef]
- Menéndez, B. Estimators of the impact of climate change in salt weathering of cultural heritage. Geosciences 2018, 8, 401. [Google Scholar] [CrossRef] [Green Version]
- Fatorić, S.; Seekamp, E. Are cultural heritage and resources threatened by climate change? A systematic literature review. Clim. Chang. 2017, 142, 227–254. [Google Scholar] [CrossRef]
- Mishra, A. Cultural Heritage and Climate Change: A Literature Review. Int. J. Herb. Med. 2016, 4, 27–30. [Google Scholar]
- Noah’s Ark. Available online: https://www.ucl.ac.uk/bartlett/heritage/research/projects/project-archive/noahs-ark-project (accessed on 23 December 2020).
- Prieto, A.J.; Silva, A.; de Brito, J.; Macías-Bernal, J.M.; Alejandre, F.J. Multiple linear regression and fuzzy logic models applied to the functional service life prediction of cultural heritage. J. Cult. Herit. 2017, 27, 20–35. [Google Scholar] [CrossRef]
- Carroll, P.; Aarrevaara, E. Review of potential risk factors of cultural heritage sites and initial modelling for adaptation to climate change. Geosciences 2018, 8, 322. [Google Scholar] [CrossRef]
- Phillips, H. The capacity to adapt to climate change at heritage sites-The development of a conceptual framework. Environ. Sci. Policy 2015, 47, 118–125. [Google Scholar] [CrossRef]
- Phillips, H. Adaptation to Climate Change at UK World Heritage Sites: Progress and Challenges. Hist. Environ. Policy Pract. 2014, 5, 288–299. [Google Scholar] [CrossRef]
- Grossi, C.M.; Brimblecombe, P.; Harris, I. Predicting long term freeze-thaw risks on Europe built heritage and archaeological sites in a changing climate. Sci. Total Environ. 2007, 377, 273–281. [Google Scholar] [CrossRef]
- Terrill, G. Climate Change: How Should the World Heritage Convention Respond? Int. J. Herit. Stud. 2008, 14, 388–404. [Google Scholar] [CrossRef]
- Graham, E.; Hambly, J.; Dawson, T.J. Learning from Loss: Eroding Coastal Heritage in Scotland. Humanities 2017, 6, 87. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Turo, F.; Medeghini, L. How Green Possibilities Can Help in a Future Sustainable Conservation of Cultural Heritage in Europe. Sustainability 2021, 13, 3609. https://doi.org/10.3390/su13073609
Di Turo F, Medeghini L. How Green Possibilities Can Help in a Future Sustainable Conservation of Cultural Heritage in Europe. Sustainability. 2021; 13(7):3609. https://doi.org/10.3390/su13073609
Chicago/Turabian StyleDi Turo, Francesca, and Laura Medeghini. 2021. "How Green Possibilities Can Help in a Future Sustainable Conservation of Cultural Heritage in Europe" Sustainability 13, no. 7: 3609. https://doi.org/10.3390/su13073609
APA StyleDi Turo, F., & Medeghini, L. (2021). How Green Possibilities Can Help in a Future Sustainable Conservation of Cultural Heritage in Europe. Sustainability, 13(7), 3609. https://doi.org/10.3390/su13073609