# An Improved Prediction of Pre-Combustion Processes, Using the Discrete Multicomponent Model

^{1}

^{2}

^{3}

^{4}

^{5}

^{6}

^{7}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. The Models

## 3. Results

#### 3.1. Single Droplet

#### 3.2. Spray Simulation

_{b}; droplets were formed and allowed to breakup when the jet reached L

_{b}. Moreover, the dynamic drag model was used along with the no-time-counter (NTC) collision method, taking into account the post-collision regimes for better accuracy [24]. Injection velocities and droplet diameters are commonly calculated based on the nozzle diameter and mass flow rate [25]. This is the case for a solid-cone spray. However, an outwardly opening hollow-cone injector requires a more careful description of the process. The shape and area of the nozzle exit depend on the needle lift, which influences the injection velocities and droplet diameters (see Sim et al. [25] for the details). For the heating and evaporation of the droplet in spray, two models were used: that of Amsden et al. [4] (using the standard CONVERGE CFD tool) and the new model, which was implemented into CONVERGE via the UDF.

#### 3.3. Engine Simulation

## 4. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## References

- Lechner, G.A.; Jacobs, T.J.; Chryssakis, C.A.; Assanis, D.N.; Siewert, R.M. Evaluation of a narrow spray cone angle, advanced injection timing strategy to achieve partially premixed compression ignition combustion in a diesel engine. SAE Trans.
**2005**, 114, 394–404. [Google Scholar] - Al Qubeissi, M.; El-Kharouf, A. Renewable Energy: Resources, Challenges and Applications; IntechOpen: London, UK, 2020. [Google Scholar] [CrossRef]
- Naser, N.; Jaasim, M.; Atef, N.; Chung, S.H.; Im, H.G.; Sarathy, S.M. On the effects of fuel properties and injection timing in partially premixed compression ignition of low octane fuels. Fuel
**2017**, 207, 373–388. [Google Scholar] [CrossRef] [Green Version] - Amsden, A.A.; O’rourke, P.; Butler, T. KIVA-II: A Computer Program for Chemically Reactive Flows with Sprays; Los Alamos National Lab.: Los Alamos, NM, USA, 1989. [Google Scholar]
- Sazhin, S.S.; Elwardany, A.; Sazhina, E.; Heikal, M. A quasi-discrete model for heating and evaporation of complex multicomponent hydrocarbon fuel droplets. Int. J. Heat Mass Transf.
**2011**, 54, 4325–4332. [Google Scholar] [CrossRef] - Al Qubeissi, M.; Sazhin, S.S.; Elwardany, A.E. Modelling of blended Diesel and biodiesel fuel droplet heating and evaporation. Fuel
**2017**, 187, 349–355. [Google Scholar] [CrossRef] - Sazhin, S.S. Modelling of fuel droplet heating and evaporation: Recent results and unsolved problems. Fuel
**2017**, 196, 69–101. [Google Scholar] [CrossRef] - Sazhin, S.; Al Qubeissi, M.; Kolodnytska, R.; Elwardany, A.; Nasiri, R.; Heikal, M. Modelling of biodiesel fuel droplet heating and evaporation. Fuel
**2014**, 115, 559–572. [Google Scholar] [CrossRef] [Green Version] - Sazhin, S.; Al Qubeissi, M.; Nasiri, R.; Gun’Ko, V.; Elwardany, A.; Lemoine, F.; Grisch, F.; Heikal, M. A multi-dimensional quasi-discrete model for the analysis of Diesel fuel droplet heating and evaporation. Fuel
**2014**, 129, 238–266. [Google Scholar] [CrossRef] - Sazhin, S.S.; Elwardany, A.; Krutitskii, P.A.; Castanet, G.; Lemoine, F.; Sazhina, E.M.; Heikal, M.R. A simplified model for bi-component droplet heating and evaporation. Int. J. Heat Mass Transf.
**2010**, 53, 4495–4505. [Google Scholar] [CrossRef] [Green Version] - Elwardany, A.; Sazhin, S.S.; Im, H.G. A new formulation of physical surrogates of FACE A gasoline fuel based on heating and evaporation characteristics. Fuel
**2016**, 176, 56–62. [Google Scholar] [CrossRef] - Kabil, I.; Sim, J.; Badra, J.; Eldrainy, Y.; Abdelghaffar, W.; Mubarak Ali, M.J.; Ahmed, A.; Sarathy, S.; Im, H.; Elwardany, A. A surrogate fuel formulation to characterize heating and evaporation of light naphtha droplets. Combust. Sci. Technol.
**2018**, 190, 1218–1231. [Google Scholar] [CrossRef] - Al-Esawi, N.; Al Qubeissi, M. A new approach to formulation of complex fuel surrogates. Fuel
**2021**, 283, 118923. [Google Scholar] [CrossRef] - Abdelghaffar, W.A.; Elwardany, A.; Sazhin, S. Modeling of the processes in diesel engine-like conditions: Effects of fuel heating and evaporation. At. Sprays
**2010**, 20, 737–747. [Google Scholar] [CrossRef] - Rybdylova, O.; Al Qubeissi, M.; Braun, M.; Crua, C.; Manin, J.; Pickett, L.M.; De Sercey, G.; Sazhina, E.; Sazhin, S.; Heikal, M. A model for droplet heating and its implementation into ANSYS Fluent. Int. Commun. Heat Mass Transf.
**2016**, 76, 265–270. [Google Scholar] [CrossRef] [Green Version] - Rybdylova, O.; Poulton, L.; Al Qubeissi, M.; Elwardany, A.; Crua, C.; Khan, T.; Sazhin, S. A model for multi-component droplet heating and evaporation and its implementation into ANSYS Fluent. Int. Commun. Heat Mass Transf.
**2018**, 90, 29–33. [Google Scholar] [CrossRef] - Sazhin, S.; Al Qubeissi, M.; Xie, J.-F. Two approaches to modelling the heating of evaporating droplets. Int. Commun. Heat Mass Transf.
**2014**, 57, 353–356. [Google Scholar] [CrossRef] [Green Version] - Sazhin, S. Droplets and Sprays; Springer: Heidelberg, Germany, 2014; Volume 220. [Google Scholar]
- Abramzon, B.; Sirignano, W. Droplet vaporization model for spray combustion calculations. Int. J. Heat Mass Transf.
**1989**, 32, 1605–1618. [Google Scholar] [CrossRef] - Poling, B.E.; Prausnitz, J.M.; John Paul, O.C.; Reid, R.C. The Properties of Gases and Liquids; McGraw-Hill: New York, NY, USA, 2001; Volume 5. [Google Scholar]
- Daıïf, A.; Bouaziz, M.; Chesneau, X.; Ali Chérif, A. Comparison of multicomponent fuel droplet vaporization experiments in forced convection with the Sirignano model. Exp. Therm. Fluid Sci.
**1998**, 18, 282–290. [Google Scholar] [CrossRef] - Wang, L.; Badra, J.A.; Roberts, W.L.; Fang, T. Characteristics of spray from a GDI fuel injector for naphtha and surrogate fuels. Fuel
**2017**, 190, 113–128. [Google Scholar] [CrossRef] - Richards, K.J.; Senecal, P.K.; Pomraning, E. CONVERGE v2.3 Manual; Convergent Science Inc.: Madison, WI, USA, 2016. [Google Scholar]
- Post, S.L.; Abraham, J. Modeling the outcome of drop–drop collisions in Diesel sprays. Int. J. Multiph. Flow
**2002**, 28, 997–1019. [Google Scholar] [CrossRef] - Sim, J.; Badra, J.; Elwardany, A.; Im, H. Spray Modeling for Outwardly-Opening Hollow-Cone Injector. In Proceedings of the SAE 2016 World Congress & Exhibition, Detroit, MI, USA, 12–14 April 2016. [Google Scholar]
- Badra, J.A.; Sim, J.; Elwardany, A.; Jaasim, M.; Viollet, Y.; Chang, J.; Amer, A.A.; Im, H.G. Numerical Simulations of Hollow Cone Injection and Gasoline Compression Ignition Combustion With Naphtha Fuels. In Proceedings of the 2015 ASME Internal Combustion Engine Division Fall Technical Conference, Houston, TX, USA, 8–11 November 2015; p. V002T006A019. [Google Scholar]
- An, Y.; Jaasim, M.; Vallinayagam, R.; Vedharaj, S.; Im, H.G.; Johansson, B. Numerical simulation of combustion and soot under partially premixed combustion of low-octane gasoline. Fuel
**2018**, 211, 420–431. [Google Scholar] [CrossRef] - Babajimopoulos, A.; Assanis, D.; Flowers, D.; Aceves, S.; Hessel, R. A fully coupled computational fluid dynamics and multi-zone model with detailed chemical kinetics for the simulation of premixed charge compression ignition engines. Int. J. Engine Res.
**2005**, 6, 497–512. [Google Scholar] [CrossRef] - Liu, Y.-D.; Jia, M.; Xie, M.-Z.; Pang, B. Development of a New Skeletal Chemical Kinetic Model of Toluene Reference Fuel with Application to Gasoline Surrogate Fuels for Computational Fluid Dynamics Engine Simulation. Energy Fuels
**2013**, 27, 4899–4909. [Google Scholar] [CrossRef] - Bertoli, C.; Na Migliaccio, M. A finite conductivity model for diesel spray evaporation computations. Int. J. Heat Fluid Flow
**1999**, 20, 552–561. [Google Scholar] [CrossRef]

**Figure 2.**Measured spray axial penetration length and the values predicted by the conventional and customised versions of CONVERGE for PRF65 (primary reference fuel).

**Figure 3.**Comparison of the total vapour masses versus time for PRF65 calculated using the two versions of CONVERGE.

**Figure 4.**Mesh used for the single cylinder engine during spray event showing AMR (adaptive mesh refinement) refining the grid.

**Figure 5.**Cross-sections of the engine cylinder showing the temperature and equivalence ratio for SOI (start of injection) 20; the customised version of CONVERGE was used.

**Figure 6.**Cross-sections of engine cylinder showing the temperature and equivalence ratio for SOI 25; the customised version of CONVERGE was used.

**Figure 7.**Matching between the experimental motoring curve and that predicted by CONVERGE with the new model implemented into it via UDF (user-defined functions).

**Figure 8.**Comparison of in-cylinder pressures inferred from the experimental results, and the results of the simulation using the standard and customised versions of COVERGE at SOI 20 (CAD) crank angle in degrees BTDC (before top-dead-centre).

**Figure 9.**The same as Figure 8 but for SOI 25 CAD BTDC.

Description | Specification |
---|---|

Bore | 85 mm |

Stroke | 90 mm |

Connecting Rod Length | 138 mm |

Compression ratio | 17:1 |

Intake pressure | 100 KPa |

Intake temperature | 298 K |

Engine displacement | 0.51 L |

Bowl depth | 10 mm |

Number of valves | 2 intake, 1 exhaust |

Intake valve open (IVO) | 30 CA BTDC |

Intake valve close (IVC) | 45 CA ATDC |

Exhaust valve open (EVO) | 50 CA BBDC |

Exhaust valve close (EVC) | 25 CA ABDC |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Kabil, I.; Al Qubeissi, M.; Badra, J.; Abdelghaffar, W.; Eldrainy, Y.; Sazhin, S.S.; Im, H.G.; Elwardany, A.
An Improved Prediction of Pre-Combustion Processes, Using the Discrete Multicomponent Model. *Sustainability* **2021**, *13*, 2937.
https://doi.org/10.3390/su13052937

**AMA Style**

Kabil I, Al Qubeissi M, Badra J, Abdelghaffar W, Eldrainy Y, Sazhin SS, Im HG, Elwardany A.
An Improved Prediction of Pre-Combustion Processes, Using the Discrete Multicomponent Model. *Sustainability*. 2021; 13(5):2937.
https://doi.org/10.3390/su13052937

**Chicago/Turabian Style**

Kabil, Islam, Mansour Al Qubeissi, Jihad Badra, Walid Abdelghaffar, Yehia Eldrainy, Sergei S. Sazhin, Hong G. Im, and Ahmed Elwardany.
2021. "An Improved Prediction of Pre-Combustion Processes, Using the Discrete Multicomponent Model" *Sustainability* 13, no. 5: 2937.
https://doi.org/10.3390/su13052937