Research on Evaluation Method of Freight Transportation Environmental Sustainability
Abstract
:1. Introduction
2. Literature Review
3. Materials and Methods
3.1. Influence Factor Analysis
- (1)
- Freight volume
- (2)
- Turnover volume of freight
- (3)
- Carbon oxides emissions
- (4)
- Hydrocarbon emissions
- (5)
- Nitrogen oxides emissions
- (6)
- Particulate matter emissions
3.2. Standardize
3.3. Determining the Weight of Influencing Factors
4. TOPSIS Application and Results
4.1. Step 1
4.2. Step 2
4.3. Step 3
4.4. Step 4
4.5. Step 5
5. Discussion
6. Conclusions
- It summarized the factors that need to be generally considered in the environmental sustainability of transportation.
- It objectively weighed the influencing factors to reduce the decision deviation caused by external interference.
- The TOPSIS method was introduced into the field of environmental sustainability of transportation for the first time, providing a new evaluation method.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chang, W.R.; Hwang, J.J.; Wu, W. Environmental impact and sustainability study on biofuels for transportation applications. Renew. Sustain. Energy Rev. 2017, 67, 277–288. [Google Scholar] [CrossRef]
- Kumar, A.; Anbanandam, R. Development of social sustainability index for freight transportation system. J. Clean. Prod. 2019, 210, 77–92. [Google Scholar] [CrossRef]
- Mahdinia, I.; Habibian, M.; Hatamzadeh, Y.; Gudmundssonb, H. An indicator-based algorithm to measure transportation sustainability: A case study of the US states. Ecol. Indic. 2018, 89, 738–754. [Google Scholar] [CrossRef]
- Chirieleison, C.; Montrone, A.; Scrucca, L. Event sustainability and sustainable transportation: A positive reciprocal influence. J. Sustain. Tour. 2020, 28, 240–262. [Google Scholar] [CrossRef]
- Ekener, E.; Hansson, J.; Larsson, A.; Peck, P. Developing Life Cycle Sustainability Assessment methodology by applying values-based sustainability weighting-Tested on biomass based and fossil transportation fuels. J. Clean. Prod. 2018, 181, 337–351. [Google Scholar] [CrossRef]
- Cavalett, O.; Norem, S.S.; Cherubini, F. Energy and environmental aspects of using eucalyptus from Brazil for energy and transportation services in Europe. Sustainability 2018, 10, 4068. [Google Scholar] [CrossRef] [Green Version]
- Kumar, A.; Ramesh, A. An MCDM framework for assessment of social sustainability indicators of the freight transport industry under uncertainty. A multi-company perspective. J. Enterp. Inf. Manag. 2020, 33, 1023–1058. [Google Scholar] [CrossRef]
- Alazzawi, A.; Żak, J. MCDM/A Based Design of Sustainable Logistics Corridors Combined with Suppliers Selection. The Case Study of Freight Movement to Iraq. Transp. Res. Proc. 2020, 47, 577–584. [Google Scholar] [CrossRef]
- Xu, H.; Ma, C.; Lian, J.; Xu, K.; Chaima, E. Urban flooding risk assessment based on an integrated k-means cluster algorithm and improved entropy weight method in the region of Haikou, China. J. Hydrol. 2018, 563, 975–986. [Google Scholar] [CrossRef]
- Gorgij, A.D.; Kisi, S.O.; Moghaddam, A.A.; Taghipour, A. Groundwater quality ranking for drinking purposes, using the entropy method and the spatial autocorrelation index. Environ. Earth Sci. 2017, 76, 269. [Google Scholar] [CrossRef]
- Morimoto, T. Spatial analysis of social vulnerability to floods based on the MOVE framework and information entropy method: Case study of Katsushika Ward, Tokyo. Sustainability 2019, 11, 529. [Google Scholar]
- Islam, A.; Ahmed, N.; Bodrud-Doza, M.; Chu, R. Characterizing groundwater quality ranks for drinking purposes in Sylhet district, Bangladesh, using entropy method, spatial autocorrelation index, and geostatistics. Environ. Sci. Pollut. R. 2017, 24, 26350–26374. [Google Scholar] [CrossRef] [PubMed]
- Sahoo, M.M.; Patra, K.C.; Swain, J.B.; Khatua, K.K. Evaluation of water quality with application of Bayes’ rule and entropy weight method. Eur. J. Environ. Civ. Eng. 2016, 21, 730–752. [Google Scholar] [CrossRef]
- Zhao, H.; Yao, L.; Mei, G.; Liu, T.; Ning, Y. A fuzzy comprehensive evaluation method based on AHP and entropy for a landslide susceptibility map. Entropy 2017, 19, 396. [Google Scholar] [CrossRef]
- Fang, R.; Shang, R.; Wang, Y.; Guo, X. Identification of vulnerable lines in power grids with wind power integration based on a weighted entropy analysis method. Int. J. Hydrog. Energy 2017, 42, 20269–20276. [Google Scholar] [CrossRef]
- Romero, I.; Delgado, A. Applying grey systems and shannon entropy to social impact assessment and environmental conflict analysis. Int J. Appl. Eng. Res. 2017, 12, 14327–14337. [Google Scholar]
- Feng, J.; Gong, Z. Integrated linguistic entropy weight method and multi-objective programming model for supplier selection and order allocation in a circular economy: A case study. J. Clean. Prod. 2020, 277, 122597. [Google Scholar] [CrossRef]
- Ren, Z. Evaluation Method of Port Enterprise Product Quality Based on Entropy Weight TOPSIS. J. Coast. Res. 2020, 103, 766–769. [Google Scholar] [CrossRef]
- Wang, B.; Liu, J. Comprehensive Evaluation and Analysis of Maritime Soft Power Based on the Entropy Weight Method (EWM). J. Phys. Conf. Ser. 2019, 1168, 032108. [Google Scholar] [CrossRef]
- Wu, G.; Duan, K.; Zuo, J.; Zhao, X.; Tang, D. Integrated sustainability assessment of public rental housing community based on a hybrid method of AHP-entropy weight and cloud model. Sustainability 2017, 9, 603. [Google Scholar]
- Gong, Y.; Chen, L. Trust Evaluation of User Behavior Based on Entropy Weight Method. In Proceedings of the 10th International Conference on Computer Engineering and Networks (CENet), Xi’an, China, 16–18 October 2020; pp. 670–675. [Google Scholar]
- Delgado, A.; Ayala, B.; Carbajal, C. An approach to analyses social development in South America by Shannon entropy theory. In Proceedings of the 2019 IEEE Chilean Conference on Electrical, Electronics Engineering, Information and Communication Technologies (CHILECON), Valparaiso, Chile, 13–27 November 2019; pp. 1–5. [Google Scholar]
- Delgado, A.; Carbajal, C.; Reyes, H.; Romero, I. Social Impact Assessment on a Mining Project in Peru Using the Grey Clustering Method and the Entropy-Weight Method. In Proceedings of the IEEE Colombian Conference on Applications in Computational Intelligence (ColCACI), Barranquilla, Colombia, 4–7 June 2019; pp. 116–128. [Google Scholar]
- Lu, J.; Wang, W.; Zhang, Y.; Cheng, S. Multi-objective optimal design of stand-alone hybrid energy system using entropy weight method based on HOMER. Energies 2017, 10, 1664. [Google Scholar] [CrossRef] [Green Version]
- Zhao, G.; Wang, D. Comprehensive evaluation of AC/DC hybrid microgrid planning based on analytic hierarchy process and entropy weight method. Appl. Sci. 2019, 9, 3843. [Google Scholar] [CrossRef] [Green Version]
- Zhou, S.; Tan, M.; Wang, X.; Yang, Y.-B. Comprehensive Effectiveness Evaluation Based on Entropy Weight Method for Energy Utilization Schemes of Smart Parks. In Proceedings of the International Conference on Electrical Engineering and Automation (EEA), Hong Kong, China, 24–26 June 2016; pp. 326–332. [Google Scholar]
- Liao, X.; Xue, M.; Mao, X.; Pan, Y.; Sun, G.; Wei, Z. Risk Assessment of Integrated Electricity—Heat Energy System with Cross Entropy and Objective Entropy Weight Method. In Proceedings of the 5th Asia Conference on Power and Electrical Engineering (ACPEE), Chengdu, China, 4–7 June 2020; pp. 94–99. [Google Scholar]
- Xu, T.; Qin, C.; Zhang, H.; Qu, Y.; Fang, W. Study on Petroleum Standard Attention Index Calculation based on the Entropy Weight Method. In Proceedings of the 4th International Symposium on Resource Exploration and Environmental Science (REES), Ordos, China, 25–26 April 2020; p. 514. [Google Scholar]
- Muqeem, M.; Sherwani, A.F.; Ahmad, M.; Khan, Z.A. Application of the Taguchi based entropy weighted TOPSIS method for optimisation of diesel engine performance and emission parameter. Int. J. Heavy Veh. Syst. 2018, 26, 69–94. [Google Scholar] [CrossRef]
- Huang, W.; Zhang, Y.; Yu, Y.; Xu, Y.; Xu, M.; Zhang, R.; De Dieu, G.J.; Yin, D.; Liu, Z. Historical data-driven risk assessment of railway dangerous goods transportation system: Comparisons between Entropy Weight Method and Scatter Degree Method. Reliab. Eng. Syst. Safe 2021, 205, 1–8. [Google Scholar] [CrossRef]
- Guo, S. Application of entropy weight method in the evaluation of the road capacity of open area. In Proceedings of the International Conference on Materials Science, Energy Technology, Power Engineering (MEP), Hangzhou, China, 15–16 April 2017; Volume 1839, p. 020120. [Google Scholar]
- Bai, H.; Feng, F.; Wang, J.; Wu, T. A Combination Prediction Model of Long-Term Ionospheric foF2 Based on Entropy Weight Method. Entropy 2020, 22, 442. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, J.; Wu, D.; Zhang, Y.; Wang, M. Extension evaluation of green building Project Management performance based on entropy weight method. J. Eng. Manag. 2018, 32, 125–130. [Google Scholar]
- Du, Y.; Zheng, Y.; Wu, G.; Tang, Y. Decision-making method of heavy-duty machine tool remanufacturing based on AHP-entropy weight and extension theory. J. Clean. Prod. 2020, 252, 119607. [Google Scholar] [CrossRef]
- Song, M.; Zhu, Q.; Peng, J.; Santibanez Gonzalez, D.R.E. Improving the evaluation of cross efficiencies: A method based on Shannon entropy weight. Comput. Ind. Eng. 2017, 112, 99–106. [Google Scholar] [CrossRef]
- Han, Y.M.; Fang, D.; Zhang, H.Y.; Li, Y. Efficiency evaluation of intelligent swarm based on AHP entropy weight method. In Proceedings of the 3rd International Conference on Computer Information Science and Artificial Intelligence (CISAI), Inner Mongolia, China, 25–27 September 2020; p. 012072. [Google Scholar]
- Qi, X.; Zhou, M. Integrated energy service demand evaluation based on AHP and entropy weight method. In Proceedings of the International Conference on Energy, Environment and Bioengineering (ICEEB), Xi’an, China, 7–9 August 2020; p. 01046. [Google Scholar]
- Wu, Z.; Chen, G.; Yao, J. The Stock Classification Based on Entropy Weight Method and Improved Fuzzy C-means Algorithm. In Proceedings of the 4th International Conference on Big Data and Computing (ICBDC), Guangzhou, China, 10–12 May 2019; pp. 130–134. [Google Scholar]
- Lu, J.; Wei, C.; Wu, J.; Wei, G. TOPSIS method for probabilistic linguistic MAGDM with entropy weight and its application to supplier selection of new agricultural machinery products. Entropy 2019, 21, 953. [Google Scholar] [CrossRef] [Green Version]
- Santos, B.M.; Godoy, L.P.; Campos, L.M.S. Performance evaluation of green suppliers using entropy-TOPSIS-F. J. Clean. Prod. 2019, 207, 498–509. [Google Scholar] [CrossRef]
- Kumar, R.; Singh, S.; Bilga, P.; Jatin, K.; Singh, J.; Singh, S.; Scutaru, M.-L.; Pruncu, C.I. Revealing the Benefits of Entropy Weights Method for Multi-Objective Optimization in Machining Operations: A Critical Review. J. Mater. Sci. Technol. 2021, 10, 1471–1492. [Google Scholar]
- Gündoğdu, F.K.; Duleba, S.; Moslem, S.; Aydin, S. Evaluating public transport service quality using picture fuzzy analytic hierarchy process and linear assignment model. Appl. Soft. Comput. 2021, 100, 106920. [Google Scholar] [CrossRef]
- Moslem, S.; Çelikbilek, Y. An integrated grey AHP-MOORA model for ameliorating public transport service quality. Eur. Transp. Res. Rev. 2020, 12, 1–13. [Google Scholar] [CrossRef]
- Moslem, S.; Gul, M.; Farooq, D.; Celik, E.; Ghorbanzadeh, O.; Blaschke, T. An Integrated Approach of Best-Worst Method (BWM) and Triangular Fuzzy Sets for Evaluating Driver Behavior Factors Related to Road Safety. Mathematics 2020, 8, 414. [Google Scholar] [CrossRef] [Green Version]
- Moslem, S.; Farooq, D.; Ghorbanzadeh, O.; Blaschke, T. Application of the AHP-BWM Model for Evaluating Driver Behavior Factors Related to Road Safety: A Case Study for Budapest. Symmetry 2020, 12, 243. [Google Scholar] [CrossRef] [Green Version]
- Ortega, J.; Moslem, S.; Tóth, J.; Péter, T.; Palaguachi, J.; Paguay, M. Using Best Worst Method for Sustainable Park and Ride Facility Location. Sustainability 2020, 12, 10083. [Google Scholar] [CrossRef]
- Li, Y.; Liu, X.; Chen, Y. Selection of logistics center location using Axiomatic Fuzzy Set and TOPSIS methodology in logistics management. Expert Syst. Appl. 2011, 38, 7901–7908. [Google Scholar] [CrossRef]
- Abdel-Basset, M.; Mohamed. R. A novel plithogenic TOPSIS-CRITIC model for sustainable supply chain risk management. J. Clean. Prod. 2020, 247, 119586. [Google Scholar] [CrossRef]
- Rostamzadeh, R.; Ghorabaee, M.K.; Govindan, K.; Esmaeili, A.; Nobar, H.B.K. Evaluation of sustainable supply chain risk management using an integrated fuzzy TOPSIS- CRITIC approach. J. Clean. Prod. 2018, 175, 651–669. [Google Scholar] [CrossRef]
- Sirisawat, P.; Kiatcharoenpol, T. Fuzzy AHP-TOPSIS approaches to prioritizing solutions for reverse logistics barriers. Comput. Ind. Eng. 2018, 117, 303–318. [Google Scholar] [CrossRef]
- Walczak, D.; Rutkowska, A. Project rankings for participatory budget based on the fuzzy TOPSIS method. Eur. J. Oper. Res. 2017, 260, 706–714. [Google Scholar] [CrossRef]
- Gandhi, N.S.; Thanki, S.J.; Thakkar, J.J. Ranking of drivers for integrated lean-green manufacturing for Indian manufacturing SMEs. J. Clean. Prod. 2018, 171, 675–689. [Google Scholar] [CrossRef]
- Abdel-Basset, M.; Manogaran, G.; Gamal, A.; Smarandache, F. A group decision making framework based on neutrosophic TOPSIS approach for smart medical device selection. J. Med. Syst. 2019, 43, 38. [Google Scholar] [CrossRef] [PubMed]
- Kelemenis, A.; Askounis, D. A new TOPSIS-based multi-criteria approach to personnel selection. Expert Syst. Appl. 2010, 37, 4999–5008. [Google Scholar] [CrossRef]
- Oztaysi, B. A decision model for information technology selection using AHP integrated TOPSIS-Grey: The case of content management systems. Knowl. Based Syst. 2014, 70, 44–54. [Google Scholar] [CrossRef]
- Fu, Z.; Liao, H. Unbalanced double hierarchy linguistic term set: The TOPSIS method for multi-expert qualitative decision making involving green mine selection. Inf. Fusion 2019, 51, 271–286. [Google Scholar] [CrossRef]
- Nyimbili, P.H.; Erden, T.; Karaman, H. Integration of GIS, AHP and TOPSIS for earthquake hazard analysis. Nat. Hazards 2018, 92, 1523–1546. [Google Scholar] [CrossRef]
- Mi, Z.F.; Wei, Y.M.; He, C.Q.; Li, H.-N.; Yuan, X.-C.; Liao, H. Regional efforts to mitigate climate change in China: A multi-criteria assessment approach. Mitig. Adapt. Strateg. Glob. Change 2017, 22, 45–66. [Google Scholar] [CrossRef]
- Coban, A.; Ertis, I.F.; Cavdaroglu, N.A. Municipal solid waste management via multi-criteria decision making methods: A case study in Istanbul, Turkey. J. Clean. Prod. 2018, 180, 159–167. [Google Scholar] [CrossRef]
- Zengir, S.V.; Sobhani, B.; Asghari, S. Modeling and Monitoring of Drought for forecasting it, to Reduce Natural hazards Atmosphere in western and north western part of Iran, Iran. Air Qual. Atmos. Health 2020, 13, 119–130. [Google Scholar]
- Yoon, K.P.; Kim, W.K. The behavioral TOPSIS. Expert Syst. Appl. 2017, 89, 266–272. [Google Scholar] [CrossRef]
- Akram, M.; Adeel, A. TOPSIS Approach for MAGDM Based on Interval-Valued Hesitant Fuzzy N-Soft Environment. Int. J. Fuzzy Syst. 2018, 21, 993–1009. [Google Scholar] [CrossRef]
- Zhang, M.; Li, G.X. Combining TOPSIS and GRA for supplier selection problem with interval numbers. J. Cent. South. Univ. 2018, 25, 1116–1128. [Google Scholar] [CrossRef]
- Hanif, M.; Nishikant, M.; Sameer, K. A novel TOPSIS–CBR goal programming approach to sustainable healthcare treatment. Available online: https://link.springer.com/article/10.1007/s10479-018-2992-y (accessed on 1 January 2021).
- Sangaiah, A.K.; Gopal, J.; Basu, A.; Subramaniam, P.R. An integrated fuzzy DEMATEL, TOPSIS, and ELECTRE approach for evaluating knowledge transfer effectiveness with reference to GSD project outcome. Neural. Comput. Appl. 2017, 28, 111–123. [Google Scholar] [CrossRef]
- Gündoğdu, F.K.; Kahraman, C. Spherical fuzzy sets and spherical fuzzy TOPSIS method. J. Intell. Fuzzy Syst. 2019, 36, 337–352. [Google Scholar] [CrossRef]
- Sarkar, B.; Biswas, A. Pythagorean fuzzy AHP-TOPSIS integrated approach for transportation management through a new distance measure. Soft. Comput. 2021, 25, 1–17. [Google Scholar] [CrossRef]
Year | Freight Volume (FV) | Turnover Volume (TV) | Carbon Oxides (CO) | Hydrocarbon (HC) | Nitrogen Oxides (NOX) | Particulate Matter (PM) |
---|---|---|---|---|---|---|
2012 | 7771.34 | 968.4 | 47.452 | 17.431 | 237.258 | 8.716 |
2013 | 9660 | 1219.27 | 59.744 | 21.947 | 298.721 | 10.973 |
2014 | 11,762.04 | 1557.67 | 76.326 | 28.038 | 381.629 | 14.019 |
2015 | 12,874 | 1739.95 | 85.258 | 31.319 | 426.288 | 15.66 |
2016 | 14,360 | 1982.91 | 97.163 | 35.692 | 485.813 | 17.846 |
2017 | 14,117 | 1631.33 | 79.935 | 29.364 | 399.676 | 14.682 |
2018 | 15,039.6 | 1700.08 | 83.304 | 30.601 | 416.52 | 15.301 |
2019 | 11,649 | 1876.1 | 91.929 | 33.77 | 459.645 | 16.885 |
Factor | Minimum | Maximum | Mean | Standard Deviation |
---|---|---|---|---|
FV | 7771.34 | 15,039.60 | 12,154.12 | 2490.01706 |
TV | 968.40 | 1982.91 | 1584.46 | 337.46314 |
CO | 47.45 | 97.16 | 77.63 | 16.53573 |
HC | 17.43 | 35.69 | 28.52 | 6.07430 |
NOX | 237.26 | 485.81 | 388.19 | 82.67860 |
PM | 8.72 | 17.85 | 14.26 | 3.03715 |
Factor | Information Entropy | Weight |
---|---|---|
FV | 0.903329703 | 0.171926858 |
TV | 0.906880582 | 0.165611666 |
CO | 0.906879059 | 0.165614374 |
HC | 0.906882777 | 0.165607762 |
NOX | 0.906880466 | 0.165611873 |
PM | 0.906871698 | 0.165627466 |
Year | ||
---|---|---|
2012 | 0.27 | 0 |
2013 | 0.21 | 0.07 |
2014 | 0.11 | 0.16 |
2015 | 0.07 | 0.2 |
2016 | 0.01 | 0.27 |
2017 | 0.09 | 0.19 |
2018 | 0.07 | 0.21 |
2019 | 0.05 | 0.24 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, D.; Han, M. Research on Evaluation Method of Freight Transportation Environmental Sustainability. Sustainability 2021, 13, 2913. https://doi.org/10.3390/su13052913
Huang D, Han M. Research on Evaluation Method of Freight Transportation Environmental Sustainability. Sustainability. 2021; 13(5):2913. https://doi.org/10.3390/su13052913
Chicago/Turabian StyleHuang, Da, and Mei Han. 2021. "Research on Evaluation Method of Freight Transportation Environmental Sustainability" Sustainability 13, no. 5: 2913. https://doi.org/10.3390/su13052913
APA StyleHuang, D., & Han, M. (2021). Research on Evaluation Method of Freight Transportation Environmental Sustainability. Sustainability, 13(5), 2913. https://doi.org/10.3390/su13052913