Human–River Encounter Sites: Looking for Harmony between Humans and Nature in Cities
Abstract
:1. Introduction
2. A Conceptual Basis for Urban Human–River Encounter Sites (HRES)
2.1. Tenet 1—Health: Provide a Healthy Environment for All Living Beings
2.2. Tenet 2—Safety: Secure Human Settlements and Conserve Biodiversity
2.3. Tenet 3—Functionality: Target a High Level of Ecosystem Functions
2.4. Tenet 4—Accessibility: Open up the Riverscape and Ensure Socio-Ecological Fairness
2.5. Tenet 5—Collaboration: Integrate All Stakeholders through Urban Planning Measures
2.6. Tenet 6—Awareness: Promote Awareness and Education among the Local Population
3. Implications
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Béthemont, J. La société au miroir du fleuve. In Le Fleuve et ses Metamorphoses; Piquet, F., Ed.; Erudition: Paris, France, 1993; pp. 13–17. [Google Scholar]
- Böck, K.; Polt, R.; Schülting, L. Ecosystem Services in River Landscapes. In Riverine Ecosystem Management; Schmutz, J.S., Ed.; Springer: Berlin/Heidelberg, Germany, 2018; Volume 8. [Google Scholar]
- Schindler, S.; Sebesvari, Z.; Damm, C.; Euller, K.; Mauerhofer, V.; Schneidergruber, A.; Biró, M.; Essl, F.; Kanka, R.; Lauwaars, S.G.; et al. Multifunctionality of floodplain landscapes: Relating management options to ecosystem services. Landsc. Ecol. 2014, 29, 229–244. [Google Scholar] [CrossRef]
- Wantzen, K.M.; Ballouche, A.; Longuet, I.; Bao, I.; Bocoum, H.; Cissé, L.; Chauhan, M.; Girard, P.; Gopal, B.; Kane, A.; et al. River Culture: An eco-social approach to mitigate the biological and cultural diversity crisis in riverscapes. Ecohydrol. Hydrobiol. 2016, 16, 7–18. [Google Scholar] [CrossRef]
- Vörösmarty, C.J.; McIntyre, P.B.; Gessner, M.O.; Dudgeon, D.; Prusevich, A.; Green, P.; Glidden, S.; Bunn, S.E.; Sullivan, C.A.; Liermann, C.R.; et al. Global threats to human water security and river biodiversity. Nature 2010, 467, 555–561. [Google Scholar] [CrossRef]
- Albert, J.S.; Destouni, G.; Duke-Sylvester, S.M.; Magurran, A.E.; Oberdorff, T.; Reis, R.E.; Winemiller, K.O.; Ripple, W.J. Scientists’ warning to humanity on the freshwater biodiversity crisis. Ambio 2020, 50, 85–94. [Google Scholar] [CrossRef]
- Zingraff-Hamed, A.; Greulich, S.; Pauleit, S.; Wantzen, K.M. Urban and rural river restoration in France: A typology. Restor. Ecol. 2017, 25, 994–1004. [Google Scholar] [CrossRef]
- Wantzen, K.M.; Alves, C.B.M.; Badiane, S.D.; Bala, R.; Blettler, M.; Callisto, M.; Cao, Y.; Kolb, M.; Kondolf, G.M.; Leite, M.F.; et al. Urban Stream and Wetland Restoration in the Global South—A DPSIR Analysis. Sustainability 2019, 11, 4975. [Google Scholar] [CrossRef] [Green Version]
- Kummu, M.; de Moel, H.; Ward, P.J.; Varis, O. How Close Do We Live to Water? A Global Analysis of Population Distance to Freshwater Bodies. PLoS ONE 2011, 6, e20578. [Google Scholar] [CrossRef] [PubMed]
- UN. The World’s Cities in 2018; United Nation: San Francisco, CA, USA, 2018. [Google Scholar]
- Guastella, G.; Oueslati, W.; Pareglio, S. Patterns of Urban Spatial Expansion in European Cities. Sustainability 2019, 11, 2247. [Google Scholar] [CrossRef] [Green Version]
- Qian, Y.; Wu, Z. Study on Urban Expansion Using the Spatial and Temporal Dynamic Changes in the Impervious Surface in Nanjing. Sustainability 2019, 11, 933. [Google Scholar] [CrossRef] [Green Version]
- Walsh, C.J.; Roy, A.H.; Feminella, J.W.; Cottingham, P.D.; Groffman, P.M.; Morgan, R.P. The urban stream syndrome: Current knowledge and the search for a cure. J. N. Am. Benthol. Soc. 2005, 24, 706–723. [Google Scholar] [CrossRef]
- Zingraff-Hamed, A. Urban River Restoration: A Socio-Ecological Approach; Technical University of Munich and University of Tours: Munich, Germany, 2018. [Google Scholar]
- Zingraff-Hamed, A.; Lupp, G.; Bäumler, K.; Huang, J.; Pauleit, S. The Isar River: Social Pride as a Driver of River Restoration. In River Culture—Life as a Dance to the Rhythm of the Waters; Wantzen, K.M., Ed.; UNESCO Publishing: Paris, France, 2021. [Google Scholar]
- Romain, F. La Construction Contemporaine des Paysages Fluviaux Urbains: Le Fleuve, une Infrastructure Paysagère au Service d’une Image de Renaturation Urbaine—Le Cas de Deux Villes Nord Méditerranéennes: Perpignan et Montpellier; École National Supérieure du Paysage: Versailles, Fance, 2010. [Google Scholar]
- Cottet, M.; Piegay, H.; Bornette, G. Does human perception of wetland aesthetics and healthiness relate to ecological functioning? J. Environ. Manag. 2013, 128, 1012–1022. [Google Scholar] [CrossRef] [PubMed]
- OECD. Diffuse Pollution, Degraded Waters: Emerging Policy Solutions; OECD: Paris, France, 2017. [Google Scholar]
- Cao, J.; Sun, Q.; Zhao, D.; Xu, M.; Shen, Q.; Wang, D.; Wang, Y.; Ding, S. A critical review of the appearance of black-odorous waterbodies in China and treatment methods. J. Hazard. Mater. 2020, 385, 121511. [Google Scholar] [CrossRef] [PubMed]
- SER The SER International Primer on Ecological Restoration. Available online: www.ser.org (accessed on 12 January 2021).
- Directive 2000/60/EC of the European Parliament and of the Council establishing a framework for the Community action in the field of water policy. In Communities; Official Journal of the Europe: Brussels, Belgium, 2000; p. 72.
- Bernhardt, E.S.; Palmer, M.A. Restoring streams in an urbanizing world. Freshw. Biol. 2007, 52, 738–751. [Google Scholar] [CrossRef]
- Tockner, K.; Pusch, M.; Gessner, J.; Wolter, C. Domesticated ecosystems and novel communities: Challenges for the management of large rivers. Ecohydrol. Hydrobiol. 2011, 11, 167–174. [Google Scholar] [CrossRef]
- Perini, K.; Sabbion, P. River Thames, England—Strategies and Technique. In Urban Sustainability and River Restoration; Sabbion, P., Ed.; Wiley: Hoboken, NJ, USA, 2016; pp. 138–150. [Google Scholar]
- Miller, J.R. Restoration, reconciliation and reconnecting with nature nearly. Biol. Conserv. 2006, 127, 356–361. [Google Scholar] [CrossRef]
- Godet, L. La nature ordinaire dans le monde occidental. Espace Géographique 2010, 39, 295–308. [Google Scholar] [CrossRef]
- Ostrom, E. Coping with tragedies of the commons. Annu. Rev. Political Sci. 1999, 2, 493–535. [Google Scholar] [CrossRef]
- Ostrom, E. A General Framework for Analyzing Sustainability of Social-Ecological Systems. Sciences 2009, 325, 419–422. [Google Scholar] [CrossRef]
- Larson, J.S. The World Health Organization’s Definition of Health: Social versus Spiritual Health. Soc. Indic. Res. 1996, 38, 181–192. [Google Scholar] [CrossRef]
- Haines-Young, R.; Potschin, M. The Links between Biodiversity, Ecosystem Services and Human Well-Being. In Ecosystem Ecology; Raffaelli, D.G., Frid, C.L.J., Eds.; Cambridge University Press: Cambridge, UK, 2010; pp. 110–139. [Google Scholar]
- Abraham, A.; Sommerhalder, K.; Abel, T. Landscape and well-being: A scoping study on the health-promoting impact of outdoor environments. Int. J. Public Health 2010, 55, 59–69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sandifer, P.A.; Sutton-Grier, A.E.; Ward, B.P. Exploring connections among nature, biodiversity, ecosystem services, and human health and well-being: Opportunities to enhance health and biodiversity conservation. Ecosyst. Serv. 2015, 12, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Horwitz, P.; Finlayson, M.; Weinstein, P. Healthy Wetlands, Healthy People: A Review of Wetlands and Human Health Interactions; Secretariat of the Ramsar Convention on Wetlands: Gland, Switzerland, 2012; Volume 6. [Google Scholar]
- Norris, R.H.; Thoms, M.C. What is river health? Freshw. Biol. 1999, 41, 197–209. [Google Scholar] [CrossRef] [Green Version]
- Karr, J.R. Defining and measuring river health. Freshw. Biol. 1999, 41, 221–234. [Google Scholar] [CrossRef] [Green Version]
- Vaz, S.S.S.; Dias, A.; Dutra, E.; Pavanin, A.; Morelli, S.; Pereira, B. The impact of water pollution on fish species in southeast region of Goiás, Brazil. J. Toxicol. Environ. Health 2016, 79, 8–16. [Google Scholar]
- Ma, Y.; Liu, Y. Turning food waste to energy and resources towards a great environmental and economic sustainability: An innovative integrated biological approach. Biotechnol. Adv. 2019, 37, 107414. [Google Scholar] [CrossRef] [PubMed]
- Ji, B.; Zhang, M.; Gu, J.; Ma, Y.; Liu, Y. A self-sustaining synergetic microalgal-bacterial granular sludge process towards energy-efficient and environmentally sustainable municipal wastewater treatment. Water Res. 2020, 179, 115884. [Google Scholar] [CrossRef] [PubMed]
- Hering, D.; Borja, A.; Carstensen, J.; Carvalho, L.; Elliott, M.; Feld, C.K.; Heiskanen, A.-S.; Johnson, R.K.; Moe, J.; Pont, D.; et al. The European Water Framework Directive at the age of 10: A critical review of the achievements with recommendations for the future. Sci. Total Environ. 2010, 408, 4007–4019. [Google Scholar] [CrossRef] [Green Version]
- EEA. European Waters—Assessment of Status and Pressures 2018; EEA: Luxembourg, 2018; p. 90. [Google Scholar]
- Reid, A.J.; Carlson, A.K.; Creed, I.F.; Eliason, E.J.; Gell, P.A.; Johnson, P.T.J.; Kidd, K.A.; MacCormack, T.J.; Olden, J.D.; Ormerod, S.J.; et al. Emerging threats and persistent conservation challenges for freshwater biodiversity. Biol. Rev. 2018. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaplan, S. The restorative benefits of nature: Toward an integrative framework. J. Environ. Psychol. 1995, 15, 169–182. [Google Scholar] [CrossRef]
- Carrera-Bastos, P.; Fontes, O.; Keefe, J.; Lindeberg, S.; Cordain, L. The western diet and lifestyle and diseases of civilization. Dove Press Sci. Med. Res. 2011, 2, 15–35. [Google Scholar] [CrossRef] [Green Version]
- Prüss-Ustün, A.; Wolf, J.; Corvalán, C.; Neville, T.; Bos, R.; Neira, M. Diseases due to unhealthy environments: An updated estimate of the global burden of disease attributable to environmental determinants of health. J. Public Health 2016, 39, 464–475. [Google Scholar] [CrossRef] [PubMed]
- Fuller Richard, A.; Irvine Katherine, N.; Devine-Wright, P.; Warren Philip, H.; Gaston Kevin, J. Psychological benefits of greenspace increase with biodiversity. Biol. Lett. 2007, 3, 390–394. [Google Scholar] [CrossRef] [PubMed]
- Hartig, T.; Mitchell, R.; De Vries, S.; Frumkin, H. Nature and health. Annu. Rev. Public Health 2014, 35, 207–228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gesler, W.M. Healing Places; Rowman & Littlefield: Lanham, MD, USA, 2003. [Google Scholar]
- Jiang, S. Therapeutic landscapes and healing gardens: A review of Chinese literature in relation to the studies in western countries. Front. Archit. Res. 2014, 3, 141–153. [Google Scholar] [CrossRef] [Green Version]
- Zölch, T.; Rahman, M.A.; Pfleiderer, E.; Wagner, G.; Pauleit, S. Designing public squares with green infrastructure to optimize human thermal comfort. Build. Environ. 2019, 149, 640–654. [Google Scholar]
- Völker, S.; Kistemann, T. The impact of blue space on human health and well-being–Salutogenetic health effects of inland surface waters: A review. Int. J. Hyg. Environ. Health 2011, 214, 449–460. [Google Scholar] [CrossRef]
- White, M.; Smith, A.; Humphryes, K.; Pahl, S.; Snelling, D.; Depledge, M. Blue space: The importance of water for preference, affect, and restorativeness ratings of natural and built scenes. J. Environ. Psychol. 2010, 30, 482–493. [Google Scholar] [CrossRef]
- Düzenli, T.; Mumcu, S.; Yılmaz, S.; Özbilen, A. Water reflections on the social dimension of place: Different waterscapes and related activity patterns. Türkiye Orman. Derg. 2014, 15, 148–157. [Google Scholar] [CrossRef] [Green Version]
- Pakasi, L.S. Health risks associated with recreational water activities. Iop Conf. Ser. Mater. Sci. Eng. 2018, 434, 012329. [Google Scholar] [CrossRef]
- Forstinus, N.O.; Ikechukwu, N.E.; Emenike, M.P.; Christiana, A.O. Water and Waterborne Diseases: A Review. Int. J. Trop. Dis. Health 2016, 12, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Rode, S.; Guevara, S.; Bonnefond, M. Resilience in urban development projects in flood-prone areas: A challenge to urban design professionals. Town Plan. Rev. 2018, 89, 167–190. [Google Scholar] [CrossRef]
- Nillesen, A.L.; Kok, M. An integrated approach to flood risk management and spatial quality for a Netherlands river polder area. Mitig. Adapt. Strateg. Glob. Chang. 2015, 6, 949–966. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poff, N.L.; Allan, J.D.; Bain, M.B.; Karr, J.R.; Prestegaard, K.L.; Richter, B.D.; Sparks, R.E.; Stromberg, J.C. The Natural Flow Regime. BioScience 1997, 47, 769–784. [Google Scholar] [CrossRef]
- Junk, W.J.; Wantzen, K. The Flood Pulse Concept: New Aspects, Approaches and Applications—An Update. In Proceedings of the Second International Symposium on the Management of Large Rivers for Fisheries, Food and Agriculture Organization of the United Nations (FAO) and the Mekong River Commission (MRC), Phnom Penh, Cambodia, 11–14 February 2003; FAO Publications: Rome, Italy, 2004; Volume II. [Google Scholar]
- Catford, J.A.; Downes, B.J.; Gippel, C.J.; Vesk, P.A. Flow regulation reduces native plant cover and facilitates exotic invasion in riparian wetlands. J. Appl. Ecol. 2011, 48, 432–442. [Google Scholar] [CrossRef]
- Richardson, D.M.; Holmes, P.M.; Esler, K.J.; Galatowitsch, S.M.; Stromberg, J.C.; Kirkman, S.P.; Pyšek, P.; Hobbs, R.J. Riparian vegetation: Degradation, alien plant invasions, and restoration prospects. Divers. Distrib. 2007, 13, 126–139. [Google Scholar] [CrossRef]
- Kundzewicz, Z.W.; Kanae, S.; Seneviratne, S.I.; Handmer, J.; Nicholls, N.; Peduzzi, P.; Mechler, R.; Bouwer, L.M.; Arnell, N.; Mach, K.; et al. Flood risk and climate change: Global and regional perspectives. Hydrol. Sci. J. 2014, 59, 1–28. [Google Scholar] [CrossRef] [Green Version]
- Ranger, N.; Hallegatte, S.; Bhattacharya, S.; Bachu, M.; Priya, S.; Dhore, K.; Rafique, F.; Mathur, P.; Naville, N.; Henriet, F.; et al. An assessment of the potential impact of climate change on flood risk in Mumbai. Clim. Chang. 2011, 104, 139–167. [Google Scholar] [CrossRef] [Green Version]
- Zurich-Group. European Floods: Using Lessons Learned to Reduce Risks; Zurich-Group: Zürich, Switzerland, 2013; p. 14. [Google Scholar]
- Rutschmann, P. Modellversuch ISARPLAN; TUM: Munich, Germany, 2007; p. 8. [Google Scholar]
- Bonnefond, M. La modélisation hydraulique comme condition de la résilience des projets d’aménagement urbain en zone inondable ? Rev. Houille Blanche 2018, 3, 25–33. [Google Scholar] [CrossRef]
- Vörösmarty, C.J.; Osuna, V.R.; Koehler, D.A.; Klop, P.; Spengler, J.D.; Buonocore, J.J.; Cak, A.D.; Tessler, Z.D.; Corsi, F.; Green, P.A.; et al. Scientifically assess impacts of sustainable investments. Science 2018, 359, 523–525. [Google Scholar] [CrossRef] [PubMed]
- WB. Implementing Nature-Based Flood Protection: Principles and Implementation Guidance; World Bank: Washington, DC, USA, 2017; p. 32. [Google Scholar]
- Prominski, M.; Stokman, A.; Zeller, S.; Stimberg, D.; Voermanek, H. River Space Design—Planning. In Strategies, Methods and Projects for Urban Rivers; Birkhäuser: Basel, Switzerland, 2017. [Google Scholar]
- Barroca, B.; Hubert, G. Urbaniser les zones inondables, est-ce concevable? Développement Durable Et Territ. 2008, 7413. [Google Scholar] [CrossRef] [Green Version]
- Liao, K.-H. A Theory on Urban Resilience to Floods—A Basis for Alternative Planning Practices. Ecol. Soc. 2012, 17, 4. [Google Scholar] [CrossRef]
- Warner, J.F.; van Buuren, A.; Edelenbos, J. Making Space for the River: Governance Experiences with Multifunctional River Flood Management in the US and Europe; IWA Publishing: London, UK, 2012. [Google Scholar]
- Fournier, M.; Larrue, C.; Alexander, M.; Hegger, D.; Bakker, M.; Pettersson, M.; Crabbé, A.; Mees, H.; Chorynski, A. Flood risk mitigation in Europe: How far away are we from the aspired forms of adaptive governance? Ecol. Soc. 2016, 21, 4. [Google Scholar] [CrossRef] [Green Version]
- Bonnefond, M.; Fournier, M.; Servain, S.; Gralepois, M. La transaction foncière comme mode de régulation en matière de protection contre les inondations. Analyse à partir de deux zones d’expansions de crue: l’Île Saint Aubin (Angers) et le déversoir de la Bouillie (Blois). Risques Urbains 2017. [Google Scholar] [CrossRef] [Green Version]
- Addy, S.; Cooksley, S.; Dodd, N.; Waylen, K.; Stockan, J.; Byg, A.; Holstead, K. River Restoration and Biodiversity; IUCN: Gland, Switzerland, 2016. [Google Scholar]
- Miguez, M.G.; Veról, A.P.; Mascarenhas, F.C.B.; Santos, R.B.; Martingil, M.C. Compensatory technique s on urban drainage for flood control with the aid of mathematical modelling: A case study in Rio de Janeiro City. WIT Trans. Built Environ. 2012, 122, 227–238. [Google Scholar]
- Palmer, M.A.; Hondula, K.L.; Koch, B.J. Ecological Restoration of Streams and Rivers: Shifting Strategies and Shifting Goals. Annu. Rev. Ecol. Evol. Syst. 2014, 45, 247. [Google Scholar] [CrossRef] [Green Version]
- Tillie, N.; Borsboom-van Beurden, J.; Doepel, D.; Aarts, M. Exploring a Stakeholder Based Urban Densification and Greening Agenda for Rotterdam Inner City—Accelerating the Transition to a Liveable Low Carbon City. Sustainability 2018, 10, 1927. [Google Scholar] [CrossRef] [Green Version]
- Chan, F.K.S.; Griffiths, J.A.; Higgitt, D.; Xu, S.; Zhu, F.; Tang, Y.-T.; Xu, Y.; Thorne, C.R. “Sponge City” in China—A breakthrough of planning and flood risk management in the urban context. Land Use Policy 2018, 76, 772–778. [Google Scholar] [CrossRef]
- Sun Youli, C.Q. Sponge City Construction Performance Evaluation System and Method. Archit. Cult. 2018, 1, 154–157. [Google Scholar]
- Li Lan, L.F. Key Scientific Problems and Thoughts on the Construction of “Sponge City”. Acta Ecol. Sin. 2018, 38, 2599–2606. [Google Scholar]
- Zevenbergen, C.; Fu, D.; Pathirana, A. Transitioning to Sponge Cities: Challenges and Opportunities to Address Urban Water Problems in China. Water 2018, 10, 1230. [Google Scholar] [CrossRef] [Green Version]
- de Groot, R.S.; Wilson, M.A.; Boumans, R.M.J. A typology for the classification, description and valuation of ecosystem functions, goods and services. Ecol. Econ. 2002, 41, 393–408. [Google Scholar] [CrossRef] [Green Version]
- Muhar, S.; Muhar, A.; Egger, G.; Siegrist, D.; abderhalden-Raba, A.; Aigner, J.; Arnaud, F.; Aschwanden, H.; Becsi, R.; Belleudy, P.; et al. Rivers of the Alps; Haupt Nature: Berne, Germany, 2019; Volume 1, p. 512. [Google Scholar]
- Zingraff-Hamed, A.; Noack, M.; Greulich, S.; Schwarzwälder, K.; Pauleit, S.; Wantzen, K.M. Model-Based Evaluation of the Effects of River Discharge Modulations on Physical Fish Habitat Quality. Water 2018, 10, 374. [Google Scholar] [CrossRef] [Green Version]
- Zingraff-Hamed, A.; Noack, M.; Greulich, S.; Schwarzwälder, K.; Wantzen, K.M.; Pauleit, S. Model-Based Evaluation of Urban River Restoration: Conflicts between Sensitive Fish Species and Recreational Users. Sustainability 2018, 10, 1747. [Google Scholar] [CrossRef] [Green Version]
- UNESCO. World Water Development Report of 2019; UNESCO: Paris, France, 2019; p. 186. [Google Scholar]
- Morgera, E. WildLife Law and the Empowerment of the Poor; United Nation: Rome, Italy, 2010; p. 340. [Google Scholar]
- Prideaux, B.; Cooper, M. River Tourism; CABI: Wallingford, UK, 2009. [Google Scholar]
- Meretsky, V.J.; Atwell, J.W.; Hyman, J.B. Migration and conservation: Frameworks, Gaps and Synergies in Science, Law, and Management. Environ. Law 2011, 41, 447–534. [Google Scholar] [PubMed]
- Kunich, J.C. The Uncertainty of Life and Death: The Precautionary Principle, Gödel, and the Hotspots Wager. Mich. State Int. Law 2008, 1, 4. [Google Scholar]
- Zingraff-Hamed, A.; Martin, J.; Lupp, G.; Linnerooth-Bayer, J.; Pauleit, S. Designing a Resilient Waterscape Using a Living Lab and Catalyzing Polycentric Governance. Landsc. Archit. Front. 2019, 7, 12–31. [Google Scholar]
- CE. European Landscape Convention. In Europe; Concil of Europe: Florence, Italy, 2000. [Google Scholar]
- Manenti, R.; Ghia, D.; Fea, G.; Ficetola, G.F.; Padoa-Schioppa, E.; Canedoli, C. Causes and consequences of crayfish extinction: Stream connectivity, habitat changes, alien species and ecosystem services. Freshw. Biol. 2019, 64, 284–293. [Google Scholar] [CrossRef]
- Woolsey, S.; Capelli, F.; Gonser, T.; Hoehn, E.; Hostmann, M.; Junker, B.; Paetzold, A.; Roulier, C.; Schweizer, S.; Tiegs, S.D.; et al. A strategy to assess river restoration success. Freshw. Biol. 2007, 52, 752–769. [Google Scholar] [CrossRef]
- Aguilar, R.; Ashworth, L.; Galetto, L.; Aizen, M.A. Plant reproductive susceptibility to habitat fragmentation: Review and synthesis through a meta-analysis. Ecol. Lett. 2006, 9, 968–980. [Google Scholar] [CrossRef]
- Van Rossum, F.; Triest, L. Pollen dispersal in an insect-pollinated wet meadow herb along an urban river. Landsc. Urban Plan. 2010, 95, 201–208. [Google Scholar] [CrossRef]
- Martin, J.; Bayer, J.; Liu, W.; Scolobig, A. Delivrable 5.1: NBS In-depth Case Study Analysis of the Characteristics of Successful Governance Models; EU: Vienna, Austria, 2019. [Google Scholar]
- Rossano, F. Isar Plan: The Wild as the New Urban? Contour 2016, 1, 20. [Google Scholar]
- Perosa, F.; Disse, M.; Zingraff-Hamed, A. Extended Cost-Benefit Analysis through Ecosystem Services to Evaluate Floodplain Restoration Measures in the Danube River Basin. In Proceedings of the System Risk Conference, Berlin, Germany, 17–19 September 2019. [Google Scholar]
- Pugliese, F.; Caroppi, G.; Zingraff Hamed, A.; Lupp, G.; Giugni, M. Nature-Based Solutions (NBSs) Application for Hydro-Environment Enhancement. A Case Study of the Isar River. Environ. Sci. Proc. 2020, 2, 30. [Google Scholar] [CrossRef]
- Krasny, M.E.; Russ, A.; Tibdall, K.G.; Elmqvist, T. Civic ecology practices: Participatory approaches to generating and measuring ecosystems services in cities. Ecosyst. Serv. 2014, 7, 177–186. [Google Scholar] [CrossRef] [Green Version]
- Sakurai, R.; Kobory, H.; Nkamura, M.; Kikuchi, T. Factors influencing public participation in conservation activities in urban areas: A case study in Yokohama, Japan. Biol. Conserv. 2015, 184, 424–430. [Google Scholar] [CrossRef]
- Fohlmeister, S.; Zingraff-Hamed, A.; Lupp, G.; Pauleit, S. Guiding Framework for Tailored Living Lab Establishment at Concept and Demonstrator Case Study Sites. Deliverable 3.1. 2018. Available online: https://phusicos.eu/wp-content/uploads/2018/10/D3_1_GF_Final_Version_complete_201807312-Disclaimers.pdf (accessed on 31 January 2021).
- Zingraff-Hamed, A.; Hüesker, F.; Lupp, G.; Begg, C.; Huang, J.; Oen, A.; Vojinovic, Z.; Kuhlicke, C.; Pauleit, S. Stakeholder Mapping to Co-Create Nature-Based Solutions: Who Is on Board? Sustainability 2020, 12, 8625. [Google Scholar] [CrossRef]
- Lupp, G.; Zingraff-Hamed, A.; Huang, J.; Oen, A.; Pauleit, S. Living Labs—A Concept for Co-Designing Nature-Based Solutions. Sustainability 2021, 13, 188. [Google Scholar] [CrossRef]
- Leminen, S. Coordination and Participation in Living Lab Networks. Technol. Innov. Manag. Rev. 2013, 3, 5–14. [Google Scholar] [CrossRef]
- Grêt-Regamey, A.; Altwegg, J.; Sirén, E.A.; van Strien, M.J.; Weibel, B. Integrating ecosystem services into spatial planning—A spatial decision support tool. Landsc. Urban Plan. 2017, 165, 206–219. [Google Scholar] [CrossRef] [Green Version]
- Scannell, L.; Gifford, R. Defining Place Attachment: A Tripartite Organizing Framework. J. Environ. Psychol. 2010, 30, 1–10. [Google Scholar] [CrossRef]
- Tuan, Y.F. Topophilia: A Study of Environmental Perceptions, Attitudes, and Values; Columbia University Press: New York, NY, USA, 1990. [Google Scholar]
- Julian, J.P.; Daly, G.S.; Weaver, R.C. University Students’ Social Demand of a Blue Space and the Influence of Life Experiences. Sustainability 2018, 10, 3178. [Google Scholar] [CrossRef] [Green Version]
- Cox, D.T.C.; Hudson, H.L.; Shanahan, D.F.; Fuller, R.A.; Gaston, K.J. The rarity of direct experiences of nature in an urban population. Landsc. Urban Plan. 2017, 160, 79–84. [Google Scholar] [CrossRef] [Green Version]
- Prévot, A.-C.; Cheval, H.; Raymond, R.; Cosquer, A. Routine experiences of nature in cities can increase personal commitment toward biodiversity conservation. Biol. Conserv. 2018, 226, 1–8. [Google Scholar] [CrossRef]
- Soga, M.; Gaston, K.J. Extinction of experience: The loss of human–nature interactions. Front. Ecol. Environ. 2016, 14, 94–101. [Google Scholar] [CrossRef] [Green Version]
- Sampson, S.D. How to Raise a Wild Child: The Art and Science of Falling in Love with Nature, 1st ed.; Houghton Mifflin Harcourt: Boston, MS, USA, 2015; p. 352. [Google Scholar]
- Griffiths, A.M.; Ellis, J.S.; Clifton-Dey, D.; Machado-Schiaffino, G.; Bright, D.; Garcia-Vazquez, E.; Stevens, J.R. Restoration versus recolonisation: The origin of Atlantic salmon (Salmo salar L.) currently in the River Thames. Biol. Conserv. 2011, 144, 2733–2738. [Google Scholar] [CrossRef]
- Wantzen, K.M.; Uehlinger, U.; Van der Velde, G.; Leuven, R.S.E.W.; Schmitt, L.; Beisel, J.N. The Rhine River Basin. In Rivers of Europe; Tockner, K.Z.C., Robinson, C.T., Eds.; Academic Press: London, UK, 2020; Volume 2, in press. [Google Scholar]
- Conradin, F.; Buchli, R. The Zurich Stream Day-Lighting Program. In Enhancing Urban Environment by Environmental Upgrading and Restoration; Marsalek, J., Sztruhar, D., Giulianelli, M., Urbonas, B., Eds.; Springer: Dordrecht, The Netherland, 2004. [Google Scholar]
- Verbrugge, L.N.; Van den Born, R.J.; Lenders, H.J. Exploring public perception of non-native species from a visions of nature perspective. Environ. Manag. 2013, 52, 1562–1573. [Google Scholar] [CrossRef] [PubMed]
- Tribot, A.-S.; Carabeux, Q.; Deter, J.; Claverie, T.; Villéger, S.; Mouquet, N. Confronting species aesthetics with ecological functions in coral reef fish. Sci. Rep. 2018, 8, 11733. [Google Scholar] [CrossRef] [Green Version]
- Junker, B.; Buchecker, M. Aesthetic preferences versus ecological objectives in river restorations. Landsc. Urban Plan. 2008, 85, 141–154. [Google Scholar] [CrossRef]
- Zingraff-Hamed, A.; Greulich, S.; Wantzen, K.M.; Pauleit, S. Societal Drivers of European Water Governance: A Comparison of Urban River Restoration Practices in France and Germany. Water 2017, 9, 206. [Google Scholar] [CrossRef]
- Le Lay, Y.F.; Piegay, H.; Riviere-Honegger, A. Perception of braided river landscapes: Implications for public participation and sustainable management. J. Environ. Manag. 2013, 119, 1–12. [Google Scholar] [CrossRef]
- Asakawa, S.; Yoshida, K.; Yabe, K. Perceptions of urban stream corridors within the greenway system of Sapporo, Japan. Landsc. Urban Plan. 2004, 68, 167–182. [Google Scholar] [CrossRef]
- Chen, W.Y.; Hua, J.; Liekens, I.; Broekx, S. Preference heterogeneity and scale heterogeneity in urban river restoration: A comparative study between Brussels and Guangzhou using discrete choice experiments. Landsc. Urban Plan. 2018, 173, 9–22. [Google Scholar] [CrossRef]
- Özgüner, H.; Eraslan, Ş.; Yilmaz, S. Public perception of landscape restoration along a degraded urban streamside. Land Degrad. Dev. 2012, 23, 24–33. [Google Scholar] [CrossRef]
- Rodríguez-Lozano, P.; Woelfle-Erskine, C.; Bogan, M.T.; Carlson, S.M. Are Non-Perennial Rivers Considered as Valuable and Worthy of Conservation as Perennial Rivers? Sustainability 2020, 12, 5782. [Google Scholar] [CrossRef]
- Ladrera, R.; Rodríguez-Lozano, P.; Verkaik, I.; Prat, N.; Díez, J.R. What Do Students Know about Rivers and Their Management? Analysis by Educational Stages and Territories. Sustainability 2020, 12, 8719. [Google Scholar] [CrossRef]
Measures for Potential Application for Urban HRES | Relative Contribution to the HRES Tenets | Impact | |||||
---|---|---|---|---|---|---|---|
Health | Safety | Functionality | Accessibility | Awareness | Participation | Temporal and Spatial Impact | |
Integrate HRES into a network strategy of urban green and blue spaces and pathways | + | + | + | + | Long-term, large scale | ||
Establish “islands of natural noise” in the city for acoustic stress reduction | + | + | + | Short-term, local scale | |||
Reduce optical stress by establishing adequate vegetation and building light-absorbing structures | + | + | + | Short-term, local scale | |||
Adapt lighting techniques to avoid light trapping of phototactic insects while assuring citizen safety | Short-, middle-, and long-term, local scale | ||||||
Integrate riparian corridors into climate change mitigation strategies | + | + | + | + | Long-term, large scale | ||
Better integrate urban flood management into integrative river basin management (IRBM) | + | + | + | Middle to long-term, large scale | |||
Increase water storage capacity within natural areas | + | + | + | Middle to long-term, large scale | |||
Connect urban flood zones to groundwater | + | + | Short- to long-term, regional scale | ||||
Reestablish or secure more natural flood dynamics and connectivity | + | + | + | Long-term, large scale | |||
Incorporate flood-adapted architecture | + | + | + | + | Short- to long-term, local scale | ||
Reduce use conflicts | + | + | + | + | Short- to long-term, local scale | ||
Avoid the creation of conflicts between desired ecosystem services | + | + | Short- to long-term, local to large scale | ||||
Allow natural disturbance to reduce maintenance cost | + | + | + | + | Short- to long-term, local scale | ||
Balance public access with restrictions that allow nature conservation | + | + | + | + | Short-term, local scale | ||
Educate stakeholders to develop empathy for nature | + | + | + | Middle to long-term, large scale | |||
Reinforce social fairness | + | + | + | Short-term, local scale | |||
Increase attractiveness, aesthetics, and stimulate visitor curiosity | + | + | + | + | + | Short-term, local scale | |
Collaborate with civil society | + | + | + | Middle to long-term, large scale | |||
Promote collaborative planning that includes all potential interest groups | + | + | Middle to long-term, large scale | ||||
Communicate success stories and failures | + | Middle to long-term, large scale |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zingraff-Hamed, A.; Bonnefond, M.; Bonthoux, S.; Legay, N.; Greulich, S.; Robert, A.; Rotgé, V.; Serrano, J.; Cao, Y.; Bala, R.; et al. Human–River Encounter Sites: Looking for Harmony between Humans and Nature in Cities. Sustainability 2021, 13, 2864. https://doi.org/10.3390/su13052864
Zingraff-Hamed A, Bonnefond M, Bonthoux S, Legay N, Greulich S, Robert A, Rotgé V, Serrano J, Cao Y, Bala R, et al. Human–River Encounter Sites: Looking for Harmony between Humans and Nature in Cities. Sustainability. 2021; 13(5):2864. https://doi.org/10.3390/su13052864
Chicago/Turabian StyleZingraff-Hamed, Aude, Mathieu Bonnefond, Sebastien Bonthoux, Nicolas Legay, Sabine Greulich, Amélie Robert, Vincent Rotgé, José Serrano, Yixin Cao, Raita Bala, and et al. 2021. "Human–River Encounter Sites: Looking for Harmony between Humans and Nature in Cities" Sustainability 13, no. 5: 2864. https://doi.org/10.3390/su13052864
APA StyleZingraff-Hamed, A., Bonnefond, M., Bonthoux, S., Legay, N., Greulich, S., Robert, A., Rotgé, V., Serrano, J., Cao, Y., Bala, R., Vazha, A., Tharme, R. E., & Wantzen, K. M. (2021). Human–River Encounter Sites: Looking for Harmony between Humans and Nature in Cities. Sustainability, 13(5), 2864. https://doi.org/10.3390/su13052864