Immobilization of Cd, Pb and Zn through Organic Amendments in Wastewater Irrigated Soils
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soil and Organic Amendment Sampling
2.2. Experimental Material Characterization
2.3. Experimental Design
2.4. Microbial Analyses
2.5. Fractionation of Cd, Pb and Zn
2.6. Statistical Analyses
3. Results
3.1. Basic Characterization of Soils and Organic Amendments
3.2. Soil Microbial Properties Dynamics
3.2.1. Soil Respiration
3.2.2. Microbial Biomass Carbon
3.3. Metal Fractions Dynamics
3.3.1. Lead
3.3.2. Cadmium
3.3.3. Zinc
4. Discussion
4.1. CO2-C Evolution
4.2. Microbial Biomass Carbon
4.3. Speciation of Metals
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Azarbad, H.; Gestel, C.A.M.V.; Niklin’ska, M.; Röling, W.F.M.; Straalen, N.M.V. Resilience of soil microbial communities to metals and additional stressors: DNA-based approaches for assessing “stress-on-stress” responses. Int. J. Mol. Sci. 2016, 17, 933. [Google Scholar] [CrossRef] [Green Version]
- WHO. News Release, Geneva, 2016. Available online: http://www.who.int/news-room/detail/15-03-2016-an-estimated-12-6-million-deaths-each-year-are-attributable-to-unhealthyenvironments (accessed on 11 February 2021).
- Agoro, M.A.; Abiodun, O.A.; Martins, A.A.; Omobola, O.O. Heavy metals in wastewater and sewage sludge from selected municipal treatment plants in eastern cape province, South Africa. Water 2020, 2746, 1–19. [Google Scholar]
- Keller, B.; Faciano, A.; Tsega, A.; Ehrlich, J. Epidemiologic characteristics of children with blood lead levels ≥45 μg/dL. J. Pediatr. 2017, 180, 229–234. [Google Scholar] [CrossRef] [Green Version]
- Khalid, S.; Shahid, M.; Natasha; Bibi, I.; Sarwar, T.; Shah, A.H.; Niazi, N.K. A review of environmental contamination and health risk assessment of wastewater use for crop irrigation with a focus on low and high-income countries. Int. J. Environ. Res. Public Health 2018, 15, 895–931. [Google Scholar] [CrossRef] [Green Version]
- Murtaza, G.; Ghafoor, A.; Qadir, M.; Owens, G.; Aziz, M.A.; Zia, M.H. Saifullah, Disposal and use of sewage on agricultural lands in Pakistan: A review. Pedosphere 2010, 20, 23–34. [Google Scholar] [CrossRef]
- Golebiewski, M.; Deja-Sikora, E.; Cichosz, M.; Tretyn, A.; Wrobel, B. 16S rDNA Pyrosequencing analysis of bacterial community in heavy metals polluted soils. Microb. Ecol. 2014, 67, 635–647. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jena, V.; Gupta, S.; Dhundhel, R.S.; Matic, N.; Bilinski, S.F.; Devic, N. Determination of total heavy metal by sequential extraction from soil. Int. J. Res. Environ. Sci. Technol. 2013, 3, 35–38. [Google Scholar]
- Ren, Z.L.; Tella, M.; Matthieu, N.B.; Comans, R.N.J.; Dai, J.; Garnier, J.M.; Sivry, Y.; Doelsch, E.; Straathof, A.; Benedetti, M.F. Effect of dissolved organic matter composition on metal speciation in soil solutions. Chem. Geol. 2015, 398, 61–69. [Google Scholar] [CrossRef]
- Ashraf, M.; Safdar, M.E.; Shahzad, S.M.; Aziz, A.; Piracaha, M.A.; Suleman, M.; Ahmad, M.B. Challenges and opportunities for using wastewater in agriculture: A review. J. Appl. Agri. Biotech. 2017, 2, 1–20. [Google Scholar]
- Ideriah, T.J.K.; Ikpe, F.N.; Nwanjoku, F.N. Distribution and speciation of heavy metals in crude oil contaminated soils from niger delta, Nigeria. World Environ. 2013, 3, 18–28. [Google Scholar]
- Hussain, M.M.; Hina, A.; Saeed, A.; Sabahat, S.; Jannat, F.T.; Aslam, M. Impact of heavy metals on plants and animals in relation to sewage water—A review. Sci. Technol. Develop. 2017, 36, 215–226. [Google Scholar]
- Lu, Y.; Gong, Z.T.; Zhang, G.L.; Burghardt, W. Concentrations and chemical speciation of Cu, Zn, Pb and Cr of urban soils in Nanjing, China. Geoderma 2005, 115, 101–111. [Google Scholar] [CrossRef]
- Wang, D.; Xue, M.; Wang, Y.; Zhou, D.; Tang, L.; Cao, S.; Wei, Y.; Yang, C.; Liang, D. Effects of straw amendments on selenium aging in soils: Mechanism and influential factors. Sci. Total Environ. 2019, 657, 871–881. [Google Scholar] [CrossRef]
- Kim, H.B.; Kim, S.H.; Jeon, E.K.; Kim, D.H.; Tsang, D.C.; Alessi, D.S.; Kwon, E.E.; Baek, K. Effect of dissolved organic carbon from sludge, Rice straw and spent coffee ground biochar on the mobility of arsenic in soil. Sci. Total Environ. 2018, 636, 1241–1248. [Google Scholar] [CrossRef]
- Thurman, E.M.; Malcolm, R.L. Preparative isolation of aquatic humic substances. Environ. Sci. Technol. 1981, 15, 463–466. [Google Scholar] [CrossRef] [PubMed]
- Picollo, A. The supra-molecular structure of humic acids. Soil Sci. 2001, 166, 810–832. [Google Scholar] [CrossRef] [Green Version]
- Steinnes, E. Lead. In Heavy Metals in Soils. Environmental Pollution; Alloway, B., Ed.; Springer: New York, NY, USA, 2013; Volume 22, pp. 395–409. [Google Scholar]
- Mohamed, I.; Bocar, A.; Li, M.; Gong, C.; Cai, P.; Al, W.L.E. Fractionation of copper and cadmium and their binding with soil organic matter in contaminated soil amended with organic materials. J. Soils Sediments 2010, 10, 973–982. [Google Scholar] [CrossRef]
- Marousek, J.; Marek, V.; Jan, P.; Jaroslav, Z. Glory and misery of biochar. Clean Techn. Environ. Policy 2017, 19, 311–317. [Google Scholar] [CrossRef]
- Tejada, M.; Garcia, C.; Gonzalez, J.L.; Hernandaz, M.T. Use of organic amendments as a strategy for saline soil remediation: Influence on the physical, chemical and biological properties of soil. Soil Biol. Biochem. 2006, 38, 1413–1421. [Google Scholar] [CrossRef]
- Gee, G.W.; Bauder, J.W. Particle-size analysis by hydrometer: A simplified method for routine textural analysis and a sensitivity test of measurement parameters. Soil Sci. Soc. Am. J. 1979, 43, 1004–1007. [Google Scholar] [CrossRef]
- Liu, C.; Zhu, Z.; He, X.; Zhang, B.; Xia, N. Rapid determination of organic carbon in marine sediments samples by potassium dichromate oxidation-ferrous sulphate titrimetry. Rock Miner. Anal. 2007, 3, 7. [Google Scholar]
- Rayan, J.; Estefan, G.; Rashid, A. Soil and Plant Analysis Manual; International Center for Agriculture Research in the Dry Areas and National Agriculture Research Center: Islamabad, Pakistan, 2001; pp. 42–165. [Google Scholar]
- Anderson, J.M.; Ingram, J.S.I. Tropical Soil Biology and Fertility; Centre for Agriculture and Bioscience International: Wallingford, UK, 1993. [Google Scholar]
- Bremner, J.M.; Mulvaney, C.S. Nitrogen-Total: In Methods of Soil Analysis; Page, A.L., Ed.; American Soceity of Agronomy & Soil Science Society of America: Madison, Wisconsin, 1982; pp. 595–622. [Google Scholar]
- Alef, K.; Nannipieri, P. Methods in Applied Soil Microbiology and Biochemistry; Academic Press Inc: San Diego, CA, USA, 1995. [Google Scholar]
- Khan, K.S.; Heinze, S.; Joergensen, R.G. Simultaneous measurement of S, macronutrients, and heavy metals in the soil microbial biomass with CHCl3 fumigation and NH4NO3 extraction. Soil Biol. Biochem. 2009, 41, 309–314. [Google Scholar] [CrossRef]
- McGrath, S.P.; Cegarra, J. Chemical extractability of heavy metals during and after long term application of sewage sludge to soil. Eur. J. Soil Sci. 1992, 43, 313–321. [Google Scholar] [CrossRef]
- Council of the European Communities (CEC). Council directive on the protection of the environment, and in particular of the soil, when sewage sludge is used in agriculture. Off. J. Eur. Communities 1986, 181, 6–12. [Google Scholar]
- Fernandas, S.A.P.; Bettiol, W.; Cerri, C.C. Effect of sewage sludg on microbial biomass, basal respiration, metabolic quotient and soil enzymatic activity. Appl. Soil Ecol. 2005, 30, 65–77. [Google Scholar] [CrossRef]
- Sajjad, M.H.; Lodhi, A.; Azam, F. Changes in enzyme activity during the decomposition of plant residues in soil. Pak. J. Biol. Sci. 2002, 5, 952–955. [Google Scholar] [CrossRef]
- Verma, R.K.; Yadav, D.V.; Singh, C.P.; Suman, A.; Gaur, A. Effect of heavy metals on soil respiration during decomposition of sugarcane (Saccharum officinarum L.) trash in different soils. Plant Soil Environ. 2010, 56, 76–81. [Google Scholar] [CrossRef] [Green Version]
- Emmerling, C.; Liebner, C.; Haubold-Rosar, M.; Katzur, J.; Schroder, D. Impact of application of organic waste materials on microbial and enzyme activities of mine soils in the Lusatian coal mining region. Plant Soil 2000, 220, 119–138. [Google Scholar] [CrossRef]
- Tordoff, G.M.; Baker, A.J.M.; Willis, A.J. Current approaches to the revegetation and reclamation of metalliferous mine waste. Chemosphere 2000, 41, 219–228. [Google Scholar] [CrossRef]
- Duong, T.T.T.; Baumann, K.; Marschner, P. Frequent addition of wheat straw residues to soil enhances carbon mineralization rate. Soil Biol. Biochem. 2009, 41, 1475–1482. [Google Scholar] [CrossRef]
- Gilani, S.S.; Bahmanyar, M.A. Impact of organic amendments with and without mineral fertilizers on soil microbial respiration. J. Appl. Sci. 2008, 8, 642–647. [Google Scholar] [CrossRef]
- Shah, Z.; Khan, A.A.; Sarhad, M. Microbial activity as influenced by crop residues in soils during laboratory incubations. Sarhad J. Agric. 2003, 19, 211–220. [Google Scholar]
- Smejkalova, M.; Mikanova, O.; Boruka, L. Effect of heavy metals concentrations on biological activity of soil microorganisms. Plant Soil Environ. 2003, 49, 321–326. [Google Scholar] [CrossRef]
- Oijagbe, I.J.; Abubakar, B.Y.; Edogbanya, P.R.O.; Suleiman, M.O.; Olorunmola, J.B. Effects of heavy metals on soil microbial biomass carbon. MOJ Biol. Med. 2019, 4, 30–32. [Google Scholar]
- Akmal, M.; Jianming, X. Microbial biomass and bacterial community changes by pb contamination in acidic soil. J. Agri. Biol. Sci. 2009, 1, 30–37. [Google Scholar]
- Nawaz, M.; Wahid, A.; Ahmad, S.S.; Butt, A. Response of soil microbial biomass and respiration in heavy metal contaminated soil of Multan. Int. J. Biosci. 2015, 7, 68–77. [Google Scholar]
- Maroušek, J.; Otakar, S.; Ladislav, K.; Marek, V.; Marek, K.; Anna, M.; Jana, B.; Milos, P.; Miloslav, Š.; Peter, B.; et al. Advances in nutrient management make it possible to accelerate biogas production and thus improve the economy of food waste processing. Energy Sources Part A Recover. Util. Environ. Eff. 2020. [Google Scholar] [CrossRef]
- Danga, B.O.; Ouma, J.P.; Wakindiki, I.I.C.; Bar-Tal, A. Chickpea-Wheat rotation for higher production in a humid tropical region. Agron. J. 2010, 102, 363–371. [Google Scholar] [CrossRef]
- Revoredo, M.D.; DeMelo, W.J. Enzymatic activity and microbial biomass in an oxisol amended with sewage sludge contaminated with nickel. Sci. Agric. 2007, 64, 61–67. [Google Scholar] [CrossRef] [Green Version]
- Leiros, M.C.; Cepede, C.T.; Seoane, S.; Gilsotres, F. Biochemical properties of acid soils under climax vegetation in an area of the European temperate-humid zone (Glacia, N. W. Spain) general parameters. Soil Biol. Biochem. 2000, 32, 733–745. [Google Scholar] [CrossRef]
- Blažková, I. Sectoral and firm-level determinants of profitability: A multilevel approach. Int. J. Entrep. Knowl. 2018, 6, 32–44. [Google Scholar] [CrossRef]
- Maroušek, J.; Rowland, Z.; Valášková, K.; Král, P. Techno-economic assessment of potato waste management in developing economies. Clean Technol. Environ. 2020, 22, 937–944. [Google Scholar] [CrossRef]
- Perez-de-Mora, A.; Burgos, P.; Madejon, E.; Cabrera, F.; Jaeckel, P.; Schloter, M. Microbial community structure and function in soil contaminated by heavy metals: Effect of plant growth and different amendments. Soil Biol. Biochem. 2006, 38, 327–341. [Google Scholar] [CrossRef]
- Albers, C.N.; Banta, G.T.; Hansen, P.E.; Jacobsen, O.S. The influence of organic matter on sorption and fate of glyphosate in soil-comparing different soils and humic subatances. Environmen. Pollut. 2009, 157, 2865–2870. [Google Scholar] [CrossRef]
- Borůvka, L.; Drábek, O. Heavy metal distribution between fractions of humic substances in heavily polluted soils. Plant Soil Environ. 2004, 50, 339–345. [Google Scholar] [CrossRef] [Green Version]
- Cui, Y.S.; Du, X.; Wang, L.P.; Zhu, Y.G. Effect of rice straw on the speciation of cadmium (Cd) and copper (Cu) in soils. Geoderma 2008, 146, 370–377. [Google Scholar] [CrossRef]
- Knox, A.S.; Seaman, J.C.; Mench, M.J.; Vangronsveld, J. Remediation of metal and radionuclides-n. In Environmental Restoration of Metals-Contaminated; Soils, K.I.I., Ed.; Chemical Rubber Company Press Limited Liability Company: Boca Raton, FL, USA, 2001; pp. 21–60. [Google Scholar]
Soils | pH | EC dS m−1 | CEC (meq100 g−1 soil) | Moisture | CaCO3 | TOC | WHC | Textural Class | Total Metals (mg kg−1) | ||
---|---|---|---|---|---|---|---|---|---|---|---|
% | Cd | Pb | Zn | ||||||||
DH | 7.69 | 0.64 | 14.98 | 23 | 2.65 | 0.63 | 41.8 | Sandy Clay | 6.2 | 79 | 109 |
DR-1 | 7.36 | 0.53 | 17.02 | 30 | 12.5 | 0.23 | 48.1 | Loam | 6.7 | 84 | 107 |
DR-2 | 7.54 | 0.71 | 17.70 | 25 | 15.3 | 0.58 | 41.8 | Sandy Clay | 6.0 | 40.7 | 95 |
Permissible limits of total metals described by Council of European Community (CEC,1986). | 1–3 | 50–300 | 150–300 |
Properties | Units | Wheat Straw | Chickpea Straw |
---|---|---|---|
Total C | % | 40.8 | 43.2 |
Total N | mg kg−1 | 6500 | 14.1 |
Total P | mg kg−1 | 2100 | 2.9 |
Total K | mg kg−1 | 15,900 | 23.7 |
Total Mg | mg kg−1 | 1600 | 2.7 |
Total Ca | mg kg−1 | 5400 | 8.3 |
Total Zn | mg kg−1 | 11.9 | 10.1 |
Total Pb | mg kg−1 | 0.3 | 0.2 |
Total Cu | mg kg−1 | 4.9 | 5.1 |
Total Cd | mg kg−1 | 0.1 | 0.1 |
Total Fe | mg kg−1 | 105.4 | 183.1 |
Total Mn | mg kg−1 | 2.49 | 2.56 |
Total C/total N | 62.8 | 30.6 | |
Total C/total P | 194.3 | 149.0 |
Treatments | Microbial Biomass C | ∑ CO2 C | ||||||
---|---|---|---|---|---|---|---|---|
0 d | 14th d | 28th d | 42nd d | 56th d | 70th d | 84th d | ||
Soils (S) | ||||||||
Dhoke Hassu | 373 b | 294.6b | 246.7b | 229.8b | 249.0a | 228.9b | 208.9b | 7964b |
Dhoke Ratta Site-1 | 459.3a | 342.8a | 270.8a | 245.5a | 246.2b | 237.3a | 229.3a | 11930a |
Dhoke Ratta Site-2 | 286.4c | 237.0c | 193.3c | 186.0c | 196.1c | 175.0c | 165.7c | 8301b |
LSD* | 1.302 | 1.168 | 1.157 | 1.213 | 1.146 | 1.098 | 1.390 | 486.2 |
Organic Amendments (O) | ||||||||
Control (O0) | 216.1c | 172.1c | 133.3c | 141.7c | 145.4c | 133.8c | 131.7c | 3074c |
Chickpea straw (O1) | 504.2a | 359.6a | 270.b | 240.0b | 241.7b | 232.9b | 221.0b | 13290a |
Wheat straw (O2) | 398.3b | 352.8b | 3.7.2a | 279.7a | 304.2a | 274.6a | 251.3a | 11830b |
LSD | 1.302 | 1.168 | 1.157 | 1.213 | 1.146 | 1.098 | 1.390 | 486.2 |
Soils × Organic Amendments | ||||||||
O0 × S1 | 221.3h | 157.9h | 118.h | 130.2h | 139.4h | 129.3h | 118.3h | 1559g |
O1 × S1 | 497.5c | 370.8c | 300.5c | 257.6d | 278.8c | 258.7c | 242.3c | 11700c |
O2 × S1 | 400.4d | 355.1d | 321.b | 301.6b | 328.9a | 298.6a | 266.2b | 10640d |
O0 × S2 | 248.3g | 211.2g | 166.g | 170.3g | 179.6g | 170.8g | 180.8g | 5149e |
O1 × S2 | 621.7a | 416.1a | 294.d | 261.2c | 234.5e | 244.7d | 233.3d | 16240a |
O2 × S2 | 507.9b | 401.2b | 351.1a | 305.0a | 324.6b | 296.4b | 273.8a | 14390b |
O0 × S3 | 178.9i | 147.1i | 115.1i | 124.5i | 117.3i | 101.1i | 96.05i | 2513f |
O1 × S3 | 393.9e | 291.9e | 215.9f | 201.2f | 211.7f | 195.1f | 187.3f | 11940c |
O2 × S3 | 286.7f | 272.1f | 248.9e | 232.3e | 259.2d | 228.7e | 213.8e | 10450d |
LSD | 1.503 | 1.349 | 1.336 | 1.401 | 1.323 | 1.268 | 1.605 | 561.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Malik, K.M.; Khan, K.S.; Rukh, S.; Khan, A.; Akbar, S.; Billah, M.; Bashir, S.; Danish, S.; Alwahibi, M.S.; Elshikh, M.S.; et al. Immobilization of Cd, Pb and Zn through Organic Amendments in Wastewater Irrigated Soils. Sustainability 2021, 13, 2392. https://doi.org/10.3390/su13042392
Malik KM, Khan KS, Rukh S, Khan A, Akbar S, Billah M, Bashir S, Danish S, Alwahibi MS, Elshikh MS, et al. Immobilization of Cd, Pb and Zn through Organic Amendments in Wastewater Irrigated Soils. Sustainability. 2021; 13(4):2392. https://doi.org/10.3390/su13042392
Chicago/Turabian StyleMalik, Kouser Majeed, Khalid Saifullah Khan, Shah Rukh, Ahmad Khan, Saba Akbar, Motsim Billah, Saqib Bashir, Subhan Danish, Mona S Alwahibi, Mohamed Soliman Elshikh, and et al. 2021. "Immobilization of Cd, Pb and Zn through Organic Amendments in Wastewater Irrigated Soils" Sustainability 13, no. 4: 2392. https://doi.org/10.3390/su13042392
APA StyleMalik, K. M., Khan, K. S., Rukh, S., Khan, A., Akbar, S., Billah, M., Bashir, S., Danish, S., Alwahibi, M. S., Elshikh, M. S., Al-Ghamdi, A. A., & Mustafa, A. E.-Z. M. A. (2021). Immobilization of Cd, Pb and Zn through Organic Amendments in Wastewater Irrigated Soils. Sustainability, 13(4), 2392. https://doi.org/10.3390/su13042392