Addressing the Water–Energy–Food Nexus through Enhanced Green Roof Performance
Abstract
:1. Introduction
1.1. Sustainable Development and Green Roofs in Toronto
1.2. Green Roofs and Water
1.3. Green Roofs and Energy
1.4. Green Roofs and Food Security
2. Materials and Methods
2.1. Overview of Lab Layout
2.2. Description of Lysimeter System
2.3. Description of Data Acquisition
3. Results
3.1. Stormwater Retention
3.2. Agricultural Productivity
4. Discussion
Future Work
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Magill, J.D.; Midden, K.; Groninger, J.; Therrell, M. A History and Definition of Green Roof Technology with Recommendations for Future Research; Research Papers; Southern Illinois University: Carbondale, IL, USA, 2011; Available online: http://opensiuc.lib.siu.edu/gs_rp/91 (accessed on 9 September 2020).
- Baryła, A.; Karczmarczyk, A.; Brandyk, A.; Bus, A. The influence of a green roof drainage layer on retention capacity and leakage quality. Water Sci. Technol. 2018, 77, 2886–2895. [Google Scholar] [CrossRef] [Green Version]
- Baryła, A.M. Role of drainage layer on green roofs in limiting the runoff of rainwater from urbanized areas. J. Water L. Dev. 2019, 41, 12–18. [Google Scholar] [CrossRef] [Green Version]
- Banting, D.; Doshi, H.; Li, J.; Missios, P.; Au, A.; Currie, B.A.; Verrati, M. Report on the Environmental Benefits and Costs of Green Roof Technology for the City of Toronto; City of Toronto and Ontario Centres of Excellence: Toronto, ON, Canada, 2005. [Google Scholar]
- Johannessen, B.G.; Hanslin, H.M.; Muthanna, T.M. Green roof performance potential in cold and wet regions. Ecol. Eng. 2017, 106, 436–447. [Google Scholar] [CrossRef]
- Viola, F.; Hellies, M.; Deidda, R. Retention performance of green roofs in representative climates worldwide. J. Hydrol. 2017, 553, 763–772. [Google Scholar] [CrossRef] [Green Version]
- Ebrahimian, A.; Wadzuk, B.; Traver, R. Evapotranspiration in Green Stormwater Infrastructure Systems. Sci. Total Environ. 2019, 688, 797–810. [Google Scholar] [CrossRef]
- Hill, J.C.; Drake, J.; Sleep, B.; Margolis, L. Influences of Four Extensive Green Roof Design Variables on Stormwater Hydrology. J. Hydrol. Eng. 2017, 22, 04017019. [Google Scholar] [CrossRef] [Green Version]
- Cristiano, E.; Deidda, R.; Viola, F. The role of green roofs in urban Water-Energy-Food-Ecosystem nexus: A review. Sci. Total. Environ. 2021, 756, 143876. [Google Scholar] [CrossRef] [PubMed]
- City of Toronto Municipal Government. City of Toronto Green Roof Bylaw. 13 November 2020. Available online: https://www.toronto.ca/city-government/planning-development/official-plan-guidelines/green-roofs/green-roof-bylaw/ (accessed on 9 September 2020).
- Breuning, J. What Is Mineral Wool? 16 September 2014. Available online: http://www.greenrooftechnology.com/Mineral%20Wool%20in%20Green%20Roofs/mineral-wool-in-green-roofs (accessed on 14 September 2020).
- Hammond, R. Evaluating Green and Blue Roof Opportunities in Canadian Cities. Master’s thesis, University of Waterloo, Waterloo, AN, Canada, 2017. [Google Scholar]
- Feng, Y.; Burian, S.J.; Pardyjak, E.R. Observation and Estimation of Evapotranspiration from an Irrigated Green Roof in a Rain-Scarce Environment. Water 2018, 10, 262. [Google Scholar] [CrossRef] [Green Version]
- Cirkel, D.; Voortman, B.R.; Van Veen, T.; Bartholomeus, R.P. Evaporation from (Blue-)Green Roofs: Assessing the Benefits of a Storage and Capillary Irrigation System Based on Measurements and Modeling. Water 2018, 10, 1253. [Google Scholar] [CrossRef] [Green Version]
- Jauch, M.; Krummradt, I.; Schmitz, H.J.; Lohr, D.; Meinken, E. Optimization of Evapotranspiration and Cooling Capacity of Extensive Green Roofs Through Targeted Use of Gray Water; Hochschule Weihenstephan-Triesdorf Univerisity of Applied Sciences: Freisen, Germany, 2016. [Google Scholar]
- Auld, D.; Wright, J. Carbon Sequestering and Green Roof Technology: A Benefit Cost Analysis. Environ. Manag. Sustain. Dev. 2018, 7, 85–92. [Google Scholar] [CrossRef] [Green Version]
- Ono, K.; Yanagi, M.; Kudo, T.; Teshirogi, J.; Shibuya, Y.; Koshimizu, H. Evapotranspiration Rate of Rooftop Gardening Plants. J. Jpn. Soc. Reveg. Technol. 2005, 32, 74–79. [Google Scholar] [CrossRef]
- Berndtsson, J.C. Green roof performance towards management of runoff water quantity and quality: Review. Ecol. Eng. 2010, 36, 351–360. [Google Scholar] [CrossRef]
- DiGiovanni, K.; Gaffin, S.; Montalto, F. Green Roof Hydrology: Results from a Small-Scale Lysimeter Setup (Bronx, NY). Low Impact Dev. 2010, 1, 1324–1328. [Google Scholar]
- Moran, A.C.; Hunt, W.F.; Smith, J.T. Green roof hydrologic and water quality performance from two field sites in North Carolina. In Managing Watersheds for Human and Natural Impacts; American Society of Civil Engineers: Williamsburg, VA, USA, 2005; pp. 1–12. [Google Scholar]
- VanWoert, N.D.; Rowe, D.B.; Andresen, J.A.; Rugh, C.L.; Fernandez, R.T.; Xiao, L. Green roof stormwater retention: Effects of roof surface, slope, and media depth. J. Environ. Qual. 2005, 34, 1036–1044. [Google Scholar] [CrossRef]
- Castleton, H.; Stovin, V.; Beck, S.; Davison, J. Green roofs; building energy savings and the potential for retrofit. Energy Build. 2010, 42, 1582–1591. [Google Scholar] [CrossRef]
- La Roche, P.; Berardi, U. Comfort and energy savings with active green roofs. Energy Build. 2014, 82, 492–504. [Google Scholar] [CrossRef]
- Capodaglio, A.G.; Olsson, G. Energy Issues in Sustainable Urban Wastewater Management: Use, Demand Reduction and Recovery in the Urban Water Cycle. Sustainability 2019, 12, 266. [Google Scholar] [CrossRef] [Green Version]
- Environmental Commissioner of Ontario. Every Drop Counts, Reducing the Energy and Climate Footprint of Ontario’s Water Use, Annual Energy Conservation Progress Report, vol. 1, 2016–2017. Available online: https://www.auditor.on.ca/en/content/reporttopics/envreports/env17/Every-Drop-Counts.pdf (accessed on 20 October 2020).
- Sun, T.; Bou-Zeid, E.; Ni, G.-H. To irrigate or not to irrigate: Analysis of green roof performance via a vertically-resolved hygrothermal model. Build. Environ. 2014, 73, 127–137. [Google Scholar] [CrossRef]
- Gomes, S.; Valadas, S. Impact of Vegetation, Substrate, and Irrigation on the Energy Performance of Green Roofs in a Mediterranean Climate. Water 2019, 11, 2016. [Google Scholar] [CrossRef] [Green Version]
- Paul, C.; John, G.; Barbara, E.; Marianne, G.; Heather, O.; Coleman, P.; Gultig, J.; Emanuel, B.; Gee, M.; Orpana, H. Status report—FoodReach Toronto: Lowering food costs for social agencies and community groups. In Health Promotion and Chronic Disease Prevention in Canada; Public Health Agency of Canada: Ottawa, ON, Canada, 2018; Volume 38, pp. 23–28. [Google Scholar]
- Miernicki, E.A.; Lovell, S.T.; Wortman, S.E. Raised Beds for Vegetable Production in Urban Agriculture. Urban Agric. 2018, 3, 180002. [Google Scholar] [CrossRef] [Green Version]
- Ryerson Urban Farm. Highlights of the Urban Farm’s Growing Seasons; Ryerson University: Toronto, ON, Canada, 2020; Available online: https://www.ryerson.ca/university-business-services/urban-farm/ (accessed on 20 October 2020).
- Zawadi Farm Toronto ON. 2020. Available online: https://zawadi.farm/ (accessed on 21 October 2020).
- Ryerson Urban Farm Living Lab, Ryerson University Toronto ON. 2021. Available online: https://www.ryerson.ca/foodsecurity/projects/activity_urban_Farm_living_lab/ (accessed on 21 October 2020).
- Stovin, V.; Poë, S.; De-Ville, S.; Berretta, C. The influence of substrate and vegetation configuration on green roof hydrological performance. Ecol. Eng. 2015, 85, 159–172. [Google Scholar] [CrossRef] [Green Version]
- Editorial Board Green Roofs. Green Roof Guidelines—Guidelines for the Planning, Construction and Maintenance of Green Roofs. In Landscape Development and Landscaping Research Society; Green Roof Technology: Bonn, Germany, 2018. [Google Scholar]
- Toronto Green Roof Technical Advisory Group. Toronto Green Roof Construction Standard Supplementary Guidelines; Toronto Green Roof Technical Advisory Group: Toronto, ON, Canada, 2010. [Google Scholar]
- Mackinnon, A.; Lebaron, P. Precambrian Dolomite Resources in Southeastern Ontario; Ministry of Northern Development and Mines: Toronto, ON, Canada, 1990. [Google Scholar]
- ZinCo Canada Inc. Urban Farming Roof 2020. Available online: https://www.zinco.ca/green-roof-systems/urban-farming (accessed on 21 October 2020).
- ZinCo Inc. Product Data Sheet Wicking Mat DV 40. 2020. Available online: https://www.zinco.ca/assets/pdf/ZinCo_PDB_Wicking_Mat_DV40_engl.pdf (accessed on 21 October 2020).
- ZinCo Canada Inc. Growing Media. 2020. Available online: https://www.zinco.ca/reference-library/component-detail/growing-media (accessed on 3 November 2020).
- Lytle, J.; Santillo, D.; Mai, K.V.; Wright, J. Remote Monitoring of Evapotranspiration from Green Roof Systems. In Proceedings of the 11th IEEE Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON), New York, NY, USA, 10–12 October 2020. [Google Scholar]
- Metselaar, K. Water retention and evapotranspiration of green roofs and possible natural vegetation types. Resour. Conserv. Recycl. 2012, 64, 49–55. [Google Scholar] [CrossRef]
- Whittinghill, L.; Rowe, B.; Andresen, J.; Cregg, B. Comparison of Stormwater Runoff From Sedum, Native Prarie and Vegetable Producing Green Roofs. Urban Ecosyst. 2015, 18, 13–29. [Google Scholar] [CrossRef]
- D’Odorico, P.; Davis, K.F.; Rosa, L.; Carr, J.A.; Chiarelli, D.; Dell’Angelo, J.; Gephart, J.; MacDonald, G.K.; Seekell, D.A.; Suweis, S.; et al. The Gobal Food-Energy-Water Nexus. Rev. Geophys. 2018, 56, 456–531. [Google Scholar] [CrossRef]
- United Nations. UN Water: Water, Food and Energy. 2020. Available online: https://www.unwater.org/water-facts/water-food-and-energy/ (accessed on 28 November 2020).
- Goldstein, B.; Hauschild, M.; Fernández, J.E.; Birkved, M. Contributions of Local Farming to Urban Sustainability in the Northeast United States. Environ. Sci. Technol. 2017, 51, 7340–7349. [Google Scholar] [CrossRef] [Green Version]
- Benis, K.; Turan, I.; Reinhart, C.; Ferrão, P. Putting rooftops to use—A Cost-Benefit Analysis of food production vs. energy generation under Mediterranean climates. Cities 2018, 78, 166–179. [Google Scholar] [CrossRef] [Green Version]
- Qin, Y. Urban Flooding Mitigation Techniques: A Systematic Review and Future Studies. Water 2020, 12, 3579. [Google Scholar] [CrossRef]
- Barron-Gafford, G.A.; Pavao-Zuckerman, M.A.; Minor, R.L.; Sutter, L.F.; Barnett-Moreno, I.; Blackett, D.T.; Thompson, M.; Dimond, K.; Gerlak, A.K.; Nabhan, G.P.; et al. Agrivoltaics provide mutual benefits across the food–energy–water nexus in drylands. Nat. Sustain. 2019, 2, 848–855. [Google Scholar] [CrossRef]
- Dupraz, C.; Marrou, H.; Talbot, G.; Dufour, L.; Nogier, A.; Ferard, Y. Combining solar photovoltaic panels and food crops for optimising land use: Towards new agrivoltaic schemes. Renew. Energy 2011, 36, 2725–2732. [Google Scholar] [CrossRef]
- Dinesh, H.; Pearce, J.M. The potential of agrivoltaic systems. Renew. Sustain. Energy Rev. 2016, 54, 299–308. [Google Scholar] [CrossRef] [Green Version]
- United Nations. Sustainable Development Goals. 2020. Available online: https://www.un.org/sustainabledevelopment/sustainable-development-goals/ (accessed on 28 November 2020).
Extensive (P1) | Extensive + Blue (P2) | Aggregate (P3) | Productive (P4) | Productive + Blue (P5) | |
---|---|---|---|---|---|
Media | Extensive Blend | Extensive Blend | Dolomite | Farm Blend | Farm Blend |
Drainage Device | Drainage Board | Blue Roof | Drainage Board | Drainage Board | Blue Roof |
Plant Material | Sedums | Sedums | None | Carrot-Beet rotation; clover cover crop | Carrot-Beet rotation; winter rye cover crop |
Media Depth | 100 mm | 100 mm | 25 + 55 mm infill | 175 mm | 175 mm |
Total System Depth | 130 mm | 170 mm | 90 mm | 220 mm | 240 mm |
Drainage Retention | 8 mm | 50 mm | 18 mm | 11 mm | 50 mm |
Media Retention | 35 mm | 35 mm | 0 mm | 79 mm | 79 mm |
Total Retention | 43 mm | 85 mm | 18 mm | 90 mm | 129 mm |
Saturated Mass | 128 kg/m2 | 175 kg/m2 | 115 kg/m2 | 239 kg/m2 | 278 kg/m2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wright, J.; Lytle, J.; Santillo, D.; Marcos, L.; Mai, K.V. Addressing the Water–Energy–Food Nexus through Enhanced Green Roof Performance. Sustainability 2021, 13, 1972. https://doi.org/10.3390/su13041972
Wright J, Lytle J, Santillo D, Marcos L, Mai KV. Addressing the Water–Energy–Food Nexus through Enhanced Green Roof Performance. Sustainability. 2021; 13(4):1972. https://doi.org/10.3390/su13041972
Chicago/Turabian StyleWright, Jeremy, Jeremy Lytle, Devon Santillo, Luzalen Marcos, and Kristiina Valter Mai. 2021. "Addressing the Water–Energy–Food Nexus through Enhanced Green Roof Performance" Sustainability 13, no. 4: 1972. https://doi.org/10.3390/su13041972
APA StyleWright, J., Lytle, J., Santillo, D., Marcos, L., & Mai, K. V. (2021). Addressing the Water–Energy–Food Nexus through Enhanced Green Roof Performance. Sustainability, 13(4), 1972. https://doi.org/10.3390/su13041972