Comprehensive Measurement and Regional Imbalance of China’s Green Development Performance
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Division of Economic Regions
2.1.2. Analytical Framework of Green Development Performance
2.1.3. Index Selection and Data Source
2.2. Methods
2.2.1. Two-Stage Super-Efficiency Network SBM Model
2.2.2. Dagum Gini Coefficient Decomposition
2.2.3. Analysis of Convergence
3. Results
3.1. Green Development Performance and the Efficiency of Sub-Links
3.1.1. Comprehensive Evaluation of Green Development Performance
3.1.2. Comparative Analysis of Green Development Performance and Sub-Link Efficiency
3.2. Analysis of Regional Differences in Green Development Performance
3.2.1. Overall Difference
3.2.2. Intra-Regional Differences
3.2.3. Inter-Regional Differences
3.3. Green Development Performance Convergence Mechanism
3.3.1. σ Convergence
3.3.2. β Convergence
4. Discussions and Conclusions
4.1. Discussions
4.2. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jin, P.; Peng, C.; Song, M. Macroeconomic uncertainty, high-level innovation, and urban green development performance in China. China Econ. Rev. 2019, 55, 1–18. [Google Scholar] [CrossRef]
- Li, L.; Hu, J. Ecological total-factor energy efficiency of regions in China. Energy Policy 2012, 46, 216–224. [Google Scholar] [CrossRef]
- Wen, H.; Lee, C. Impact of fiscal decentralization on firm environmental performance: Evidence from a county-level fiscal reform in China. Environ. Sci. Pollut. Res. 2020, 27, 36147–36159. [Google Scholar] [CrossRef] [PubMed]
- Iftikhar, Y.; Wang, Z.; Zhang, B.; Wang, B. Energy and CO2 emissions efficiency of major economies: A network DEA approach. Energy Econ. 2018, 147, 197–207. [Google Scholar] [CrossRef]
- Kortelainen, M. Dynamic environmental performance analysis: A Malmquist index approach. Ecol. Econ. 2008, 64, 701–715. [Google Scholar] [CrossRef]
- Jena, P.R. Estimating environmental efficiency and Kuznets curve for India. In Proceedings of the Contributed Paper Prepared for Presentation at the International Association of Agricultural Economists Conference, Beijing, China, 16–22 August 2009. [Google Scholar]
- Su, S.; Zhang, F. Modeling the role of environmental regulations in regional green economy efficiency of China: Empirical evidence from super efficiency DEA-Tobit model. J. Environ. Manag. 2020, 261, 110227. [Google Scholar]
- Liu, X.; Yang, X.; Guo, R. Regional Differences in Fossil Energy-Related Carbon Emissions in China’s Eight Economic Regions: Based on the Theil Index and PLS-VIP Method. Sustainability 2020, 12, 2576. [Google Scholar] [CrossRef] [Green Version]
- Lu, C.; Venevsky, S.; Shi, X.; Wang, L.; Wright, J.S.; Wu, C. Econometrics of the environmental Kuznets curve: Testing advancement to carbon intensity-oriented sustainability for eight economic zones in China. J. Clean. Prod. 2020, 283, 124561. [Google Scholar] [CrossRef]
- Chen, Y.; Yang, Z.; Shu, F.; Hu, Z.; Meyer, M.; Bhattacharya, S. A patent based evaluation of technological innovation capability in eight economic regions in PR China. World Patent Inf. 2009, 31, 104–110. [Google Scholar] [CrossRef]
- Xie, X.; Cai, W.; Jiang, Y.; Zeng, W. Carbon footprints and embodied carbon flows analysis for China’s eight regions: A new perspective for mitigation solutions. Sustainability 2015, 7, 10098–10114. [Google Scholar] [CrossRef] [Green Version]
- Qing, Y.; Wan, X.; Ma, H. Assessing Green Development Efficiency of Municipalities and Provinces in China Integrating Models of Super-Efficiency DEA and Malmquist Index. Sustainability 2015, 7, 4492–4510. [Google Scholar]
- An, Q.; Wu, Q.; Li, J.; Xiong, B.; Chen, X. Environmental efficiency evaluation for Xiangjiang River basin cities based on an improved SBM model and Global Malmquist index. Energy Econ. 2019, 81, 95–103. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, X.; Liang, L. Green economic efficiency in the Yangtze River Delta: Spatiotemporal evolution and influencing factors. Ecosyst. Health Sustain. 2019, 5, 20–35. [Google Scholar] [CrossRef] [Green Version]
- Zhao, P.; Zeng, L.; Lu, H.; Zhou, Y.; Hu, H.Y.; Wei, X.Y. Green economic efficiency and its influencing factors in China from 2008 to 2017: Based on the super-SBM model with undesirable outputs and spatial Dubin model. Sci. Total Environ. 2020, 741, 140026. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Liu, W.; Khan, S.U.; Yu, C.; Jun, Z.; Yue, D.; Zhao, M. Regional differential decomposition and convergence of rural green development efficiency: Evidence from China. Environ. Sci. Pollut. Res. 2020, 27, 22364–22379. [Google Scholar]
- Xu, S.; Li, Y.; Tao, Y.; Wang, Y.; Li, Y. Regional Differences in the Spatial Characteristics and Dynamic Convergence of Environmental Efficiency in China. Sustainability 2020, 12, 7423. [Google Scholar] [CrossRef]
- Wang, D.; Wan, K.; Yang, J. Ecological efficiency of coal cities in China: Evaluation and influence factors. Nat. Hazards 2019, 95, 363–379. [Google Scholar] [CrossRef]
- Li, H.; Fang, K.; Yang, W.; Wang, D.; Hong, X. Regional environmental efficiency evaluation in China: Analysis based on the Super-SBM model with undesirable outputs. Math. Comput. Model. 2013, 58, 1018–1031. [Google Scholar] [CrossRef]
- Wu, D.; Wang, Y.; Qian, W. Efficiency evaluation and dynamic evolution of China’s regional green economy: A method based on the Super-PEBM model and DEA window analysis. J. Clean. Prod. 2020, 264, 121630. [Google Scholar] [CrossRef]
- Peng, Y.; Chen, Z.; Lee, J. Dynamic Convergence of Green Total Factor Productivity in Chinese Cities. Sustainability 2020, 12, 4883. [Google Scholar] [CrossRef]
- Charnes, A.; Cooper, W.; Rhodes, E. Measuring the efficiency of decision-making units. Eur. J. Oper. Res. 1978, 2, 429–444. [Google Scholar] [CrossRef]
- Tone, K. A slacks-based measure of efficiency in data envelopment analysis. Eur. J. Oper. Res. 2001, 130, 498–509. [Google Scholar] [CrossRef] [Green Version]
- Tone, K. A slacks-based measure of super-efficiency in data envelopment analysis. Eur. J. Oper. Res. 2002, 143, 32–41. [Google Scholar] [CrossRef] [Green Version]
- Loikkanen, H.A.; Susiluoto, I. An Evaluation of Economic Efficiency of Finnish Regions by DEA and Tobit Models; 42st Congress of the European Regional Science Association: Dortmund, Germany, 2002. [Google Scholar]
- Fare, R. Measuring Farrell efficiency for a firm with intermediate inputs. Acad. Econ. Pap. 1991, 19, 329–340. [Google Scholar]
- Fare, R.; Grosskopf, S. Productivity and intermediate products: A frontier approach. Comput. Econ. 1996, 50, 65–70. [Google Scholar] [CrossRef]
- Zhu, B.; Zhang, M.; Zhou, Y.; Wang, P.; Sheng, J.; He, K.; Wei, Y.M.; Xie, R. Exploring the effect of industrial structure adjustment on interprovincial green development efficiency in China: A novel integrated approach. Energy Policy 2019, 134, 110946. [Google Scholar] [CrossRef]
- Tao, X.; Wang, P.; Zhu, B. Provincial green economic efficiency of China: A non-separable input–output SBM approach. Appl. Energy 2016, 171, 58–66. [Google Scholar] [CrossRef]
- Zhou, L.; Zhou, C.; Che, L.; Wang, B. Spatio-temporal evolution and influencing factors of urban green development efficiency in China. J. Geogr. Sci. 2020, 30, 724–742. [Google Scholar] [CrossRef]
- Peng, G.; Zhang, X.; Liu, F.; Ruan, L.; Tian, K. Spatial–temporal evolution and regional difference decomposition of urban environmental governance efficiency in China. Environ. Dev. Sustain. 2020, 1–17. [Google Scholar] [CrossRef]
- Dagum, C. A new approach to the decomposition of the Gini income inequality ratio. Empir. Econ. 1997, 22, 515–531. [Google Scholar] [CrossRef]
- Xiong, H.; Lan, L.; Liang, L.; Liu, Y.; Xu, X. Spatio-temporal Differences and Dynamic Evolution of PM2. 5 Pollution in China. Sustainability 2020, 12, 5349. [Google Scholar] [CrossRef]
- Han, H.; Ding, T.; Nie, L.; Hao, Z. Agricultural eco-efficiency loss under technology heterogeneity given regional differences in China. J. Clean. Prod. 2020, 250, 119511. [Google Scholar] [CrossRef]
- Lu, X.; Kuang, B.; Li, J. Regional difference decomposition and policy implications of China’s urban land use efficiency under the environmental restriction. Habitat Int. 2018, 77, 32–39. [Google Scholar] [CrossRef]
- Shen, C.; Feng, R.; Yu, B.; Liao, Z. Industrial CO2 Emissions Efficiency and its Determinants in China: Analyzing Differences across Regions and Industry Sectors. Pol. J. Environ. Stud. 2018, 27, 1239–1253. [Google Scholar] [CrossRef]
- National Bureau of Statistics of China (NBSC). Chinese Statistics Yearbook; NBSC: Beijing, China, 1998–2018. (In Chinese)
- National Bureau of Statistics of China (NBSC). Chinese Energy Statistics Yearbook; NBSC: Beijing, China, 1998–2018. (In Chinese)
- National Bureau of Statistics of China (NBSC). China Environment Statistics Yearbook; NBSC: Beijing, China, 1998–2018. (In Chinese)
- Rezitis, A. Agricultural productivity and convergence: Europe and the United States. Appl. Econ. 2010, 42, 1029–1044. [Google Scholar] [CrossRef] [Green Version]
- Lu, X.; Xu, C. The difference and convergence of total factor productivity of inter-provincial water resources in China based on three-stage DEA-Malmquist index model. Sustain. Comput. Inform. Syst. 2019, 22, 75–83. [Google Scholar] [CrossRef]
- Sobhan, R. The Problem of regional imbalance in the economic development of Pakistan. Asian Surv. 1962, 2, 31–37. [Google Scholar] [CrossRef]
- Toprak, M.; Bayraktar, Y.; Özyılmaz, A. Analysis of the Impact of Public Investments on Regional Imbalance at the Regional Level in Turkey; International Congress on Politic, Economic and Social Studies (ICPESS): Istanbul, Turkey, 2017. [Google Scholar]
- Doloreux, D.; Parto, S. Regional innovation systems: Current discourse and unresolved issues. Technol. Soc. 2005, 27, 133–153. [Google Scholar] [CrossRef]
- Doloreux, D. What we should know about regional systems of innovation. Technol. Soc. 2002, 24, 243–263. [Google Scholar] [CrossRef]
- Isaksen, A.; Trippl, M. Exogenously led and policy-supported new path development in peripheral regions: Analytical and synthetic routes. Econ. Geogr. 2017, 93, 436–457. [Google Scholar] [CrossRef]
- Maillat, D.; Kebir, L. Conditions-cadres et compétitivité des régions: Une relecture. Can. J. Reg. Sci. 2001, 24, 41–56. [Google Scholar]
- Rockström, J.; Steffen, W.; Noone, K.; Persson, Å.; Chapin, F.S.; Lambin, E.F.; Lenton, T.M.; Scheffer, M.; Folke, C.; Schellnhuber, H.J.; et al. A safe operating space for humanity. Nature 2009, 461, 472–475. [Google Scholar] [CrossRef] [PubMed]
- Davies, A.; Mullin, S. Greening the economy: Interrogating sustainability innovations beyond the mainstream. J. Econ. Geogr. 2011, 11, 793–816. [Google Scholar] [CrossRef]
- Mol, A. Ecological modernization and the global economy. Glob. Environ. Politics 2002, 2, 92–115. [Google Scholar] [CrossRef]
Regions | Constitutions |
---|---|
Northern coast | Beijing, Tianjin, Hebei, Shandong |
Eastern coast | Shanghai, Jiangsu, Zhejiang |
Southern coast | Fujian, Guangdong, Hainan |
Northeast | Liaoning, Jilin, Heilongjiang |
Middle Yellow River | Shanxi, Inner Mongolia, Henan, Shaanxi |
Middle Yangtze River | Anhui, Jiangxi, Hubei, Hunan |
Southwest | Guangxi, Chongqing, Sichuan, Guizhou, Yunnan |
Northwest | Ningxia, Gansu, Qinghai, Xinjiang |
Stage | Type | First Level Indicators | Second Level Indicators | Third Level Indicators |
---|---|---|---|---|
Economic production stage | Input | Resource input | Labor | Employed persons |
Capital | Total investment in fixed assets | |||
Energy | Energy consumption | |||
Water | Per capita water consumption | |||
Land | Area of built districts | |||
Output | Economic output | GDP | Area GDP | |
Intermediate variable | Pollution emissions | Wastewater | Total wastewater discharged | |
Waste gas | SO2 emission | |||
Solid waste | Industrial solid waste discharge | |||
Environmental governance stage | Input | Environmental governance | Environmental input | Investment in the treatment of environmental pollution |
Output | Waste utilization | Wastes utilization | Facilities for treatment of waste water and waste gas | |
Waste water utilization | Treat of industrial wastewater | |||
Solid waste utilization | Utilization of solid waste |
GDPI | GPE | GEE | |
---|---|---|---|
GDPI | 1 | 0.941 *** | 0.798 *** |
GPE | 0.941 *** | 1 | 0.777 *** |
GEE | 0.798 *** | 0.777 *** | 1 |
Region | Region | Region | Region | ||||
---|---|---|---|---|---|---|---|
8-7 | 0.148 | 7-6 | 0.327 | 6-4 | 0.351 | 5-1 | 0.112 |
8-6 | 0.346 | 7-5 | 0.246 | 6-3 | 0.408 | 4-3 | 0.156 |
8-5 | 0.190 | 7-4 | 0.171 | 6-2 | 0.299 | 4-2 | 0.179 |
8-4 | 0.144 | 7-3 | 0.193 | 6-1 | 0.429 | 4-1 | 0.168 |
8-3 | 0.133 | 7-2 | 0.172 | 5-4 | 0.206 | 3-2 | 0.205 |
8-2 | 0.135 | 7-1 | 0.218 | 5-3 | 0.136 | 3-1 | 0.076 |
8-1 | 0.155 | 6-5 | 0.453 | 5-2 | 0.264 | 2-1 | 0.228 |
Region | β | t | Constant | t | R2 |
---|---|---|---|---|---|
Nationwide | 0.285 *** | 5.18 | 0.0382 | 1.31 | 0.0778 |
Northern Coast | 0.619 *** | 48.18 | −0.0832 | −2.27 | 0.4433 |
Northeast | 0.265 ** | 5.78 | 0.0373 | −0.43 | 0.3927 |
Eastern coast | 0.780 * | 4.16 | 0.0748 | 0.40 | 0.2223 |
The Middle Yellow River | 0.395 * | 3.05 | 0.0429 | 0.64 | 0.2589 |
Southern coast | 0.183 ** | 5.12 | −0.0139 | −0.51 | 0.4581 |
Northwest | 0.209 * | 2.53 | 0.183 | 1.41 | 0.4001 |
Southwest | 0.383 *** | 4.82 | 0.158 | 2.03 | 0.2081 |
The Yangtze River | 0.647 *** | 10.02 | −0.0960 | −1.19 | 0.3980 |
Region | β | t | Constant | t | R2 |
---|---|---|---|---|---|
Nationwide | 0.289 *** | 5.54 | −0.160 | −0.31 | 0.0714 |
Northern Coast | 0.670 *** | 13.15 | −0.800 | −1.03 | 0.3586 |
Northeast | 0.425 * | 2.93 | −2.746 * | −3.29 | 0.1405 |
Eastern coast | 0.936 ** | 9.56 | 1.218 | 0.75 | 0.1718 |
The Middle Yellow River | 0.404 | 2.18 | −1.727 | −1.13 | 0.1883 |
Southern coast | 0.188 | 2.53 | −0.646 | −0.37 | 0.4055 |
Northwest | 0.305 | 2.03 | −1.046 | −0.33 | 0.2601 |
Southwest | 0.498 *** | 5.39 | −0.742 | −1.22 | 0.2738 |
The Yangtze River | 0.721 *** | 9.46 | 2.472 | 0.92 | 0.3791 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Zhang, Y.; Wen, H. Comprehensive Measurement and Regional Imbalance of China’s Green Development Performance. Sustainability 2021, 13, 1409. https://doi.org/10.3390/su13031409
Wang S, Zhang Y, Wen H. Comprehensive Measurement and Regional Imbalance of China’s Green Development Performance. Sustainability. 2021; 13(3):1409. https://doi.org/10.3390/su13031409
Chicago/Turabian StyleWang, Shengyun, Yaxin Zhang, and Huwei Wen. 2021. "Comprehensive Measurement and Regional Imbalance of China’s Green Development Performance" Sustainability 13, no. 3: 1409. https://doi.org/10.3390/su13031409
APA StyleWang, S., Zhang, Y., & Wen, H. (2021). Comprehensive Measurement and Regional Imbalance of China’s Green Development Performance. Sustainability, 13(3), 1409. https://doi.org/10.3390/su13031409