Food Security and Climate Stabilization: Can Cereal Production Systems Address Both?
Abstract
:1. Introduction
2. Material and Method
2.1. Study Area
2.2. Data Collection
2.3. Functional Unit and System Boundary
2.4. Carbon Footprint Calculation Method
2.4.1. Pre-Farm Subsystem
2.4.2. On-Farm Subsystems
2.5. Carbon Efficiency Calculation Method
3. Results
3.1. Input–Output of Cereal Product System and GHG Emissions
3.2. Carbon Footprint Analysis
3.3. Carbon Efficiency Analysis
4. Discussion
4.1. Comparison and Analysis of Carbon Footprint
4.2. Comparison and Analysis of Carbon Efficiency
4.3. Key Factor Analysis
4.4. Limitation and Uncertainly Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tilman, D.; Cassman, K.G.; Matson, P.A.; Naylor, R.; Polasky, S. Agricultural sustainability and intensive production practices. Nature 2002, 418, 671–677. [Google Scholar] [CrossRef] [PubMed]
- Tilman, D.; Balzer, C.; Hill, J.; Befort, B.L. Global food demand and the sustainable intensification of agriculture. Proc. Natl. Acad. Sci. USA 2011, 108, 20260–20264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cui, Z.L.; Yue, S.C.; Wang, G.L.; Meng, Q.F.; Wu, L. Closing the yield gap could reduce projected greenhouse gas emissions: A case study of maize production in China. Glob. Chang. Biol. 2013, 19, 2467–2477. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.P.; Cui, Z.L.; Fan, M.S.; Zhang, W.F.; Zhang, F.S. Producing more grain with lower environmental costs. Nature 2014, 13609, 486–489. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.P.; Zhao, Y.Y.; Li, S.; Wang, C.; Chen, F. Sustainable options for reducing carbon inputs and improving the eco-efficiency of smallholder wheat-maize cropping systems in the Huanghuaihai Farming Region of China. J. Clean. Prod. 2020, 244, 118887. [Google Scholar] [CrossRef]
- Mueller, N.D.; Gerber, J.S.; Johnston, M.; Ray, D.K.; Ramankutty, N.; Foley, J.A. Closing yield gaps through nutrient and water management. Nature 2012, 490, 254–257. [Google Scholar] [CrossRef] [PubMed]
- Burney, J.A.; Davis, S.J.; Lobell, D.B. Greenhouse gas mitigation by agricultural intensification. Proc. Natl. Acad. Sci. USA 2010, 107, 12052–12057. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.P.; Cui, Z.L.; Vitousek, P.; Cassman, K.G.; Matson, P.A.; Bai, J.S.; Meng, Q.F.; Hou, P.; Yue, S.C.; Römheld, V.; et al. Integrated soil–crop system management for food security. Proc. Natl. Acad. Sci. USA 2011, 108, 6399–6404. [Google Scholar] [CrossRef] [Green Version]
- Cui, Z.; Dou, Z.X.; Ying, H.; Zhang, F.S. Producing more with less: Reducing environmental impacts through an integrated soil-crop system management approach. Front. Agric. Sci. Eng. 2020, 7, 14–20. [Google Scholar] [CrossRef] [Green Version]
- Ju, X.T.; Xing, G.X.; Chen, X.P.; Zhang, S.L.; Zhang, L.J.; Liu, X.J.; Cui, Z.L.; Yin, B.; Christie, P.; Zhu, Z.L. Reducing environmental risk by improving n management in intensive Chinese agricultural systems. Proc. Natl. Acad. Sci. USA 2009, 106, 3041–3046. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Z.C.; Wu, D.; Bol, R.; Shi, Y.F.; Guo, Y.B.; Meng, F.Q.; Wu, W.L. Nitrification inhibitor’s effect on mitigating N2O emissions was weakened by urease inhibitor in calcareous soils. Atmos. Environ. 2017, 166, 142–150. [Google Scholar] [CrossRef]
- Lal, R. Soil carbon sequestration impacts on global climate change and food security. Science 2004, 304, 1623–1627. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, K.; Yan, M.; Nayak, D.; Pan, G.; Smith, P.; Zheng, J.; Zheng, J. Carbon footprint of crop production in China: An analysis of national statistics data. J. Agric. Sci. 2015, 153, 422–431. [Google Scholar] [CrossRef] [Green Version]
- Dubey, A.; Lal, R. Carbon footprint and sustainability of agricultural production systems in Punjab, India, and Ohio, USA. J. Crop Improv. 2009, 23, 332–350. [Google Scholar] [CrossRef]
- Rotz, C.; Montes, F.; Chianese, D. The carbon footprint of dairy production systems through partial life cycle assessment. J. Dairy Sci. 2010, 93, 1266–1282. [Google Scholar] [CrossRef]
- Lal, R. Carbon emission from farm operations. Environ. Int. 2004, 30, 981–990. [Google Scholar] [CrossRef]
- Biswas, W.K.; Barton, L.; Carter, D. Global warming potential of wheat production in Western Australia: A life cycle assessment. Water Environ. J. 2008, 22, 206–216. [Google Scholar] [CrossRef]
- Biswas, W.K.; Graham, J.; Kelly, K.; John, M.B. Global warming contributions from wheat, sheep meat and wool production in Victoria, Australia—a life cycle assessment. J. Clean. Prod. 2010, 18, 1386–1392. [Google Scholar] [CrossRef]
- Mohammadi, A.; Rafiee, S.; Jafari, A.; Keyhani, A.; Mousavi-Avval, S.H.; Nonhebel, S. Energy use efficiency and greenhouse gas emissions of farming systems in north Iran. Renew. Sustain. Energy Rev. 2014, 30, 724–733. [Google Scholar] [CrossRef]
- Safa, M.; Samarasinghe, S. CO2 emissions from farm inputs “case study of wheat production in canterbury, New Zealand”. Environ. Pollut. 2012, 171, 126–132. [Google Scholar] [CrossRef]
- Meisterling, K.; Samaras, C.; Schweizer, V. Decisions to reduce greenhouse gases from agriculture and product transport: LCA case study of organic and conventional wheat. J. Clean. Prod. 2009, 172, 222–230. [Google Scholar] [CrossRef]
- Knudsen, M.T.; Meyer-Aurich, A.; Olesen, J.E.; Chirinda, N.; Hermansen, J.E. Carbon footprints of crops from organic and conventional arable crop rotations-Using a life cycle assessment approach. J. Clean. Prod. 2014, 64, 609–618. [Google Scholar] [CrossRef]
- Röös, E.; Sundberg, C.; Hansson, P.-A. Uncertainties in the carbon footprint of refined wheat products: A case study on Swedish pasta. Int. J. Life Cycle Assess. 2011, 16, 338–350. [Google Scholar] [CrossRef]
- Espinoza-Orias, N.; Stichnothe, H.; Azapagic, A. The carbon footprint of bread. Int. J. Life Cycle Assess. 2011, 16, 351–365. [Google Scholar] [CrossRef]
- Meul, M.; Ginneberge, C.; Van Middelaar, C.E.; de Boer, I.J.M.; Fremaut, D.; Haesaert, G. Carbon footprint of five pig diets using three land use change accounting methods. Livest. Sci. 2012, 149, 215–223. [Google Scholar] [CrossRef]
- Hillier, J.; Hawes, C.; Squire, G.; Hilton, A.; Wale, S.; Smith, P. The carbon footprints of food crop production. Int. J. Agric. Sustain. 2009, 7, 107–118. [Google Scholar] [CrossRef]
- Tongwane, M.; Mdlambuzi, T.; Moeletsi, M.; Tsubo, M.; Mliswa, V.; Grootboom, L. Greenhouse gas emissions from different crop production and management practices in South Africa. Environ. Dev. 2016, 19, 23–35. [Google Scholar] [CrossRef] [Green Version]
- Williams, A.; Audsley, E.; Sandars, D. Environmental burdens of producing bread wheat, oilseed rape and potatoes in England and Wales using simulation and system modelling. Int. J. Life Cycle Assess. 2010, 15, 855–868. [Google Scholar] [CrossRef] [Green Version]
- Clune, S.; Verghese, K.; Crossin, E. Systematic review of greenhouse gas emissions for different fresh food categories. J. Clean. Prod. 2017, 140, 766–783. [Google Scholar] [CrossRef] [Green Version]
- González, A.D.; Frostell, B.; Carlsson-Kanyama, A. Protein efficiency per unit energy and per unit greenhouse gas emissions: Potential contribution of diet choices to climate change mitigation. Food Policy 2011, 36, 562–570. [Google Scholar] [CrossRef]
- Nemecek, T.; Weiler, K.; Plassmann, K.; Schnetzer, J.; Gaillard, G.; Jefferies, D.; Garcia-Suarez, T.; King, H.; Canals, L.M.I. Estimation of the variability in global warming potential of worldwide crop production using a modular extrapolation approach. J. Clean. Prod. 2012, 31, 106–117. [Google Scholar] [CrossRef]
- Gao, B.; Ju, X.T.; Meng, Q.F.; Cui, Z.L.; Christie, P.; Chen, X.P.; Zhang, F.S. The impact of alternative cropping systems on global warming potential, grain yield and groundwater use. Agric. Ecosyst. Environ. 2015, 203, 46–54. [Google Scholar] [CrossRef]
- Lin, J.; Hu, Y.; Cui, S.; Kang, J.; Xu, L. Carbon footprints of food production in China (1979–2009). J. Clean. Prod. 2015, 90, 97–103. [Google Scholar]
- Xin, Y.; Tao, F.L. Developing climate-smart agricultural systems in the North China Plain. Agric. Ecosyst. Environ. 2020, 291, 106791. [Google Scholar] [CrossRef]
- Yan, M.; Cheng, K.; Luo, T.; Yan, Y.; Pan, G.; Rees, R.M. Carbon footprint of grain crop production in China -based on farm survey data. J. Clean. Prod. 2015, 104, 130–138. [Google Scholar] [CrossRef]
- Yang, X.; Gao, W.; Zhang, M.; Chen, Y.; Sui, P. Reducing agricultural carbon footprint through diversified crop rotation systems in the North China Plain. J. Clean. Prod. 2014, 76, 131–139. [Google Scholar] [CrossRef]
- Zhang, W.S.; He, X.M.; Zhang, Z.D.; Gong, S.; Zhang, Q.; Zhang, W.; Chen, X.P. Carbon footprint assessment for irrigated and rainfed maize (Zea mays, L.) production on the Loess Plateau of China. Biosyst. Eng. 2018, 167, 75–86. [Google Scholar] [CrossRef]
- Zhang, X.Q.; Pu, C.; Zhao, X.; Xue, J.F.; Zhang, R.; Nie, Z.J.; Zhang, H.L. Tillage effects on carbon footprint and ecosystem services of climate regulation in a winter wheat–summer maize cropping system of the North China Plain. Ecol. Indic. 2016, 67, 821–829. [Google Scholar] [CrossRef]
- Maheswarappa, H.P.; Srinivasan, V.; Lal, R. Carbon footprint and sustainability of agricultural production systems in India. J. Crop Improv. 2011, 25, 303–322. [Google Scholar] [CrossRef]
- Aweke, M.G.; Lal, R.; Singh, B.R. Carbon footprint and sustainability of the smallholder agricultural production systems in Ethiopia. J. Crop Improv. 2014, 28, 700–714. [Google Scholar]
- Shi, L.G.; Fan, S.C.; Kong, F.L.; Chen, F. Preliminary study on the carbon efficiency of main crops production in North China Plain. Acta Agron. Sin. 2011, 37, 1485–1490. [Google Scholar] [CrossRef]
- Long, P. Effect of Organic Wastes Incorporation on Soil Organic Carbon and Net Carbon Balance in Wheat-Maize Farming System. Ph.D. Thesis, China Agricultural University, Beijing, China, 2014. [Google Scholar]
- Tian, Z.H.; Ma, X.Y.; Liu, R.H. Interannual variations of the carbon footprint and carbon eco-efficiency in agro-ecosystem of Beijing, China. J. Agric. Resour. Environ. 2015, 32, 603–612. [Google Scholar]
- Yin, Y.Y.; Hao, J.M.; Niu, L.A.; Chen, L. Carbon cycle and carbon efficiency of farmland ecosystems in Quzhou. Hebei Prov. Resour. Sci. 2016, 38, 918–928. [Google Scholar]
- Adewale, C.; Reganold, J.P.; Higgins, S.; Evans, R.D.; Carpenter-Boggs, L. Improving carbon footprinting of agricultural systems: Boundaries, tiers, and organic farming. Environ. Impact Assess. Rev. 2018, 71, 41–48. [Google Scholar] [CrossRef]
- Browne, N.A.; Eckard, R.J.; Behrendt, R.; Kingwell, R.S. A comparative analysis of on-farm greenhouse gas emissions from agricultural enterprises in south eastern Australia. Anim. Feed Sci. Technol. 2011, 166–167, 641–652. [Google Scholar] [CrossRef]
- Chen, Z.D.; Wu, Y.; Ti, J.S.; Chen, F.; Li, S. Carbon efficiency of double-rice production system in Hunan Province, China. Chin. J. Appl. Ecol. 2015, 26, 87–92. [Google Scholar]
- Wang, W.; Guo, L.P.; Li, Y.C.; Su, M.; Lin, Y.B.; Perthuis, C.D.; Moran, D. Greenhouse gas intensity of three main crops and implications for low-carbon agriculture in China. Clim. Chang. 2015, 128, 57–70. [Google Scholar] [CrossRef] [Green Version]
- Zhang, D.; Zhang, W.F. Low carbon agriculture and a review of calculation methods for crop production carbon footprint accounting. Resour. Sci. 2016, 38, 1395–1405. [Google Scholar]
- Huang, X.; Chen, C.; Qian, H.; Chen, M.; Deng, A.; Zhang, J. Quantification for carbon footprint of agricultural inputs of grains cultivation in china since 1978. J. Clean. Prod. 2017, 142, 1629–1637. [Google Scholar] [CrossRef]
- Wang, Y.Q.; Pu, C.; Zhao, X. Historical dynamics and future trends of carbon footprint of wheat and maize in China. Resour. Sci. 2018, 40, 1800–1811. [Google Scholar]
- Bennetzen, E.H.; Smith, P.; Porter, J.R. Decoupling of greenhouse gas emissions from global agricultural production: 1970–2050. Glob. Chang. Biol. 2016, 22, 763–781. [Google Scholar] [CrossRef]
- Liao, Y.; Wu, W.L.; Meng, F.Q.; Li, H. Impact of agricultural intensification on soil organic carbon: A study using DNDC in Huantai County, Shandong Province, China. J. Int. Agric. 2016, 15, 1364–1375. [Google Scholar] [CrossRef] [Green Version]
- Liao, Y.; Wu, W.L.; Meng, F.Q.; Smith, P.; Lal, R. Increase in soil organic carbon by agricultural intensification in northern China. Biogeosciences 2015, 12, 1403–1413. [Google Scholar] [CrossRef] [Green Version]
- Xiao, G.M.; Zhao, Z.C.; Liang, L.; Meng, F.Q.; Wu, W.L.; Guo, Y.B. Improving nitrogen and water use efficiency in a wheat-maize rotation system in the north china plain using optimized farming practices. Agric. Water Manag. 2019, 212, 172–180. [Google Scholar] [CrossRef]
- Zhao, Z.C. Crop Production and Greenhouse Gas Mitigation through Optimized Farming Practice in Northern China Plain. Ph.D. Thesis, China Agricultural University, Beijing, China, 2017. [Google Scholar]
- Zhang, X.; Bol, R.; Rahn, C.; Xiao, G.; Meng, F.; Wu, W. Agricultural sustainable intensification improved nitrogen use efficiency and maintained high crop yield during 1980–2014 in Northern China. Sci. Total Environ. 2017, 596–597, 61–68. [Google Scholar] [CrossRef]
- Liang, L.; Lal, R.; Ridoutt, B.G.; Du, Z.L.; Wang, D.P.; Wang, L.Y.; Wu, W.L.; Zhao, G.S. Life cycle assessment of China’s agroecosystems. Ecol. Indic. 2018, 88, 341–350. [Google Scholar] [CrossRef]
- Liang, L.; Wang, Y.C.; Ridoutt, B.G.; Lal, R.; Wang, D.P.; Wu, W.L.; Zhao, G.S. Agricultural subsidies assessment of cropping system from environmental and economic perspectives in north China based on LCA. Ecol. Indic. 2019, 96, 351–360. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2007: Mitigation; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013. [Google Scholar]
- Huang, J.K.; Wang, X.B.; Rozelle, S. The subsidization of farming households in China’s agriculture. Food Policy 2013, 41, 124–132. [Google Scholar] [CrossRef]
- Xu, X.; Lan, Y. A comparative study on carbon footprints between plant- and animal-based foods in China. J. Clean. Prod. 2016, 112, 2581–2592. [Google Scholar] [CrossRef]
- Pelletier, N.; Arsenault, N.; Tyedmers, P. Scenario modeling potential ecoefficiency gains from a transition to organic agriculture: Life cycle perspectives on Canadian canola, corn, soy, and wheat production. Environ. Manag. 2008, 42, 989–1001. [Google Scholar] [CrossRef]
- Fantin, V.; Righi, S.; Rondini, I.; Masoni, P. Environmental assessment of wheat and maize production in an Italian farmers’ cooperative. J. Clean. Prod. 2017, 140, 631–643. [Google Scholar] [CrossRef]
- Al-Mansour, F.; Jejcic, V. A model calculation of the carbon footprint of agricultural products: The case of Slovenia. Energy 2017, 136, 7–15. [Google Scholar] [CrossRef]
- Snyder, C.S.; Bruulsema, T.W.; Jensen, T.L.; Fixen, P.E. Review of greenhouse gas emissions from crop production systems and fertilizer management effects. Agric. Ecosyst. Environ. 2009, 133, 247–266. [Google Scholar] [CrossRef]
- Gan, Y.; Liang, C.; Wang, X.; McConkey, B. Lowering carbon footprint of durum wheat by diversifying cropping systems. Field Crops Res. 2011, 122, 199–206. [Google Scholar] [CrossRef]
- Pathak, H.; Jain, N.; Bhatia, A.; Patel, J.; Aggarwal, P.K. Carbon footprints of Indian food items. Agric. Ecosyst. Environ. 2010, 139, 66–73. [Google Scholar] [CrossRef]
- Liu, X.H.; Xu, W.X.; Li, Z.J.; Chu, Q.Q. The missteps, improvement and application of carbon footprint methodology in farmland ecosystems with the case study of analyzing the carbon efficiency of China’s intensive farming. Chin. J. Agric. Resour. Reg. Plan. 2013, 34, 1–11. [Google Scholar]
Item | 1996 | 2002 | 2006 | 2012 | 2016 | |||||
---|---|---|---|---|---|---|---|---|---|---|
Wheat | Maize | Wheat | Maize | Wheat | Maize | Wheat | Maize | Wheat | Maize | |
Seed (kg) | 166.1 | 50.1 | 140.8 | 46.2 | 111.5 | 40 | 121 | 24.2 | 121 | 27.8 |
N (kg) | 322.1 | 286.9 | 349.2 | 369.8 | 260.7 | 292.7 | 214.7 | 254.3 | 222 | 231.9 |
P2O5 (kg) | 131.2 | 37.5 | 264.1 | 173.2 | 179.6 | 164.5 | 167.7 | 132.2 | 108 | 86.3 |
K2O (kg) | 33.9 | 30.2 | 29.8 | 49 | 76.9 | 130.9 | 46.8 | 53.7 | 70.5 | 71.3 |
Irrigation (m3) | 3821 | 1597 | 3352 | 2362 | 3960 | 2640 | 3257 | 2059 | 3375 | 1875 |
Electricity (kWh) | 1146 | 479 | 1006 | 709 | 1188 | 792 | 977 | 618 | 972 | 596 |
Diesel (kg) | 128.1 | 131.8 | 137.6 | 204.2 | 157.9 | 274 | 167.4 | 285.1 | 175.5 | 304.5 |
Herbicide (kg) | 0.4 | 1.0 | 0.5 | 1.3 | 0.6 | 1.5 | 1.0 | 1.9 | 0.3 | 1.0 |
Pesticide (kg) | 0.8 | 0.5 | 1.1 | 0.9 | 1.2 | 1.2 | 5.1 | 3.8 | 0.9 | 0.8 |
Grain (kg) | 6510 | 7630 | 6850 | 7840 | 7052 | 8086 | 7330 | 7520 | 7425 | 9767 |
Item | Emission Factor | Unit | References |
---|---|---|---|
CH4 | 25 | kg CO2eq/kg | [60] |
N2O | 298 | kg CO2eq/kg | [60] |
Seed | 1.18 | kg CO2eq/kg | [58] |
N | 8.3 | kg CO2eq/kg N | [32] |
P2O5 | 1.5 | kg CO2eq/kg P2O5 | [32] |
K2O | 0.98 | kg CO2eq/kg K2O | [32] |
Electricity | 0.92 | kg CO2eq/kWh | [58] |
Diesel | 3.32 | kg CO2eq/kg | [58] |
Irrigation facilities | 220 (110) | kg CO2eq/ha | [42] |
Machine | 6.74 | kg CO2eq/kg | [58] |
Herbicide | 18 | kg CO2eq/kg | [58] |
Pesticide | 18 | kg CO2eq/kg | [58] |
Item | 1996 | 2002 | 2006 | 2012 | 2016 | |||||
---|---|---|---|---|---|---|---|---|---|---|
Wheat | Maize | Wheat | Maize | Wheat | Maize | Wheat | Maize | Wheat | Maize | |
Seed | 196 | 59 | 166 | 55 | 132 | 47 | 143 | 29 | 143 | 33 |
N | 2673 | 2381 | 2898 | 3069 | 2164 | 2429 | 1782 | 2111 | 1843 | 1925 |
P2O5 | 197 | 56 | 396 | 260 | 269 | 247 | 252 | 198 | 162 | 130 |
K2O | 33 | 30 | 29 | 48 | 75 | 128 | 46 | 53 | 69 | 70 |
Electricity | 1055 | 441 | 925 | 652 | 1093 | 729 | 899 | 568 | 894 | 549 |
Diesel | 425 | 438 | 457 | 678 | 524 | 910 | 556 | 947 | 583 | 1011 |
Pesticide | 21 | 28 | 28 | 40 | 33 | 49 | 108 | 103 | 22 | 32 |
Irrigation facility | 220 | 110 | 220 | 110 | 220 | 110 | 220 | 110 | 220 | 110 |
Machine | 851 | 875 | 914 | 1356 | 1049 | 1819 | 1112 | 1893 | 1165 | 2022 |
Soil emission | 691 | 1042 | 733 | 1292 | 596 | 1060 | 525 | 944 | 536 | 877 |
CH4 sequestration | −25 | −25 | −25 | −25 | −25 | −25 | −25 | −25 | −25 | −25 |
Soil sequestration | −734 | −734 | −734 | −734 | −734 | −734 | −734 | −734 | −734 | −734 |
Grain output (kg) | 6510 | 7630 | 6850 | 7840 | 7052 | 8086 | 7330 | 7520 | 7425 | 9767 |
ACF −Soil | 5671 | 4418 | 6034 | 6268 | 5559 | 6469 | 5117 | 6011 | 5100 | 5880 |
ACF +Soil | 5603 | 4701 | 6008 | 6801 | 5395 | 6769 | 4882 | 6196 | 4877 | 5998 |
PCF −Soil | 0.87 | 0.58 | 0.88 | 0.80 | 0.79 | 0.80 | 0.70 | 0.80 | 0.69 | 0.60 |
PCF +Soil | 0.86 | 0.62 | 0.88 | 0.87 | 0.77 | 0.84 | 0.67 | 0.82 | 0.66 | 0.61 |
1996 | 2002 | 2006 | 2012 | 2016 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Wheat | Maize | Wheat | Maize | Wheat | Maize | Wheat | Maize | Wheat | Maize | |
Ep (kg grain/CO2eq) | 1.16 | 1.62 | 1.14 | 1.15 | 1.31 | 1.19 | 1.50 | 1.21 | 1.51 | 1.63 |
Ec (kg CO2/CO2eq) | 4.63 | 6.78 | 4.55 | 4.82 | 5.21 | 4.99 | 5.99 | 5.07 | 6.07 | 6.80 |
Ee (Yuan/CO2eq) | 1.88 | 1.85 | 1.16 | 1.06 | 1.88 | 1.51 | 3.42 | 2.49 | 3.35 | 3.09 |
Study Area | System Boundary | PCF (kg CO2eq/kg) | ACF (kg CO2eq/ha) | Major Source of CF | References | ||
---|---|---|---|---|---|---|---|
Wheat | Maize | Wheat | Maize | ||||
China | Cradle to gate +SE +SQ | 0.66 | 0.62 | 4902 | 6022 | This study (year in 2016) | |
China | Cradle to gate +SQ | 0.67 | 0.62 | 3707 | 4436 | [4] | |
China | Cradle to gate +SE +SQ | 0.5 | 0.4 | 2800 | 2707 | FM (42–44%), N2O (32–37%) | [62] |
China | Cradle to gate +SE −SQ | 0.30–0.46 | 0.26–0.37 | FMU (~90%) | [33] | ||
China | Cradle to gate +SE −SQ | 0.51 | 0.44 | 2914 | 2866 | NM + N2O (78%) | [13] |
Eastern China | Cradle to gate −SQ | 0.66 | 0.33 | 3000 | 2300 | NMU (75–79%), DU (14–15%) | [35] |
China | Cradle to gate +SE +SQ | 0.45 | 0.32 | FM (65%), N2O (26%), DU (9%) | [62] | ||
North China | Cradle to gate +SQ (−SQ) | 0.23–0.24 (−SOC) −0.02–0.3 (+SOC) | 0.43 (−SOC); 0.13–0.37 (+SOC) | FMU (45–49%), EC (35–43%) | [38] | ||
China | Cradle to gate −SQ | 0.35–0.62 | 0.2–0.4 | 940–2980 | 900–2290 | FMU (68–76%), EC (17–23%) | [50] |
North China | Cradle to gate +SQ | 0.32 | 0.45 | NMU (49%), EC (45%) | [32] | ||
China | Cradle to gate −SQ | 0.27 | 0.23 | [48] | |||
America | Cradle to gate +SE −SQ | 0.28 | FM (24%), N2O (50%), DU (19%) | [21] | |||
UK | Cradle to gate −SE −SQ | 2807 | NMU (83%) | [26] | |||
Australia | Cradle to port +SE −SQ | 0.3 | FM (30%), N2O (9%), T (12%) | [17] | |||
Australia | Cradle to port +SE −SQ | 0.4 | N2O (60%) | [18] | |||
New Zealand | Cradle to gate −SE −SQ | 0.1 CO2 | 1032 CO2 | FM (52%), DU (20%) | [20] | ||
Sweden | Cradle to gate −SQ | 0.38 | [30] | ||||
EU and USA | Cradle to port −SQ | 0.58 | 0.67 | [30] | |||
UK | Cradle to gate −SQ | 0.8 | NMU (70%) | [28] | |||
Sweden | Cradle to gate +SE +SQ | 0.31 | FM (21%) and N2O (70%) | [23] | |||
France | Cradle to gate −SQ | 0.45, | 0.4 | [25] | |||
UK and Spain | 0.52 (UK), 0.58 (SP) | [24] | |||||
North Iran | Cradle to gate +SE −SQ | 0.33 | 0.17 | 1171 | 1441 | DU (25–46%), N2O (15–38%), EU (40%) | [19] |
Denmark | Cradle to gate +SE +SQ | 0.39 | FM (35%), N2O (47%), DU (19%) | [22] | |||
South Africa | Cropland emission −SQ | 0.11 | 0.14 | [27] | |||
Canady | Cradle to gate +SE −SQ | 0.38 | 0.33 | FMU (81%) | [63] | ||
Italy | Cradle to gate +SE −SQ | 0.45 | 0.45 | FMU (66–73%) | [64] | ||
Slovenia | Cradle to gate −SQ | 0.11–0.15 | 0.23–0.25 | FM (42–76%) | [65] | ||
Globe | 0.58 | 0.49 | 2165 | 2954 | [31] | ||
Globe | 0.52 | 0.47 | [29] |
Study Area | Cropping System | Product Efficiency (kg grain/kg CO2eq) | Ecological Efficiency (kg biomass/kg CO2eq) | Economic Efficiency (Yuan/kg CO2eq) | Reference |
---|---|---|---|---|---|
China | Wheat | 1.51 | 6.07 | 3.35 | This study (year in 2016) |
Maize | 1.63 | 6.80 | 3.09 | ||
China | Wheat | 2 | 8.94 | 3.52 | [41] |
Maize | 4.06 | 13.68 | 5.48 | ||
China | Wheat–Maize Rotation | 0.53 | 3.11 | 1.67 | [44] |
China | Wheat–Maize Rotation | 0.29 | 0.94 | 0.6 | [42] |
China | Crop product | 1.95–2.48 | [8] | ||
China | Wheat | 0.99 | 2.56 | [51] | |
Maize | 1.26 | 2.94 | |||
China | Wheat | 1.52 | [35] | ||
Maize | 3.03 | ||||
China | Wheat | 1.39–1.53 | 7.6–8.6 | [38] | |
Maize | 4.13–4.39 | 19.3–19.7 | |||
China | Wheat | 1.96–2.5 | [5] | ||
Maize | 2.7–3.1 | ||||
America | Wheat | 2.86–4 | [66] | ||
Maize | 4–8.3 | ||||
Canada | Wheat | 3.7–4 | [67] | ||
India | Wheat | 8.3 | [68] | ||
Slovenia | Wheat | 6.7–9.1 | [65] | ||
Maize | 4.3–4.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, L.; Ridoutt, B.G.; Wang, L. Food Security and Climate Stabilization: Can Cereal Production Systems Address Both? Sustainability 2021, 13, 1223. https://doi.org/10.3390/su13031223
Liang L, Ridoutt BG, Wang L. Food Security and Climate Stabilization: Can Cereal Production Systems Address Both? Sustainability. 2021; 13(3):1223. https://doi.org/10.3390/su13031223
Chicago/Turabian StyleLiang, Long, Bradley G. Ridoutt, and Liyuan Wang. 2021. "Food Security and Climate Stabilization: Can Cereal Production Systems Address Both?" Sustainability 13, no. 3: 1223. https://doi.org/10.3390/su13031223
APA StyleLiang, L., Ridoutt, B. G., & Wang, L. (2021). Food Security and Climate Stabilization: Can Cereal Production Systems Address Both? Sustainability, 13(3), 1223. https://doi.org/10.3390/su13031223