Urban Fabrics to Eco-Friendly Blue–Green for Urban Wetland Development
Abstract
:1. Introduction
2. Materials and Methods
2.1. Urban Wetlands
2.2. Urban Fabric
2.3. Exploratory Urban Variables
- (1)
- Urban fabric (UF): The surface area of the urban fabrics was calculated in each cell to determine the predominant one.
- (2)
- Distance to roads (DR): The main road and highway system of Concepcion was considered by calculating the distance (m) from each cell.
- (3)
- Population density (PD): The results of the 2017 CENSUS were used by block, calculating the density of inhabitants per km2 for each cell.
- (4)
- Dwelling density (DD): The number of homes per block from the 2017 CENSUS was considered by calculating the density of homes per km2 for each cell.
- (5)
- Street surface (SC): Considers the detail of the Concepcion road and highway system by calculating the surface area per cell.
- (6)
- Distance to coast (DC): Considers the coastal regional border and calculates the distance (m) from each cell to the closest coastline.
- (7)
- Distance to wetland (DW): The distance (m) of each cell was calculated by considering the coverage of the wetlands under analysis.
- (8)
- Green urban areas (GA): Considers the nine (9) types of green urban areas by calculating surface area (m2) by cell.
- (9)
- Building permits (BP): The number of Concepcion building permits was calculated between 2010 and 2018 for each cell.
2.4. Regression Model (OLS)
3. Results
3.1. Urban Fabrics
3.2. Urbanization Process
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chiabai, A.; Quiroga, S.; Martinez-Juarez, P.; Suárez, C.; García de Jalón, S.; Taylor, T. Exposure to green areas: Modelling health benefits in a context of study heterogeneity. Ecol. Econ. 2020, 167, 106401. [Google Scholar] [CrossRef]
- Hedblom, M.; Gunnarsson, B.; Iravani, B.; Knez, I.; Schaefer, M.; Thorsson, P.; Lundström, J.N. Reduction of physiological stress by urban green space in a multisensory virtual experiment. Sci. Rep. 2019, 9, 10113. [Google Scholar] [CrossRef] [Green Version]
- Tyrväinen, L.; Ojala, A.; Korpela, K.; Lanki, T.; Tsunetsugu, Y.; Kagawa, T. The influence of urban green environments on stress relief measures: A field experiment. J. Environ. Psychol. 2014, 38, 1–9. [Google Scholar] [CrossRef]
- Stigsdotter, U.A. Urban green spaces: Promoting health through city planning. In Proceedings of the Inspiring Global Environmental Standards and Ethical Practices, The National Association of Environmental Professionals, Alexandria, VA, USA, 16–19 April 2005. [Google Scholar]
- Moreno, C.; Wykes, T.; Galderisi, S.; Nordentoft, M.; Crossley, N.; Jones, N.; Cannon, M.; Correll, C.U.; Byrne, L.; Carr, S.; et al. How mental health care should change as a consequence of the COVID-19 pandemic. Lancet Psychiatry. 2020, 7, 813–824. [Google Scholar] [CrossRef]
- Ramírez-Ortiz, J.; Castro-Quintero, D.; Lerma-Córdoba, C.; Yela-Ceballos, F.; Escobar-Córdoba, F. Mental health consequences of the COVID-19 pandemic associated with social isolation. Colomb. J. Anesthesiol. 2020, 48. [Google Scholar] [CrossRef]
- Loftness, V.; Aziz, A.; Choi, J.; Kampschroer, K.; Powell, K.; Atkinson, M.; Heerwagen, J. The value of post-occupancy evaluation for building occupants and facility managers. Intell. Build. Int. 2009, 1, 249–268. [Google Scholar] [CrossRef]
- Gupta, K.; Roy, A.; Luthra, K.; Maithani, S. Mahavir GIS based analysis for assessing the accessibility at hierarchical levels of urban green spaces. Urban For. Urban Green. 2016, 18, 198–211. [Google Scholar] [CrossRef]
- Howard, E. To-Morrow: A Peaceful Path to Real Reform; Cambridge University Press: Cambridge, UK, 1989. [Google Scholar]
- Yuan, Z.; Zheng, X.; Lv, L.; Xue, C. From design to digital model: A quantitative analysis approach to Garden Cities theory. Ecol. Modell. 2014, 289, 26–35. [Google Scholar] [CrossRef]
- Li, J.; Wang, Q.; Xuan, Y.; Zhou, H. User demands analysis of Eco-city based on the Kano model—An application to China case study. PLoS ONE 2021, 16, e0248187. [Google Scholar] [CrossRef] [PubMed]
- Lin, Z. Ecological urbanism in East Asia: A comparative assessment of two eco-cities in Japan and China. Landsc. Urban Plan. 2018, 179, 90–102. [Google Scholar] [CrossRef]
- Muñiz, I.; Rojas, C. Urban form and spatial structure as determinants of per capita greenhouse gas emissions considering possible endogeneity and compensation behaviors. Environ. Impact Assess. Rev. 2019, 76, 79–87. [Google Scholar] [CrossRef]
- Gilles, E.; Ortiz, M.; Cadarso, M.-Á.; Monsalve, F.; Jiang, X. Opportunities for city carbon footprint reductions through imports source shifting: The case of Bogota. Resour. Conserv. Recycl. 2021, 172, 105684. [Google Scholar] [CrossRef]
- Gardner, R.C.; Barchiesi, S.; Beltrame, C.; Finlayson, C.M.; Galewski, T.; Harrison, I.; Paganini, M.; Perennou, C.; Pritchard, D.; Rosenqvist, A.; et al. State of the World’s Wetlands and Their Services to People: A Compilation of Recent Analyses. SSRN Electron. J. 2015. [Google Scholar] [CrossRef] [Green Version]
- Bouahim, S.; Rhazi, L.; Ernoul, L.; Mathevet, R.; Amami, B.; Er-Riyahi, S.; Muller, S.D.; Grillas, P. Combining vulnerability analysis and perceptions of ecosystem services in sensitive landscapes: A case from western Moroccan temporary wetlands. J. Nat. Conserv. 2015, 27, 1–9. [Google Scholar] [CrossRef]
- MEA (MIllennium Ecosystem Assessment). Ecosystems and Human Well-Being: Synthesis. In Ecosystems and Human Well-Being: Synthesis; Island Press: Washington, DC, USA, 2005. [Google Scholar]
- Darrah, S.E.; Shennan-Farpón, Y.; Loh, J.; Davidson, N.C.; Finlayson, C.M.; Gardner, R.C.; Walpole, M.J. Improvements to the Wetland Extent Trends (WET) index as a tool for monitoring natural and human-made wetlands. Ecol. Indic. 2019, 99, 294–298. [Google Scholar] [CrossRef]
- Martínez, C.; López, P.; Rojas, C.; Qüense, J.; Hidalgo, R.; Arenas, F. A sustainability index for anthropized and urbanized coasts: The case of Concón Bay, central Chile. Appl. Geogr. 2020, 116, 102166. [Google Scholar] [CrossRef]
- Rojas, C.; Munizaga, J.; Rojas, O.; Martínez, C.; Pino, J. Urban development versus wetland loss in a coastal Latin American city: Lessons for sustainable land use planning. Land Use Policy 2019, 80, 47–56. [Google Scholar] [CrossRef]
- Rojas, C. Urban wetland trends in three Latin American cities during the latest decades (2002–2020): Concón (Chile), Barranquilla (Colombia), and Lima (Perú). Wetl. Sci. Pract. 2020, 37, 283–293. [Google Scholar]
- Dabrowska-Zielinska, K.; Budzynska, M.; Tomaszewska, M.; Bartold, M.; Gatkowska, M.; Malek, I.; Turlej, K.; Napiorkowska, M. Monitoring Wetlands Ecosystems Using ALOS PALSAR (L-Band, HV) Supplemented by Optical Data: A Case Study of Biebrza Wetlands in Northeast Poland. Remote Sens. 2014, 6, 1605–1633. [Google Scholar] [CrossRef] [Green Version]
- Penatti, N.C.; de Almeida, T.I.R.; Ferreira, L.G.; Arantes, A.E.; Coe, M.T. Satellite-based hydrological dynamics of the world’s largest continuous wetland. Remote Sens. Environ. 2015, 170, 1–13. [Google Scholar] [CrossRef]
- Basu, T.; Das, A.; Pham, Q.B.; Al-Ansari, N.; Linh, N.T.T.; Lagerwall, G. Development of an integrated peri-urban wetland degradation assessment approach for the Chatra Wetland in eastern India. Sci. Rep. 2021, 11, 4470. [Google Scholar] [CrossRef]
- Novoa, V.; Rojas, O.; Ahumada-Rudolph, R.; Sáez, K.; Fierro, P.; Rojas, C. Coastal Wetlands: Ecosystems Affected by Urbanization? Water 2020, 12, 698. [Google Scholar] [CrossRef] [Green Version]
- Athukorala, D.; Estoque, R.C.; Murayama, Y.; Matsushita, B. Impacts of Urbanization on the Muthurajawela Marsh and Negombo Lagoon, Sri Lanka: Implications for Landscape Planning towards a Sustainable Urban Wetland Ecosystem. Remote Sens. 2021, 13, 316. [Google Scholar] [CrossRef]
- Jia, H.; Ma, H.; Wei, M. Urban wetland planning: A case study in the Beijing central region. Ecol. Complex. 2011, 8, 213–221. [Google Scholar] [CrossRef]
- Rigolon, A. A complex landscape of inequity in access to urban parks: A literature review. Landsc. Urban Plan. 2016, 153, 160–169. [Google Scholar] [CrossRef]
- Neuvonen, M.; Sievänen, T.; Tönnes, S.; Koskela, T. Access to green areas and the frequency of visits—A case study in Helsinki. Urban For. Urban Green. 2007, 6, 235–247. [Google Scholar] [CrossRef]
- Liu, T.; Cai, B.; Peng, W.; Xiao, L.; Shi, H.; Wu, X.; Gao, H.; Jia, X. Association of neighborhood greenness exposure with cardiovascular diseases and biomarkers. Int. J. Hyg. Environ. Health. 2021, 234, 113738. [Google Scholar] [CrossRef] [PubMed]
- Gascon, M.; Triguero-Mas, M.; Martínez, D.; Dadvand, P.; Rojas-Rueda, D.; Plasència, A.; Nieuwenhuijsen, M.J. Residential green spaces and mortality: A systematic review. Environ. Int. 2016, 86, 60–67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mijic, A.; Brown, K. Integrating Green and Blue Spaces into Our Cities: Making It Happen; Grantham Institute: London, UK, 2019; Volume 30. [Google Scholar]
- Helminen, V.; Tiitu, M.; Kosonen, L.; Ristimäki, M. Identifying the areas of walking, transit and automobile urban fabrics in Finnish intermediate cities. Transp. Res. Interdiscip. Perspect. 2020, 8, 100257. [Google Scholar] [CrossRef]
- Angel, S.; Arango Franco, S.; Liu, Y.; Blei, A.M. The shape compactness of urban footprints. Prog. Plan. 2020, 139, 100429. [Google Scholar] [CrossRef]
- Rojas, C.; Pino, J.; Basnou, C.; Vivanco, M. Assessing land-use and -cover changes in relation to geographic factors and urban planning in the metropolitan area of Concepción (Chile). Implications for biodiversity conservation. Appl. Geogr. 2013, 39, 93–103. [Google Scholar] [CrossRef]
- Pauchard, A.; Aguayo, M.; Peña, E.; Urrutia, R. Multiple effects of urbanization on the biodiversity of developing countries: The case of a fast-growing metropolitan area (Concepción, Chile). Biol. Conserv. 2006, 127, 272–281. [Google Scholar] [CrossRef]
- Rojas, C.; Sepúlveda-Zúñiga, E.; Barbosa, O.; Rojas, O.; Martínez, C. Patrones de urbanización en la biodiversidad de humedales urbanos en Concepción metropolitano. Rev. Geogr. Norte Gd. 2015, 181–204. [Google Scholar] [CrossRef] [Green Version]
- Toledo, C. Construyendo metrópolis en Chile: El caso ruta del agua como piloto de gestión del territorio metropolitano en el Gran Concepción. Territ. Y Reg. 2020, 2, 15–23. [Google Scholar]
- Puchol-Salort, P.; O’Keeffe, J.; van Reeuwijk, M.; Mijic, A. An urban planning sustainability framework: Systems approach to blue green urban design. Sustain. Cities Soc. 2021, 66, 102677. [Google Scholar] [CrossRef]
- Ministerio de Medio Ambiente. Programa Inventario Nacional de Humedales 2020. Available online: https://humedaleschile.mma.gob.cl/inventario-humadales/ (accessed on 8 January 2021).
- Villagra-Islas, P.; Alves, S. Open space and their attributes, uses and restorative qualities in an earthquake emergency scenario: The case of Concepción, Chile. Urban For. Urban Green. 2016, 19, 56–67. [Google Scholar] [CrossRef]
- IDEAM. Leyenda Nacional de Coberturas de la Tierra. In Metodología CORINE Land Cover Adaptada Para Colombia Escala 1:100.000; Instituto de Hidrología, Meteorología y Estudios Ambientales: Bogotá, Colombia, 2010; 72p. [Google Scholar]
- Rojas, C.; Díaz, S.; Munizaga, J. Urban fabric patterns on urban wetland. In Advances Studies in Efficient Environmental Design and City Planning. Advanced in Science, Technologhy & Innovation (IEREK Interdisciplinary Series for Sustainable Development); Trapani, F., Mohareb, N., Rosso, F., Kolokotsa, D., Maruthaveeran, S., Ghoneem, M., Eds.; Springer: Cham, Switzerland, 2021; pp. 477–485. [Google Scholar]
- Marois, D.E.; Mitsch, W.J. Coastal protection from tsunamis and cyclones provided by mangrove wetlands—A review. Int. J. Biodivers. Sci. Ecosyst. Serv. Manag. 2015, 11, 71–83. [Google Scholar] [CrossRef]
- Mitsch, W.J.; Bernal, B.; Hernandez, M.E. Ecosystem services of wetlands. Int. J. Biodivers. Sci. Ecosyst. Serv. Manag. 2015, 11. [Google Scholar] [CrossRef] [Green Version]
- Herrmann Lunecke, M.G. Planificación territorial y mitigación de impacto de tsunami en Chile después del 27 Febrero 2010. Rev. Urban. 2016, 34, 20–33. [Google Scholar] [CrossRef] [Green Version]
- Rojas, O.; Zamorano, M.; Saez, K.; Rojas, C.; Vega, C.; Arriagada, L.; Basnou, C. Social Perception of Ecosystem Services in a Coastal Wetland Post-Earthquake: A Case Study in Chile. Sustainability 2017, 9, 1983. [Google Scholar] [CrossRef] [Green Version]
- De Urresti, A. Humedales Urbanos Historia de una ley pionera y ciudadana de protección ambiental. In Senado de Chile; Vicepresidencia del Senado, Ediciones Centro de Extensión del Senado: Valparaíso, Chile, 2019. [Google Scholar]
- Valenzuela, C. Apostillas a la Ley 21.202, que modifica diversos cuerpos legales con el objetivo de proteger los humedales urbanos. Rev. Derecho Ambient. 2021, 15, 123–144. [Google Scholar] [CrossRef]
- Conflictos por el Agua en Chile: El Gran Capital Contra las Comunidades Locales. Análisis Comparativo de las Cuencas de los ríos Huasco (Desierto de Atacama) y Baker (Patagonia Austral)—Dialnet. Available online: https://dialnet.unirioja.es/servlet/articulo?codigo=3211523 (accessed on 23 March 2020).
- Fernández, T.; Courard, P. Parque Kaukari del río Copiapó. ARQ 2018, 70–85. [Google Scholar] [CrossRef] [Green Version]
- Contreras Gatica, Y.; Arriagada Sickinger, C. Reconstrucción exclusionaria. Lo comunitario y las políticas públicas en ciudades menores e intermedias chilenas afectadas por el terremoto y tsunami del 27F 2010: Los casos de Constitución y Dichato. Rev. Geogr. Norte Gd. 2016, 64, 83–107. [Google Scholar] [CrossRef]
- Cartes Siade, I. Dichato, desde la crisis a la reconstrucción. Un modelo de gestión de riesgo y resiliencia. Urbano 2013, 16, 33–40. [Google Scholar]
- Chang, H.; Makido, Y.; Foster, E. Effects of land use change, wetland fragmentation, and best management practices on total suspended solids concentrations in an urbanizing Oregon watershed, USA. J. Environ. Manag. 2021, 282, 111962. [Google Scholar] [CrossRef] [PubMed]
- Bunster, T.; Gironás, J.; Rojas, C.; Bonilla, C. Impacts of Urbanization and Land Use Change over Water Resources. In Water Resources of Chile; Fernández, B., Gironás, J., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 365–387. ISBN 978-3-030-56901-3. [Google Scholar]
- Jalkanen, J.; Fabritius, H.; Vierikko, K.; Moilanen, A.; Toivonen, T. Analyzing fair access to urban green areas using multimodal accessibility measures and spatial prioritization. Appl. Geogr. 2020, 124, 102320. [Google Scholar] [CrossRef]
- Rojas, C.; Páez, A.; Barbosa, O.; Carrasco, J. Accessibility to urban green spaces in Chilean cities using adaptive thresholds. J. Transp. Geogr. 2016, 57, 227–240. [Google Scholar] [CrossRef]
- Song, S.; Albert, C.; Prominski, M. Exploring integrated design guidelines for urban wetland parks in China. Urban For. Urban Green. 2020, 53, 126712. [Google Scholar] [CrossRef]
- Yang, J. The heterogeneous preferences for conservation and management in urban wetland parks: A case study from China. Urban For. Urban Green. 2021, 60, 127064. [Google Scholar] [CrossRef]
- Stefanakis, A. The Role of Constructed Wetlands as Green Infrastructure for Sustainable Urban Water Management. Sustainability 2019, 11, 6981. [Google Scholar] [CrossRef] [Green Version]
- Sonti, N.F.; Campbell, L.K.; Svendsen, E.S.; Johnson, M.L.; Novem Auyeung, D.S. Fear and fascination: Use and perceptions of New York City’s forests, wetlands, and landscaped park areas. Urban For. Urban Green. 2020, 49, 126601. [Google Scholar] [CrossRef]
- Du, H.; Cai, Y.; Zhou, F.; Jiang, H.; Jiang, W.; Xu, Y. Urban blue-green space planning based on thermal environment simulation: A case study of Shanghai, China. Ecol. Indic. 2019, 106, 105501. [Google Scholar] [CrossRef]
- Moreno, O. Infraestructura verde urbana. Estrategias de planificación y diseño del paisaje para la resiliencia y adaptabilidad socioecológica de ciudades regional en Chile. El caso de Llanquihue. In From the South. Global Perspectives on Landscape and Territory Edition; Ediciones Universidad del Desarrollo: Santiago de Chile, Chile, 2019. [Google Scholar]
- Enssle, F.; Kabisch, N. Urban green spaces for the social interaction, health and well-being of older people—An integrated view of urban ecosystem services and socio-environmental justice. Environ. Sci. Policy 2020, 109, 36–44. [Google Scholar] [CrossRef]
Category of Urban Fabric | Type of Urban Fabric | Definition | Example |
---|---|---|---|
Continuous Urban Fabric | (1) Medium-density residential fabric | Urban spaces with artificial surface area of 50% to 80%, with a low proportion of vegetation and bare soil. It is composed of single-family homes of up to two stories. | |
(2) Residential fabric in blocks 2.1: New 2.2: Old | Urban spaces with artificial surface area of 50% to 80%, with large collective housing high-rise buildings. Cat 1: Social housing in blocks. Cat 2: Modern buildings, five stories and up. | ||
Discontinuous Urban Fabric | (3) Low-density residential fabric 3.1: Residential complexes 3.2: Grouped suburban country plots | Spaces composed of constructions and green areas, with individual constructions of up to two floors plus a loft. Occupation between 50% and 80%. Cat 1: Urbanized areas with low density, medium-lower and lower-class homes. Cat 2: Good infrastructure, aimed at middle-upper and upper-class homes. | |
(4) Disperse residential fabric | Spaces composed of constructions and green areas, with isolated individual constructions of under two stories, with an occupation between 15% and 50%. These may be isolated suburban country plots or residential complexes with poor infrastructure in remote areas. | ||
Services and equipment | (5) Healthcare | Constructions and infrastructure intended for healthcare: doctors’ offices, hospitals, etc. | |
(6) Educational | Educational establishment infrastructure of all kinds. | ||
(7) Other urban uses 7.1: Church 7.2: Police 7.3: Fire Station 7.4: Other (city, etc.) | Composed of social centers, neighborhood associations, churches, fire station, police, tourist, and cultural areas, etc. | ||
(8) Commercial and industrial zones | Areas with artificial infrastructure with no presence or dominance of green areas; used for commerce and industries. | ||
Green areas and non-agricultural recreation areas | (9) Green urban areas | Areas covered in vegetation, located within urban areas, such as parks, squares, cemeteries. | |
(10) Sports areas | Areas intended for sports activities, amusement parks, and recreation and leisure activities; inside and outside the urban fabric. | ||
Agricultural and livestock zones | (11) Agricultural plantations | Areas intended for temporary or permanent plantations near urban areas. | |
(12) Forest plantations | Vegetation cover consisting of artificial plantations with human intervention. | ||
Natural areas | (13) Forest | Natural areas composed of a series of native tree species, with high, medium, and low density. | |
(14) Open areas with low vegetation | Area with low-density and low-height vegetation, such as herbs and/or bushes. | ||
(15) Open areas with bare ground | Spaces without vegetation cover, composed of bare soil, sandy areas, dunes, rocky outcrop, etc. | ||
(16) Coastal wetland areas | Areas of coastal zones with permanent or temporary presence of bodies of water, such as rivers, lakes, canals, wetlands, etc. |
Andalién | Paicaví-Vasco de Gama | Los Batros | Boca Maule | Colcura | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Urban Fabrics and Urban Land Uses | Ha | % | Ha | % | Ha | % | Ha | % | Ha | % |
Low-density residential fabric | 82 | 3.5 | 83 | 8.3 | 233 | 14 | 158.4 | 15.6 | 54 | 8.9 |
Medium-density residential fabric | 146 | 6.2 | 206 | 21 | 59 | 3.4 | 115.1 | 11.3 | 9 | 1.4 |
Disperse residential fabric | 5 | 0.2 | 10 | 1 | 55 | 3.2 | 10.7 | 1 | 0 | 0 |
Residential fabric in blocks | 2 | 0.1 | 63 | 6.4 | 22 | 1.3 | 4.7 | 0.5 | 0 | 0 |
Commercial and industrial zones | 140 | 6 | 335 | 34 | 59 | 3.4 | 64.8 | 6.4 | 31 | 5.2 |
Open areas with low vegetation | 803 | 34 | 96 | 9.6 | 272 | 16 | 131.9 | 13 | 37 | 6.1 |
Open areas with bare ground | 158 | 6.8 | 14 | 1.4 | 65 | 3.8 | 128.3 | 12.6 | 81 | 13.4 |
Sports areas | 11 | 0.5 | 29 | 2.9 | 11 | 0.6 | 18.2 | 1.8 | 2 | 0.3 |
Coastal wetlands | 748 | 32 | 12 | 1.2 | 343 | 20 | 247.5 | 24.4 | 133 | 22.1 |
Green urban areas | 13 | 0.5 | 37 | 3.8 | 39 | 2.3 | 14.4 | 1.4 | 0 | 0 |
Forest | 15 | 0.7 | 24 | 2.4 | 18 | 1 | 13.9 | 1.4 | 27 | 4.6 |
Agricultural plantations | 16 | 0.7 | 0 | 0 | 157 | 9.1 | 5.7 | 0.6 | 0 | 0 |
Educational | 12 | 0.5 | 65 | 6.5 | 16 | 0.9 | 10.1 | 1 | 1 | 0.2 |
Forest plantations | 184 | 7.9 | 0 | 0 | 365 | 21 | 89.8 | 8.9 | 227 | 37.7 |
Health | 1 | 0 | 4 | 0.4 | 0 | 0 | 0.7 | 0.1 | 0 | 0 |
Other urban uses | 1 | 0 | 18 | 1.8 | 7 | 0.4 | 1.4 | 0.1 | 0 |
Wetland | Rocuant-Andalién | |||||||
Dependent Variable | Medium-Density Residential Fabric | No. of Observations | 573 | |||||
Akaike’s Information Criterion (AICc) | 4281.46 | Adjusted R-Squared (d): | 0.574749 | |||||
Variable | Coefficient (a) | StdError | t-Statistic | Probability | Robust_SE | Robust_t | Robust_Pr | VIF |
Intercept | 1.479578 | 0.603576 | 2.451355 | 0.014520 * | 0.341604 | 4.331266 | 0.000021 * | −−−−−−−− |
UF (8) Commercial | −0.077781 | 0.030034 | −2.589762 | 0.009844 * | 0.023914 | −3.252481 | 0.001226 * | 1.024641 |
DW | −0.004292 | 0.001314 | −3.266029 | 0.001171 * | 0.001209 | −3.551688 | 0.000428 * | 1.098586 |
PD | 0.202241 | 0.017155 | 11.788753 | 0.000000 * | 0.065895 | 3.069135 | 0.002261 * | 2.239917 |
GA | 27.61484 | 3.163336 | 8.729656 | 0.000000 * | 8.769027 | 3.149134 | 0.001737 * | 1.298518 |
SC | 0.01919 | 0.004671 | 4.107877 | 0.000052 * | 0.01436 | 1.336309 | 0.181994 | 2.139414 |
Wetland | Vasco de Gama and Paicaví | |||||||
Dependent Variable | Medium-Density Residential Fabric | No. of Observations | 229 | |||||
Akaike’s Information Criterion (AICc) | 1924.43 | Adjusted R-Squared (d): | 0.437780 | |||||
Variable | Coefficient (a) | StdError | t-Statistic | Probability | Robust_SE | Robust_t | Robust_Pr | VIF |
Intercept | 0.58516 | 2.185359 | 0.267764 | 0.789133 | 1.801237 | 0.324866 | 0.745597 | −−−−−−−− |
DR | 0.010105 | 0.002935 | 3.442485 | 0.000700 * | 0.002734 | 3.69566 | 0.000286 * | 1.165158 |
DW | −0.01438 | 0.003374 | −4.261519 | 0.000034 * | 0.003209 | −4.480949 | 0.000014 * | 1.105671 |
PD | 0.036331 | 0.019897 | 1.825942 | 0.069199 | 0.021786 | 1.667633 | 0.096802 | 1.382216 |
GA | −1.423271 | 1.440658 | −0.987931 | 0.324247 | 0.782351 | −1.819223 | 0.070222 | 1.022536 |
SC | 0.062238 | 0.006427 | 9.683684 | 0.000000 * | 0.008261 | 7.533562 | 0.000000 * | 1.332181 |
Wetland | Los Batros | |||||||
Dependent Variable | Low-Density Residential Fabric | No. of Observations | 357 | |||||
Akaike’s Information Criterion (AICc) | 2829.48 | Adjusted R-Squared (d): | 0.692092 | |||||
Variable | Coefficient (a) | StdError | t-Statistic | Probability | Robust_SE | Robust_t | Robust_Pr | VIF |
Intercept | −4.416449 | 2.492263 | −1.772064 | 0.077262 | 2.204961 | −2.00296 | 0.045948 * | −−−−−−−− |
Land use Agricultural | −0.094866 | 0.036419 | −2.604849 | 0.009578 * | 0.02459 | −3.857895 | 0.000145 * | 1.113709 |
DR | 0.003053 | 0.000932 | 3.276515 | 0.001170 * | 0.00084 | 3.633749 | 0.000333 * | 1.310147 |
DW | −0.010435 | 0.002133 | −4.891931 | 0.000002 * | 0.002213 | −4.714317 | 0.000005 * | 1.142465 |
DC | 0.001445 | 0.000697 | 2.072198 | 0.038971 * | 0.000742 | 1.945934 | 0.052461 | 1.060735 |
BP | 1.306881 | 0.291555 | 4.48245 | 0.000012 * | 0.450045 | 2.903889 | 0.003925 * | 1.263293 |
PD | 0.041848 | 0.017654 | 2.37042 | 0.018298 * | 0.023473 | 1.782853 | 0.075484 | 1.512545 |
SC | 0.098315 | 0.005166 | 19.030168 | 0.000000 * | 0.008312 | 11.828637 | 0.000000 * | 1.736653 |
Wetland | Boca Maule | |||||||
Dependent variable | Medium-Density Residential Fabric | No. of Observations | 199 | |||||
Akaike’s Information Criterion (AICc) | 1595.38 | Adjusted R-Squared (d): | 0.619829 | |||||
Variable | Coefficient (a) | StdError | t-Statistic | Probability | Robust_SE | Robust_t | Robust_Pr | VIF |
Intercept | −12.333295 | 6.249969 | −1.973337 | 0.049888 * | 3.99988 | −3.083416 | 0.002356 * | −−−−−−−− |
DR | 0.00265 | 0.001708 | 1.55107 | 0.122543 | 0.001047 | 2.531566 | 0.012149 * | 2.858122 |
DC | 0.004346 | 0.002406 | 1.806327 | 0.072437 | 0.002291 | 1.896477 | 0.059398 | 3.539482 |
BP | 0.166251 | 0.087164 | 1.907328 | 0.05797 | 0.048656 | 3.416839 | 0.000784 * | 1.197356 |
DD | 0.537628 | 0.087482 | 6.145548 | 0.000000 * | 0.12766 | 4.211402 | 0.000043 * | 2.224324 |
GA | 21.521305 | 3.578551 | 6.013972 | 0.000000 * | 5.00599 | 4.299111 | 0.000031 * | 1.417597 |
SC | 0.019234 | 0.00684 | 2.811806 | 0.005439 * | 0.010076 | 1.908937 | 0.057761 | 1.91318 |
Wetland | Colcura | |||||||
Dependent Variable | Low-Density Residential Fabric | No. of Observations | 120 | |||||
Akaike’s Information Criterion (AICc) | 898.590344 | Adjusted R-Squared (d): | 0.625410 | |||||
Variable | Coefficient (a) | StdError | t-Statistic | Probability | Robust_SE | Robust_t | Robust_Pr | VIF |
Intercept | −1.478911 | 1.59619 | −0.926526 | 0.356105 | 1.327025 | −1.114455 | 0.267404 | −−−−−−−− |
DR | 0.002968 | 0.002847 | 1.042518 | 0.299352 | 0.002089 | 1.420563 | 0.158157 | 1.138438 |
PD | 0.321759 | 0.03921 | 8.206065 | 0.000012 * | 0.071776 | 4.482846 | 0.000020 * | 1.352942 |
GA | 4.846815 | 5.635868 | 0.859994 | 0.391573 | 7.171373 | 0.675856 | 0.500487 | 1.032187 |
SC | 0.048614 | 0.008622 | 5.638533 | 0.000112 * | 0.015297 | 3.178003 | 0.001911 * | 1.520436 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rojas Quezada, C.; Jorquera, F. Urban Fabrics to Eco-Friendly Blue–Green for Urban Wetland Development. Sustainability 2021, 13, 13745. https://doi.org/10.3390/su132413745
Rojas Quezada C, Jorquera F. Urban Fabrics to Eco-Friendly Blue–Green for Urban Wetland Development. Sustainability. 2021; 13(24):13745. https://doi.org/10.3390/su132413745
Chicago/Turabian StyleRojas Quezada, Carolina, and Felipe Jorquera. 2021. "Urban Fabrics to Eco-Friendly Blue–Green for Urban Wetland Development" Sustainability 13, no. 24: 13745. https://doi.org/10.3390/su132413745
APA StyleRojas Quezada, C., & Jorquera, F. (2021). Urban Fabrics to Eco-Friendly Blue–Green for Urban Wetland Development. Sustainability, 13(24), 13745. https://doi.org/10.3390/su132413745