Phytoremediation of Cadmium Contaminated Soil Using Sesbania sesban L. in Association with Bacillus anthracis PM21: A Biochemical Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Antibiotic Resistance of Bacillus Anthracis PM21
2.2. Inoculum Preparation and Seed Treatment
2.3. Greenhouse Experiment
2.4. Growth and Photosynthetic Pigments of Sesbania sesban L.
2.5. Electrolyte Leakage (ELL) and Relative Water Content (RWC)
2.6. Estimation of Proline Content, Malondialdehyde (MDA), and Antioxidant Enzyme Activity
2.7. Metal Analysis of Plants by Wet Acid Digestion
2.8. Bioconcentration Factor (BCF) and Translocation Factor (TF)
2.9. Fourier Transform Infrared Spectroscopy (FT-IR) Analysis
2.10. Scanning Electron Microscopy (SEM)
2.11. Amplification of Heavy Metal Resistance CzcD Gene
2.12. Re-Isolation of Inoculated Strain
2.13. Statistical Analysis
3. Results
3.1. Antibiotic Resistance of Bacillus Anthracis PM21
3.2. Growth and Photosynthetic Pigments of Sesbania sesban L.
3.3. Relative Water Content, Electrolyte Leakage, MDA, and Proline
3.4. Antioxidant Activity
3.5. Tolerance Index, Translocation Factor (TF), and Bioconcentration Factor (BCF)
3.6. Determination of Different Functional Groups through Fourier Transform Infrared Spectroscopy (FT-IR)
3.7. Scanning Electron Microscope (SEM)
3.8. Amplification of Heavy Metal Resistance CzcD Gene
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gavrilescu, M.; Demnerová, K.; Aamand, J.; Agathos, S.; Fava, F. Emerging pollutants in the environment: Present and future challenges in biomonitoring, ecological risks and bioremediation. New Biotechnol. 2015, 32, 147–156. [Google Scholar] [CrossRef] [PubMed]
- Nawab, J.; Khan, S.; Ali, S.; Sher, H.; Rahman, Z.; Khan, K.; Tang, J.; Ahmad, A. Health risk assessment of heavy metals and bacterial contamination in drinking water sources: A case study of Malakand Agency, Pakistan. Environ. Monit. Assess. 2016, 188, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Nagajyoti, P.C.; Lee, K.D.; Sreekanth, T.V.M. Heavy metals, occurrence and toxicity for plants: A review. Environ. Chem. Lett. 2010, 8, 199–216. [Google Scholar] [CrossRef]
- Al Naggar, Y.; Khalil, M.S.; Ghorab, M.A. Environmental pollution by heavy metals in the aquatic ecosystems of Egypt. Open Access J. Toxicol. 2018, 3, 555603. [Google Scholar]
- Yadav, K.K.; Gupta, N.; Kumar, V.; Singh, J.K. Bioremediation of heavy metals from contaminated sites using potential species: A review. Indian J. Environ. Prot. 2017, 37, 65. [Google Scholar]
- Chauhan, P.; Mathur, J. Phytoremediation efficiency of Helianthus annuus L. for reclamation of heavy metals-contaminated industrial soil. Environ. Sci. Pollut. Res. 2020, 27, 29954–29966. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Kang, Y.; Pan, W.; Zeng, L.; Zhang, Q.; Luo, J. Concentration and transportation of heavy metals in vegetables and risk assessment of human exposure to bioaccessible heavy metals in soil near a waste-incinerator site, South China. Sci. Total. Environ. 2015, 521, 144–151. [Google Scholar] [CrossRef]
- Moitra, S.; Blanc, P.D.; Sahu, S. Adverse respiratory effects associated with cadmium exposure in small-scale jewellery workshops in India. Thorax 2013, 68, 565–570. [Google Scholar] [CrossRef] [Green Version]
- Joint FAO/WHO Expert Committee on Food Additives Seventy-Third Meeting; World Health Organization: Geneva, Switzerland, 2010.
- Yang, Q.; Lan, C.; Wang, H.; Zhuang, P.; Shu, W. Cadmium in soil–rice system and health risk associated with the use of untreated mining wastewater for irrigation in Lechang, China. Agric. Water Manag. 2006, 84, 147–152. [Google Scholar] [CrossRef]
- Yang, J.; Liu, D.; He, Y.; Wang, L. Mitochondrial energy metabolism in the hepatopancreas of freshwater crabs (Sinopotamon henanense) after cadmium exposure. Environ. Sci. Process. Impacts 2015, 17, 156–165. [Google Scholar] [CrossRef]
- Zhuang, P.; McBride, M.B.; Xia, H.; Li, N.; Li, Z. Health risk from heavy metals via consumption of food crops in the vicinity of Dabaoshan mine, South China. Sci. Total. Environ. 2009, 407, 1551–1561. [Google Scholar] [CrossRef] [PubMed]
- Waseem, A.; Arshad, J.; Iqbal, F.; Sajjad, A.; Mehmood, Z.; Murtaza, G. Pollution Status of Pakistan: A Retrospective Review on Heavy Metal Contamination of Water, Soil, and Vegetables. BioMed Res. Int. 2014, 2014, 1–29. [Google Scholar] [CrossRef] [PubMed]
- Sarwar, N.; Imran, M.; Shaheen, M.R.; Ishaque, W.; Kamran, M.A.; Matloob, A.; Rehim, A.; Hussain, S. Phytoremediation strategies for soils contaminated with heavy metals: Modifications and future perspectives. Chemosphere 2017, 171, 710–721. [Google Scholar] [CrossRef]
- Ahmad, A.A.; Muhammad, I.; Shah, T.; Kalwar, Q.; Zhang, J.; Liang, Z.; Mei, D.; Juanshan, Z.; Yan, P.; Zhi, D. Remediation methods of crude oil contaminated soil. World J. Agric. Soil Sci. 2020, 4, 8. [Google Scholar]
- Mahar, A.; Wang, P.; Ali, A.; Awasthi, M.K.; Lahori, A.H.; Wang, Q.; Li, R.; Zhang, Z. Challenges and opportunities in the phytoremediation of heavy metals contaminated soils: A review. Ecotoxicol. Environ. Saf. 2016, 126, 111–121. [Google Scholar] [CrossRef] [PubMed]
- Rizwan, M.; Ali, S.; Qayyum, M.F.; Ok, Y.S.; Zia-Ur-Rehman, M.; Abbas, Z.; Hannan, F. Use of Maize (Zea mays L.) for phytomanagement of Cd-contaminated soils: A critical review. Environ. Geochem. Health 2017, 39, 259–277. [Google Scholar] [CrossRef] [PubMed]
- Kushwaha, A.; Hans, N.; Kumar, S.; Rani, R. A critical review on speciation, mobilization and toxicity of lead in soil-microbe-plant system and bioremediation strategies. Ecotoxicol. Environ. Saf. 2018, 147, 1035–1045. [Google Scholar] [CrossRef] [PubMed]
- Bali, S.; Jamwal, V.L.; Kohli, S.K.; Kaur, P.; Tejpal, R.; Bhalla, V.; Ohri, P.; Gandhi, S.G.; Bhardwaj, R.; Al-Huqail, A.A.; et al. Jasmonic acid application triggers detoxification of lead (Pb) toxicity in tomato through the modifications of secondary metabolites and gene expression. Chemosphere 2019, 235, 734–748. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Liu, Y.; Li, Z.; Wang, Z.; Li, C.; Wei, H. Significance of soil microbe in microbial-assisted phytoremediation: An effective way to enhance phytoremediation of contaminated soil. Int. J. Environ. Sci. Technol. 2020, 17, 2477–2484. [Google Scholar] [CrossRef]
- Fakhar, A.; Gul, B.; Gurmani, A.R.; Khan, S.M.; Ali, S.; Sultan, T.; Chaudhary, H.J.; Rafique, M.; Rizwan, M. Heavy metal remediation and resistance mechanism of Aeromonas, Bacillus, and Pseudomonas: A review. Crit. Rev. Environ. Sci. Technol. 2020, 15, 1–48. [Google Scholar] [CrossRef]
- Mehmood, S.; Khatoon, Z.; Amna; Ahmad, I.; Muneer, M.A.; Kamran, M.A.; Ali, J.; Ali, B.; Chaudhary, H.J.; Munis, M.F.H. Bacillus sp. PM31 harboring various plant growth-promoting activities regulates Fusarium dry rot and wilt tolerance in potato. Arch. Agron. Soil Sci. 2021, 29, 1–15. [Google Scholar] [CrossRef]
- Mehmood, S.; Muneer, M.A.; Tahir, M.; Javed, M.T.; Mahmood, T.; Afridi, M.S.; Pakar, N.P.; Abbasi, H.A.; Munis, M.F.H.; Chaudhary, H.J. Deciphering distinct biological control and growth promoting potential of multi-stress tolerant Bacillus subtilis PM32 for potato stem canker. Physiol. Mol. Biol. Plants 2021, 27, 2101–2114. [Google Scholar] [CrossRef]
- Girolkar, S.; Thawale, P.; Juwarkar, A. Bacteria-assisted phytoremediation of heavy metals and organic pollutants: Challenges and future prospects. In Bioremediation for Environmental Sustainability; Elsevier: Amsterdam, The Netherlands, 2021; pp. 247–267. [Google Scholar]
- Sharma, S.; Chandra, D.; Sharma, A.K. Rhizosphere Plant–Microbe Interactions under Abiotic Stress. In Rhizosphere Biology: Interactions Between Microbes and Plants; Springer: Singapore, 2021; pp. 195–216. [Google Scholar]
- Sharma, P.; Singh, S.P.; Pandey, S.; Thanki, A.; Singh, N.K. Role of potential native weeds and grasses for phytoremediation of endocrine-disrupting pollutants discharged from pulp paper industry waste. In Bioremediation of Pollutants; Elsevier: Amsterdam, The Netherlands, 2020; pp. 17–37. [Google Scholar]
- Adrees, M.; Ali, S.; Rizwan, M.; Zia-Ur-Rehman, M.; Ibrahim, M.; Abbas, F.; Farid, M.; Qayyum, M.F.; Irshad, M.K. Mechanisms of silicon-mediated alleviation of heavy metal toxicity in plants: A review. Ecotoxicol. Environ. Saf. 2015, 119, 186–197. [Google Scholar] [CrossRef] [PubMed]
- Liang, C.-C.; Li, T.; Xiao, Y.-P.; Liu, M.-J.; Zhang, H.-B.; Zhao, Z.-W. Effects of inoculation with arbuscular mycorrhizal fungi on maize grown in multi-metal contaminated soils. Int. J. Phytoremediation 2009, 11, 692–703. [Google Scholar] [CrossRef]
- Ali, J.; Ali, F.; Ahmad, I.; Rafique, M.; Munis, M.F.H.; Hassan, S.W.; Sultan, T.; Iftikhar, M.; Chaudhary, H.J. Mechanistic elucidation of germination potential and growth of Sesbania sesban seedlings with Bacillus anthracis PM21 under heavy metals stress: An in vitro study. Ecotoxicol. Environ. Saf. 2021, 208, 111769. [Google Scholar] [CrossRef]
- Gomase, P.V. Sesbania sesban L.: A review on its ethnobotany, phytochemical and pharmacological profile. Asian J. Biomed. Pharm. Sci. 2012, 2, 11. [Google Scholar]
- Zainab, N.; Khan, A.A.; Azeem, M.A.; Ali, B.; Wang, T.; Shi, F.; Alghanem, S.M.; Hussain Munis, M.F.; Hashem, M.; Alamri, S. PGPR-Mediated Plant Growth Attributes and Metal Extraction Ability of Sesbania sesban L. in Industrially Contaminated Soils. Agronomy 2021, 11, 1820. [Google Scholar] [CrossRef]
- Chan, G.Y.S.; Ye, Z.H.; Wong, M.H. Comparison of Four Sesbania Species to Remediate Pb/Zn and Cu Mine Tailings. Environ. Manag. 2003, 32, 246–251. [Google Scholar] [CrossRef] [PubMed]
- Chi, Y.; Huang, Y.; Wang, J.; Chen, X.; Chu, S.; Hayat, K.; Xu, Z.; Xu, H.; Zhou, P.; Zhang, D. Two plant growth promoting bacterial Bacillus strains possess different mechanisms in adsorption and resistance to cadmium. Sci. Total. Environ. 2020, 741, 140422. [Google Scholar] [CrossRef]
- Guffanti, A.A.; Wei, Y.; Rood, S.V.; Krulwich, T.A. An antiport mechanism for a member of the cation diffusion facilitator family: Divalent cations efflux in exchange for K+ and H+. Mol. Microbiol. 2002, 45, 145–153. [Google Scholar] [CrossRef]
- Fang, Z.; Dos Santos, P.C. Protective role of bacillithiol in superoxide stress and Fe–S metabolism in Bacillus subtilis. Microbiologyopen 2015, 4, 616–631. [Google Scholar] [CrossRef] [PubMed]
- Amna; Din, B.U.; Sarfraz, S.; Xia, Y.; Kamran, M.A.; Javed, M.T.; Sultan, T.; Munis, M.F.H.; Chaudhary, H.J. Mechanistic elucidation of germination potential and growth of wheat inoculated with exopolysaccharide and ACC- deaminase producing Bacillus strains under induced salinity stress. Ecotoxicol. Environ. Saf. 2019, 183, 109466. [Google Scholar]
- Ali, J.; Mahmood, T.; Hayat, K.; Afridi, M.S.; Ali, F.; Chaudhary, H.J. Phytoextraction of Cr by maize (Zea mays L.): The role of plant growth promoting endophyte and citric acid under polluted soil. Arch. Environ. Prot. 2018, 44, 73–82. [Google Scholar]
- Pérez-Patricio, M.; Camas-Anzueto, J.L.; Sanchez-Alegría, A.; Aguilar-González, A.; Gutiérrez-Miceli, F.A.; Escobar-Gómez, E.; Voisin, Y.; Rios-Rojas, C.; Grajales-Coutiño, R. Optical Method for Estimating the Chlorophyll Contents in Plant Leaves. Sensors 2018, 18, 650. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmad, I.; Akhtar, M.J.; Asghar, H.N.; Ghafoor, U.; Shahid, M. Differential Effects of Plant Growth-Promoting Rhizobacteria on Maize Growth and Cadmium Uptake. J. Plant Growth Regul. 2016, 35, 303–315. [Google Scholar] [CrossRef]
- Hayat, K.; Menhas, S.; Bundschuh, J.; Zhou, P.; Niazi, N.K.; Amna; Hussain, A.; Hayat, S.; Ali, H.; Wang, J.; et al. Plant growth promotion and enhanced uptake of Cd by combinatorial application of Bacillus pumilus and EDTA on Zea mays L. Int. J. Phytoremediation 2020, 22, 1372–1384. [Google Scholar] [CrossRef]
- Afridi, M.S.; Mahmood, T.; Salam, A.; Mukhtar, T.; Mehmood, S.; Ali, J.; Khatoon, Z.; Bibi, M.; Javed, M.T.; Sultan, T. Induction of tolerance to salinity in wheat genotypes by plant growth promoting endophytes: Involvement of ACC deaminase and antioxidant enzymes. Plant Physiol. Biochem. 2019, 139, 569–577. [Google Scholar] [CrossRef] [PubMed]
- Khalilzadeh, R.; Pirzad, A.; Sepehr, E.; Khan, S.; Anwar, S. Long-Term Effect of Heavy Metal–Polluted Wastewater Irrigation on Physiological and Ecological Parameters of Salicornia europaea L. J. Soil Sci. Plant Nutr. 2020, 20, 1–14. [Google Scholar] [CrossRef]
- Wan, Y.; Luo, S.; Chen, J.; Xiao, X.; Chen, L.; Zeng, G.; Liu, C.; He, Y. Effect of endophyte-infection on growth parameters and Cd-induced phytotoxicity of Cd-hyperaccumulator Solanum nigrum L. Chemosphere 2012, 89, 743–750. [Google Scholar] [CrossRef] [PubMed]
- Embrandiri, A.; Rupani, P.F.; Shahadat, M.; Singh, R.P.; Ismail, S.A.; Ibrahim, M.H.; Kadir, M.O.A. The phytoextraction potential of selected vegetable plants from soil amended with oil palm decanter cake. Int. J. Recycl. Org. Waste Agric. 2017, 6, 37–45. [Google Scholar] [CrossRef] [Green Version]
- Kamnev, A.; Ristić, M.; Antonyuk, L.; Chernyshev, A.; Ignatov, V. Fourier transform infrared spectroscopic study of intact cells of the nitrogen-fixing bacterium Azospirillum brasilense. J. Mol. Struct. 1997, 408, 201–205. [Google Scholar] [CrossRef]
- François, F.; Lombard, C.; Guigner, J.-M.; Soreau, P.; Brian-Jaisson, F.; Martino, G.; Vandervennet, M.; Garcia, D.; Molinier, A.-L.; Pignol, D.; et al. Isolation and Characterization of Environmental Bacteria Capable of Extracellular Biosorption of Mercury. Appl. Environ. Microbiol. 2012, 78, 1097–1106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bharagava, R.N.; Mishra, S. Hexavalent chromium reduction potential of Cellulosimicrobium sp. isolated from common effluent treatment plant of tannery industries. Ecotoxicol. Environ. Saf. 2018, 147, 102–109. [Google Scholar] [CrossRef]
- Ayangbenro, A.S.; Babalola, O.O.; Aremu, O.S. Bioflocculant production and heavy metal sorption by metal resistant bacterial isolates from gold mining soil. Chemosphere 2019, 231, 113–120. [Google Scholar] [CrossRef] [PubMed]
- Nies, D.H.; Nies, A.; Chu, L.; Silver, S. Expression and nucleotide sequence of a plasmid-determined divalent cation efflux system from Alcaligenes eutrophus. Proc. Natl. Acad. Sci. USA 1989, 86, 7351–7355. [Google Scholar] [CrossRef] [Green Version]
- Vijay, K.; Devi, T.S.; Sree, K.K.; Elgorban, A.M.; Kumar, P.; Govarthanan, M.; Kavitha, T. In vitro screening and in silico prediction of antifungal metabolites from rhizobacterium Achromobacter kerstersii JKP9. Arch. Microbiol. 2020, 202, 2855–2864. [Google Scholar] [CrossRef]
- Wang, M.; Riffel, M. Making the right conclusions based on wrong results and small sample sizes: Interpretation of statistical tests in ecotoxicology. Ecotoxicol. Environ. Saf. 2011, 74, 684–692. [Google Scholar] [CrossRef] [PubMed]
- Abhilash, P.C.; Tripathi, V.; Edrisi, S.A.; Dubey, R.K.; Bakshi, M.; Dubey, P.K.; Singh, H.B.; Ebbs, S.D. Sustainability of crop production from polluted lands. Energy Ecol. Environ. 2016, 1, 54–65. [Google Scholar] [CrossRef] [Green Version]
- Rajkumar, M.; Sandhya, S.; Prasad, M.; Freitas, H. Perspectives of plant-associated microbes in heavy metal phytoremediation. Biotechnol. Adv. 2012, 30, 1562–1574. [Google Scholar] [CrossRef] [PubMed]
- Rafique, M.; Ortas, I.; Rizwan, M.; Sultan, T.; Chaudhary, H.J.; Işik, M.; Aydin, O. Effects of Rhizophagus clarus and biochar on growth, photosynthesis, nutrients, and cadmium (Cd) concentration of maize (Zea mays) grown in Cd-spiked soil. Environ. Sci. Pollut. Res. 2019, 26, 20689–20700. [Google Scholar] [CrossRef] [PubMed]
- Beneduzi, A.; Ambrosini, A.; Passaglia, L.M. Plant growth-promoting rhizobacteria (PGPR): Their potential as antagonists and biocontrol agents. Genet. Mol. Biol. 2012, 35, 1044–1051. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramakrishna, W.; Yadav, R.; Li, K. Plant growth promoting bacteria in agriculture: Two sides of a coin. Appl. Soil Ecol. 2019, 138, 10–18. [Google Scholar] [CrossRef]
- El-Esawi, M.A.; Al-Ghamdi, A.A.; Ali, H.M.; Alayafi, A.A. Azospirillum lipoferum FK1 confers improved salt tolerance in chickpea (Cicer arietinum L.) by modulating osmolytes, antioxidant machinery and stress-related genes expression. Environ. Exp. Bot. 2019, 159, 55–65. [Google Scholar] [CrossRef]
- Faizan, S.; Kausar, S.; Perveen, R. Variation in growth, physiology and yield of four chickpea cultivars exposed to cadmium chloride. J. Environ. Biol. 2012, 33, 1137. [Google Scholar] [PubMed]
- Khator, K.; Saxena, I.; Shekhawat, G.S. Nitric oxide induced Cd tolerance and phytoremediation potential of B. juncea by the modulation of antioxidant defense system and ROS detoxification. BioMetals 2021, 34, 15–32. [Google Scholar] [CrossRef] [PubMed]
- El-Esawi, M.A.; Elkelish, A.; Soliman, M.; Elansary, H.O.; Zaid, A.; Wani, S.H. Serratia marcescens BM1 Enhances Cadmium Stress Tolerance and Phytoremediation Potential of Soybean through Modulation of Osmolytes, Leaf Gas Exchange, Antioxidant Machinery, and Stress-Responsive Genes Expression. Antioxidants 2020, 9, 43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, A.R.; Waqas, M.; Ullah, I.; Khan, A.L.; Khan, M.A.; Lee, I.-J.; Shin, J.-H. Culturable endophytic fungal diversity in the cadmium hyperaccumulator Solanum nigrum L. and their role in enhancing phytoremediation. Environ. Exp. Bot. 2017, 135, 126–135. [Google Scholar] [CrossRef]
- Abbas, S.; Javed, M.T.; Shahid, M.; Hussain, I.; Haider, M.Z.; Chaudhary, H.J.; Tanwir, K.; Maqsood, A. Acinetobacter sp. SG-5 inoculation alleviates cadmium toxicity in differentially Cd tolerant maize cultivars as deciphered by improved physio-biochemical attributes, antioxidants and nutrient physiology. Plant Physiol. Biochem. 2020, 155, 815–827. [Google Scholar] [CrossRef] [PubMed]
- Rizwan, M.; Ali, S.; Abbas, T.; Adrees, M.; Zia-Ur-Rehman, M.; Ibrahim, M.; Abbas, F.; Qayyum, M.F.; Nawaz, R. Residual effects of biochar on growth, photosynthesis and cadmium uptake in rice (Oryza sativa L.) under Cd stress with different water conditions. J. Environ. Manag. 2018, 206, 676–683. [Google Scholar] [CrossRef]
- Ehsan, S.; Ali, S.; Noureen, S.; Mahmood, K.; Farid, M.; Ishaque, W.; Shakoor, M.B.; Rizwan, M. Citric acid assisted phytoremediation of cadmium by Brassica napus L. Ecotoxicol. Environ. Saf. 2014, 106, 164–172. [Google Scholar] [CrossRef]
- Khanna, K.; Jamwal, V.L.; Gandhi, S.G.; Ohri, P.; Bhardwaj, R. Metal resistant PGPR lowered Cd uptake and expression of metal transporter genes with improved growth and photosynthetic pigments in Lycopersicon esculentum under metal toxicity. Sci. Rep. 2019, 9, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maqbool, S.; Amna, A.; Mehmood, S.; Suhaib, M.; Sultan, T.; Munis, M.F.H. Interaction of acc deaminase and antioxidant enzymes to induce drought tolerance in enterobacter cloacae 2wc2 inoculated maize genotypes. Pak. J. Bot. 2021, 53, 3. [Google Scholar] [CrossRef]
- Zainab, N.; Din, B.U.; Javed, M.T.; Afridi, M.S.; Mukhtar, T.; Kamran, M.A.; Khan, A.A.; Ali, J.; Jatoi, W.N.; Munis, M.F.H. Deciphering metal toxicity responses of flax (Linum usitatissimum L.) with exopolysaccharide and ACC-deaminase producing bacteria in industrially contaminated soils. Plant Physiol. Biochem. 2020, 152, 90–99. [Google Scholar] [CrossRef]
- Ekmekçi, Y.; Tanyolaç, D.; Ayhan, B. A crop tolerating oxidative stress induced by excess lead: Maize. Acta Physiol. Plant. 2009, 31, 319–330. [Google Scholar] [CrossRef]
- Tanwir, K.; Javed, M.T.; Abbas, S.; Shahid, M.; Akram, M.S.; Chaudhary, H.J.; Iqbal, M. Serratia sp. CP-13 alleviates Cd toxicity by morpho-physio-biochemical improvements, antioxidative potential and diminished Cd uptake in Zea mays L. cultivars differing in Cd tolerance. Ecotoxicol. Environ. Saf. 2021, 208, 111584. [Google Scholar] [CrossRef]
- Wu, F.; An, Y.-Q.; An, Y.; Wang, X.-J.; Cheng, Z.-Y.; Zhang, Y.; Hou, X.; Chen, C.-X.; Wang, L.; Bai, J.-G. Acinetobacter calcoaceticus CSY-P13 mitigates stress of ferulic and p-hydroxybenzoic acids in cucumber by affecting antioxidant enzyme activity and soil bacterial community. Front. Microbiol. 2018, 9, 1262. [Google Scholar] [CrossRef] [PubMed]
- Bhatt, P.; Verma, A.; Verma, S.; Anwar, M.; Prasher, P.; Mudila, H.; Chen, S. Understanding phytomicrobiome: A potential reservoir for better crop management. Sustainability 2020, 12, 5446. [Google Scholar] [CrossRef]
- Varun, M.; Ogunkunle, C.O.; D’Souza, R.; Favas, P.; Paul, M. Identification of Sesbania sesban (L.) Merr. as an Efficient and Well Adapted Phytoremediation Tool for Cd Polluted Soils. Bull. Environ. Contam. Toxicol. 2017, 98, 867–873. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Prasad, M.; Rajkumar, M.; Freitas, H. Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils. Biotechnol. Adv. 2011, 29, 248–258. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.R.; Park, G.-S.; Asaf, S.; Hong, S.-J.; Jung, B.K.; Shin, J.-H. Complete genome analysis of Serratia marcescens RSC-14: A plant growth-promoting bacterium that alleviates cadmium stress in host plants. PLoS ONE 2017, 12, e0171534. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, S.; Chao, L.; Sun, L.; Sun, T. Effects of Bacteria on Cadmium Bioaccumulation in the Cadmium Hyperaccumulator Plant Beta Vulgaris Var. Cicla L. Int. J. Phytoremediation 2013, 15, 477–487. [Google Scholar] [CrossRef] [PubMed]
- Khan, W.U.; Yasin, N.A.; Ahmad, S.R.; Ali, A.; Ahmad, A.; Akram, W.; Faisal, M. Role of Burkholderia cepacia CS8 in Cd-stress alleviation and phytoremediation by Catharanthus roseus. Int. J. Phytoremediation 2018, 20, 581–592. [Google Scholar] [CrossRef]
- Hussain, A.; Kamran, M.A.; Javed, M.T.; Hayat, K.; Farooq, M.A.; Ali, N.; Ali, M.; Manghwar, H.; Jan, F.; Chaudhary, H.J. Individual and combinatorial application of Kocuria rhizophila and citric acid on phytoextraction of multi-metal contaminated soils by Glycine max L. Environ. Exp. Bot. 2019, 159, 23–33. [Google Scholar] [CrossRef]
- Ma, J.; Ibekwe, A.M.; Yang, C.-H.; Crowley, D. Bacterial diversity and composition in major fresh produce growing soils affected by physiochemical properties and geographic locations. Sci. Total. Environ. 2016, 563, 199–209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Albert, H.A.; Li, X.; Jeyakumar, P.; Wei, L.; Huang, L.; Huang, Q.; Kamran, M.; Shaheen, S.M.; Hou, D.; Rinklebe, J.; et al. Influence of biochar and soil properties on soil and plant tissue concentrations of Cd and Pb: A meta-analysis. Sci. Total. Environ. 2021, 755, 142582. [Google Scholar] [CrossRef]
- Doshi, H.; Ray, A.; Kothari, I.L. Biosorption of Cadmium by Live and Dead Spirulina: IR Spectroscopic, Kinetics, and SEM Studies. Curr. Microbiol. 2007, 54, 213–218. [Google Scholar] [CrossRef]
- Yoon, K.; Cho, D.-W.; Tsang, D.; Bolan, N.; Rinklebe, J.; Song, H. Fabrication of engineered biochar from paper mill sludge and its application into removal of arsenic and cadmium in acidic water. Bioresour. Technol. 2017, 246, 69–75. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Z.; Jiang, L.; Zhang, L.; Su, M.; Tian, D.; Wang, T.; Sun, Y.; Nong, Y.; Hu, S.; Wang, S.; et al. Contrasting the Pb (II) and Cd (II) tolerance of Enterobacter sp. via its cellular stress responses. Environ. Microbiol. 2020, 22, 1507–1516. [Google Scholar] [CrossRef]
- Yuan, W.; Cheng, J.; Huang, H.; Xiong, S.; Gao, J.; Zhang, J.; Feng, S. Optimization of cadmium biosorption by Shewanella putrefaciens using a Box-Behnken design. Ecotoxicol. Environ. Saf. 2019, 175, 138–147. [Google Scholar] [CrossRef]
- Legatzki, A.; Grass, G.; Anton, A.; Rensing, C.; Nies, D.H. Interplay of the Czc System and Two P-Type ATPases in Conferring Metal Resistance to Ralstonia metallidurans. J. Bacteriol. 2003, 185, 4354–4361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Soil Properties | Value | References |
---|---|---|
Soil texture | Loamy | |
Clay (%) | 15 | |
Silt (%) | 42.5 | |
Sand (%) | 42.5 | |
pH | 7.06 | |
Electrical conductivity (dS/m) | 2.28 | [40] |
Organic matter (%) | 0.7 | |
Phosphorus (mg/kg) | 156 | |
Potassium (mg/kg) | 3.27 | |
Nitrate-nitrogen (mg/kg) | 0.02 | |
Extractable Cd (mg/kg) | 0.4 |
Root Length | Shoot Length | Fresh Weight | Dry Weight | Chlorophyll a | Chlorophyll b | Total Chlorophyll | |
---|---|---|---|---|---|---|---|
Treatments | (cm) | (cm) | (g) | (g) | (mg/g) | (mg/g) | (mg/g) |
T0 | 25.67 ± 0.33 b | 63.01 ± 0.10 b | 20.02 ± 0.01 ab | 7.73 ± 0.08 b | 1.28 ± 0.03 e | 0.43 ± 0.03 c | 12.10 ± 0.05 b |
T1 | 30.33 ± 0.33 a | 66.50 ± 0.73 a | 25.06 ± 0.02 a | 9.55 ± 0.01 a | 2.75 ± 0.08 a | 0.65 ± 0.03 a | 15.16 ± 0.03 a |
T2 | 15.16 ± 0.29 d | 46.5 ± 0.17 d | 13.04 ± 0.01 c | 3.04 ± 0.08 e | 1.47 ± 0.03 d | 0.35 ± 0.05 d | 9.35 ± 0.01 d |
T3 | 24.2 ± 0.12 c | 64.67 ± 0.36 c | 20.03 ± 3.33 bc | 6.51 ± 0.01 c | 2.55 ± 0.01 b | 0.52 ± 0.01 b | 10.50 ± 0.05 c |
T4 | 13.43 ± 0.05 e | 42.03 ± 0.29 f | 11.02 ± 0.08 c | 2.90 ± 0.08 ef | 0.93 ± 0.01 f | 0.16 ± 0.08 f | 6.81 ± 0.01 f |
T5 | 22.01 ± 0.11 d | 62.43 ± 0.06 e | 19.50 ± 0.08 b | 5.9 ± 0.26 cd | 2.33 ± 0.01 c | 0.31 ± 0.01 e | 8.27 ± 0.01 e |
Cadmium Uptake | |||||
---|---|---|---|---|---|
Treatments | Root (cm) | Shoot (cm) | TI | TF | BCF |
T0 | 0.1 ± 0.01e | 0.01 ± 0.01e | - | 0.05 ± 0.01d | 0.02 ± 0.02e |
T1 | 0.2 ± 0.05e | 0.05 ± 0.05e | - | 0.1 ± 0.01d | 0.12 ±0.01d |
T2 | 46.5 ± 0.11d | 31.9 ± 0.11d | 72.36 ± 0.02c | 0.68 ± 0.01b | 0.32 ±0.01c |
T3 | 53.1 ± 0.02c | 42.3 ± 0.12c | 100.05 ± 0.01a | 0.79 ± 0.02a | 0.42 ±0.02b |
T4 | 105.1 ± 0.03b | 59.9 ± 0.30b | 61.15 ± 0.01d | 0.56 ± 0.01c | 0.34 ±0.01c |
T5 | 118.6 ± 0.11a | 73.4 ± 0.05a | 97.11 ± 0.02b | 0.61 ± 0.01c | 0.36 ± 0.01a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ali, J.; Wang, X.; Rafique, M.; Ahmad, I.; Fiaz, S.; Munis, M.F.H.; Chaudhary, H.J. Phytoremediation of Cadmium Contaminated Soil Using Sesbania sesban L. in Association with Bacillus anthracis PM21: A Biochemical Analysis. Sustainability 2021, 13, 13529. https://doi.org/10.3390/su132413529
Ali J, Wang X, Rafique M, Ahmad I, Fiaz S, Munis MFH, Chaudhary HJ. Phytoremediation of Cadmium Contaminated Soil Using Sesbania sesban L. in Association with Bacillus anthracis PM21: A Biochemical Analysis. Sustainability. 2021; 13(24):13529. https://doi.org/10.3390/su132413529
Chicago/Turabian StyleAli, Javed, Xiukang Wang, Mazhar Rafique, Iftikhar Ahmad, Sajid Fiaz, Muhammad Farooq Hussain Munis, and Hassan Javed Chaudhary. 2021. "Phytoremediation of Cadmium Contaminated Soil Using Sesbania sesban L. in Association with Bacillus anthracis PM21: A Biochemical Analysis" Sustainability 13, no. 24: 13529. https://doi.org/10.3390/su132413529
APA StyleAli, J., Wang, X., Rafique, M., Ahmad, I., Fiaz, S., Munis, M. F. H., & Chaudhary, H. J. (2021). Phytoremediation of Cadmium Contaminated Soil Using Sesbania sesban L. in Association with Bacillus anthracis PM21: A Biochemical Analysis. Sustainability, 13(24), 13529. https://doi.org/10.3390/su132413529