The Valorization of Biolignin from Esparto Grass (Stipa tenacissima L.) Produced by Green Process CIMV (Compagnie Industrielle de la Matière Végétale) for Fertilization of Algerian Degraded Soil: Impact on the Physicochemical and Biological Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Biolignin Extraction and Analysis
2.2. Experimental Design for Soil Fertilization
2.3. Physicochemical Analysis of Soil Samples and Biolignin
2.4. Soil Sample Biological Analysis
2.4.1. Enumeration of Bacteria and Fungi
2.4.2. Laccase Activity Extraction
2.4.3. Laccase Activity Measurement
2.5. Humification Degree of the Soil
2.6. Statistical Analysis
3. Results
3.1. Physical Factors
3.1.1. Temperature
3.1.2. Soil Moisture
3.2. Chemical Factors
3.2.1. Soil Carbon
3.2.2. Soil Nitrogen
3.2.3. C/N Ratio
3.2.4. Soil pH
3.3. Biological Factors
3.3.1. Microbial Biomass
3.3.2. Laccase Enzymatic Activity
3.3.3. Humification Degree of the Soil
3.4. Relationship between the Parameters of Degraded Soil Amendement
3.5. Relationship between Physical, Chemical, and Biological Factors in Soil Amendement
4. Discussion
4.1. Humification Degree of the Soil
4.2. Monitoring the Dynamics of Lignin Amendment and the Correlation between Parameters of Degraded Soil Fertilization
4.2.1. The Impact of Physical and Chemical Factors on Soil Amendment
4.2.2. The Impact of Biological and Chemical Factors on Soil Amendment
4.3. The Correlation between Physical, Chemical, and Biological Factors on Soil Amendment
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abdelkefi, F.; Ammar, H.; Mlayeh, B.; Abid, S.; El Gharbi, R. Caracterisation De La Lignine Extraite De L’Alfa. J. Soc. Chim. Tunis. 2011, 13, 7–15. [Google Scholar]
- Xiao, C.; Bolton, R.; Pan, W.L. Lignin from Rice Straw Kraft Pulping: Effects on Soil Aggregation and Chemical Properties. Bioresour. Technol. 2007, 98, 1482–1488. [Google Scholar] [CrossRef] [PubMed]
- Nadji, H.D.; Rodrigue, A.; Benaboura, Y.; Bedard, T.; Stevanovic, B.R. Value-Added Derivatives of Soda Lignin Alfa Grass (Stipa tenacissima) II Uses as Lubricants in Plastic Processing H. J. Appl. Polym. Sci. 2009, 114, 3003–3007. [Google Scholar] [CrossRef]
- Nadji, H.; Diouf, P.N.; Benaboura, A.; Bedard, Y.; Riedl, B.; Stevanovic, T. Comparative Study of Lignins Isolated from Alfa Grass (Stipa tenacissima L. Bioresour. Technol. 2009, 100, 3585–3592. [Google Scholar] [CrossRef] [PubMed]
- Ammar, H.; Abdelkafi, F.; Abid, S.; Benjelloum-Mlayah, B.; El Gharbi, R.; Delmas, M. Production, Bleaching, and Characterization of Pulp from Stipa tenacissima. Chem. Nat. Compd. 2012, 48, 99–102. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, S.; Shan, X.Q.; Mu, H. Influences of Lignin from Paper Mill Sludge on Soil Properties and Metal Accumulation in Wheat. Biol. Fertil. Soils 2004, 40, 237–242. [Google Scholar] [CrossRef]
- O’Brien, T.A.; Herbert, S.J.; Barker, A.V. Growth of corn in varying mixtures of paper mill sludge and soil. Commun. Soil Sci. Plant Anal. 2007, 33, 635–646. [Google Scholar] [CrossRef]
- Xiao, C.; Ma, L.Q.; Sarigumba, T. Effects of Soil on Trace Metal Leachability from Papermill Ashes and Sludge. J. Environ. Qual. 1999, 28, 321–333. [Google Scholar] [CrossRef] [Green Version]
- Chirenje, T.; Ma, L.Q. Impact of high-volume wood-fired boiler ash amendment on soil properties and nutrients. Commun. Soil Sci. Plant Anal. 2006, 33, 1–17. [Google Scholar] [CrossRef]
- Kannan, K.; Oblisami, G. Effect of pulp and paper mill effluent irrigation on carbon dioxide evolution in soils. J. Agron. Crop Sci. 1990, 164, 116–119. [Google Scholar] [CrossRef]
- Kannan, K.; Oblisami, G. Influence of paper mill effluent irrigation on soil enzyme activities. Biol. Des Sols Biochim. 1990, 22, 923–926. [Google Scholar] [CrossRef]
- Xiao, C.; Fauci, M.; Bezdicek, D.F.; Pan, W.L. Soil microbial responses to potassium-based black liquor. Soil Sci. Soc. Am. 2006, 70, 72–77. [Google Scholar] [CrossRef] [Green Version]
- Delmas, G.H.; Benjelloun-Mlayah, B.; Le, B.Y.; Delmas, M. Functionality of Wheat Straw Lignin Extracted in Organic Acid Media. J. Appl. Polym. Sci. 2011, 121, 491–501. [Google Scholar] [CrossRef]
- Gul, S.; Yanni, S.F.; Whalen, J.K. Lignin Controls on Soil Ecosystem Services: Implications for Biotechnological Advances in Biofuel Crops. In Lignin: Structural Analysis, Applications in Biomaterials and Ecological Significance; Lu, F., Ed.; Nova Science Publishers, Inc.: Hauppauge, NY, USA, 2014; pp. 375–416. [Google Scholar]
- Benlboukht, F.; El Fels, L.; Bouamri, R.; Amir, S.; Hafidi, M. Assessment of Fulvic Acid-like Fractions during Tannery Waste Composting. Compos. Sci. Util. 2016, 24, 208–218. [Google Scholar] [CrossRef]
- Thevenot, M.; Dignac, M.F.; Rumpel, C. Fate of Lignins in Soils: A Review. Soil Biol. Biochem. 2010, 42, 1200–1211. [Google Scholar] [CrossRef]
- Francou, C. Stabilisation de la Matière Organique au Cours du Compostage de Déchets Urbains: Influence de la Nature des Déchets et du Procédé de Compostage—Recherche D’indicateurs Pertinents. Ph.D. Thesis, Université de AgroParisTech, Paris, France, 2003. [Google Scholar]
- Albrecht, R. Co-Compostage de Boues de Station D’épuration et de Déchets Verts: Nouvelle Méthodologie du Suivi des Transformations de la Matière Organique. Ph.D. Thesis, Université Paul Cezanne Aix-Marseille III, Marseille, France, 2007. [Google Scholar]
- Abdelkafi, F.; Ammar, H.; Rousseau, B.; Tessier, M.; El Gharbi, R.; Fradet, A. Structural Analysis of Alfa Grass (Stipa tenacissima L.) Lignin Obtained by Acetic Acid/Formic Acid Delignification. Biomacromolecules 2011, 12, 3895–3902. [Google Scholar] [CrossRef]
- AFNOR. Qualité des Sols, Méthodes de Prélèvement D’échantillon de Terre; Norme Française Homologuée, NF U44-051, Booklet; AFNOR: Paris, France, 2006; 12p. [Google Scholar]
- Chabalier, P.; Van de Kerchove, V.; Saint Macary, H. Guide de la Fertilisation Organique à la Réunion; Chambre D’Agriculture de la Réunion, CIRAD: Paris, France, 2006; pp. 106–115. [Google Scholar]
- Bouiri, B.; Amrani, M. Production of Dissolving Grade Pulp from Alfa. BioResources 2010, 5, 291–302. [Google Scholar] [CrossRef]
- Hattalli, S.; Benaboura, A.; Ham-Pichavant, F.; Nourmamode, A.; Castellan, A. Adding Value to Alfa Grass (Stipa tenacissima L.) Soda Lignin as Phenolic Resins 1 Lignin Characterization. Polym. Degrad. Stab. 2002, 76, 259–264. [Google Scholar] [CrossRef]
- Houyou, Z.; Bielders, C.L.; Benhorma, H.A.; Dellal, A.; Boutemdjet, A. Evidence of Strong Land Degradation by Wind Erosion as a Result of Rainfed Cropping in the Algerian Steppe: A Case Study at Laghouat. Land Degrad. Dev. 2014, 27, 1788–1796. [Google Scholar] [CrossRef]
- Fernández-Bayo, J.D.; Achmon, Y.; Harrold, D.R.; McCurry, D.G.; Hernandez, K.; Dahlquist-Willard, R.M.; Stapleton, J.J.; VanderGheynst, J.S.; Simmons, C.W. Assessment of Two Solid Anaerobic Digestate Soil Amendments for Effects on Soil Quality and Biosolarization Efficacy. J. Agric. Food Chem. 2017, 65, 3434–3442. [Google Scholar] [CrossRef]
- Soil Survey Staff, S.S. Keys to Soil Taxonomy, 12th ed.; USDA-Natural Resources Conservation Service: Washington, DC, USA, 2014.
- Mathieu, C.; Pieltain, F. Analyse Physique des Sols Méthodes Choisies; TEC & DOC Lavoisier: Paris, France, 1998; 274p. [Google Scholar]
- Mathieu, C.; Pieltain, F. Analyse Chimique des Sols Méthodes Choisies; TEC & DOC Lavoisier: Paris, France, 2003; 388p. [Google Scholar]
- Bremner, J.M.; Mulvaney, C.S. Nitrogen—Total. Methods Soil Anal. Part 2. Chem. Microbiol. Prop. Am Soc Agron 1982, 9, 595–624. [Google Scholar]
- Klement, Z.; Rudolph, K.; Sands, D.C. Methods in Phytobacteriology Akademiai; Kiado: Budapest, Hungary, 1990. [Google Scholar]
- Albrecht, R.; Périssol, C.; Ruaudel, F.; Le, P.J.; Terrom, G. Functional Changes in Culturable Microbial Communities during a Co-Composting Process: Carbon Source Utilization and Co-Metabolism. Waste Manag. 2010, 30, 764–770. [Google Scholar] [CrossRef] [PubMed]
- Joffin, J.; Leyaral, G. Microbiologie Technique—Tome 1; Centre Régional de Documentation Pédagogique d’Aquitaine: Bordeaux, France, 2006. [Google Scholar]
- Fujii, K.; Uemura, M.; Hayakawa, C.; Funakawa, S.; Kosaki, T. Environmental Control of Lignin Peroxidase, Manganese Peroxidase, and Laccase Activities in Forest Floor Layers in Humid Asia. Soil Biol. Biochem. 2013, 57, 109–115. [Google Scholar] [CrossRef]
- Eichlerová, I.; Šnajdr, J.; Baldrian, P. Laccase Activity in Soils: Considerations for the Measurement of Enzyme Activity. Chemosphere 2012, 88, 1154–1160. [Google Scholar] [CrossRef]
- Gouzi, H.; Flurkey, W.H.; Abdelhafid, B. Partial Purification and Characterization of Polyphenol Oxidase Extracted from Agaricus Bisporus. Int. J. Chem. React. Eng. 2007, 5, 1–13. [Google Scholar] [CrossRef]
- Zbytniewski, R.; Buszewski, B. Characterization of Natural Organic Matter (NOM) Derived from Sewage Sludge Compost. Part 1: Chemical and Spectroscopic Properties. Bioresour. Technol. 2005, 96, 471–478. [Google Scholar] [CrossRef]
- Oktaba, L.; Odrobińska, D.; Uzarowicz, Ł. The Impact of Different Land Uses in Urban Area on Humus Quality. J. Soils Sediments 2018, 18, 2823–2832. [Google Scholar] [CrossRef] [Green Version]
- Reddy, S.; Nagaraja, M.S.; Raj, T.P.; Patil, A.P.; Dumgond, P. Elemental Analysis, E4/E6 Ratio and Total Acidity of Soil Humic and Fulvic Acids from Different Land Use Systems. Ann. Plant Soil Res. 2014, 16, 89–92. [Google Scholar]
- Kunlanit, B.; Butnan, S.; Vityakon, P. Land-Use Changes Influencing C Sequestration and Quality in Topsoil and Subsoil. Agronomy 2019, 9, 520. [Google Scholar] [CrossRef] [Green Version]
- Morán Vieyra, F.E.; Palazzi, V.I.; Sanchez de Pinto, M.I.; Borsarelli, C.D. Combined UV-Vis absorbance and fluorescence properties of extracted humic substances-like for characterization of composting evolution of domestic solid wastes. Geoderma 2009, 151, 61–67. [Google Scholar] [CrossRef]
- Fieberg, J.R.; Vitense, K.; Johnson, D.H. Resampling-Based Methods for Biologists. PeerJ 2020, 8, e9089. [Google Scholar] [CrossRef]
- Albrecht, R.; Joffre, R.; Gros, R.; Le Petit, J.; Terrom, G.; Périssol, C. Efficiency of Near-Infrared Reflectance Spectroscopy to Assess and Predict the Stage of Transformation of Organic Matter in the Composting Process. Bioresour. Technol. 2008, 99, 448–455. [Google Scholar] [CrossRef]
- Tuomela, M.; Vikman, M.; Hatakka, A.; Itävaara, M. Biodegradation of Lignin in a Compost Environment: A Review. Bioresour. Technol. 2000, 72, 169–183. [Google Scholar] [CrossRef]
- Barje, F.; El Fels, L.; El Hajjouji, H.; Winterton, P.; Hafidi, M. Biodegradation of Organic Compounds during Co-Composting of Olive Oil Mill Waste and Municipal Solid Waste with Added Rock Phosphate. Environ. Technol. 2013, 34, 2965–2975. [Google Scholar] [CrossRef]
- Bazrafshan, E.; Zarei, A.; Kord Mostafapour, F.; Poormollae, N.; Mahmoodi, S.; Zazouli, M.A. Maturity and Stability Evaluation of Composted Municipal Solid Wastes. Health Scope 2016, 5, e33202. [Google Scholar] [CrossRef] [Green Version]
- Jamshid, B.; Nader, S. Utilization of Waste Lignin to Prepare Controlled-Slow Release Urea. Int. J. Recycl. Org Waste Agric. 2016, 5, 289–299. [Google Scholar] [CrossRef]
- Meng, Q.F.; Luo, X.G.; Lin, X.Y.; Zhang, S.Z.; Li, K. Effect of Lignin and RLDPE Soil Amendments on Water Holding Capacities of Desert. Mater. Sci. Forum 2015, 804, 55–58. [Google Scholar] [CrossRef]
- Delmas, G.H.; Benjelloun-Mlayah, B.; Le, B.Y.; Delmas, M. Biolignin TM Based Epoxy Resins. J. Appl. Polym. Sci. 2013, 127, 1863–1872. [Google Scholar] [CrossRef]
- Scheu, S. Decomposition of Lignin in Soil Microcompartments: A Methodical Study with Three Different C-14-Labelled Lignin Substrates. Biol. Fertil. Soils 1992, 13, 160–164. [Google Scholar] [CrossRef]
- Brookes, P. The Soil Microbial Biomass: Concept, Measurement and Applications in Soil Ecosystem Research. Microbes Environ. 2001, 16, 131–140. [Google Scholar] [CrossRef] [Green Version]
- Guggenberger, G. Humification and Mineralization in Soils. In Microorganisms in Soils: Roles in Genesis and Functions. Soil Biology; Varma, A., Buscot, F., Eds.; Springer: Berlin/Heidelberg, Germany, 2005. [Google Scholar] [CrossRef]
- Stewart, C.E.; Moturi, P.; Follett, R.F.; Halvorson, A.D. Lignin Biochemistry and Soil N Determine Crop Residue Decomposition and Soil Priming. Biogeochemistry 2015, 124, 335–351. [Google Scholar] [CrossRef] [Green Version]
- Zhigang, L.; Schneiderc, R.L.; Morreale, S.J.; Yingzhong, X.; Changxiao, L.; Jian, L. Woody Organic Amendments for Retaining Soil Water, Improving Soil Properties and Enhancing Plant Growth in Desertified Soils of Ningxia, China. Geoderma 2018, 310, 143–152. [Google Scholar] [CrossRef]
- Mustin, M. Le Compost, Gestion de la Matière Organique; Ed.François Dubusc: Paris, France, 1987. [Google Scholar]
- Lıvia, B.F.P.; Idowu, A.A.; Oluwatoyin, A.O.; Aurélio, V.B.; Maria Olímpia, O.R. Chemical Study of Vermicomposted Agroindustrial Wastes. Int. J. Recycl. Org Waste Agric. 2016, 5, 55–63. [Google Scholar] [CrossRef] [Green Version]
- Veeresh, H.; Tripathy, S.; Chaudhuri, D.; Ghosh, B.; Hart, B.; Powell, M. Changes in Physical and Chemical Properties of Three Soil Types in India as a Result of Amendment with Fly Ash and Sewage Sludge. Envionmental Geolgy 2002, 43, 513–520. [Google Scholar] [CrossRef]
- Vergnoux, A.; Guiliano, M.; Le Dréau, Y.; Kister, J.; Dupuy, N.; Doumenq, P. Monitoring of the Evolution of an Industrial Compost and Prediction of Some Compost Properties by NIR Spectroscopy. Sci. Total Environ. 2009, 407, 2390–2403. [Google Scholar] [CrossRef]
- Coral Medina, J.D.; Woiciechowski, A.L.; Zandona Filho, A.; Bissoqui, L.; Noseda, M.D.; De Souza Vandenberghe, L.P.; Zawadzki, S.F.; Soccol, C.R. Biological activities and thermal behavior of lignin from oil palm empty fruit bunches as potential source of chemicals of added value. Ind. Crops Prod. 2016, 94, 630–637. [Google Scholar] [CrossRef]
- Bahri, H.; Rasse, D.P.; Rumpel, C.; Dignac, M.F.; Bardoux, G.; Mariotti, A. Lignin Degradation during a Laboratory Incubation Followed by 13C Isotope Analysis. Soil Biol. Biochem. 2008, 40, 1916–1922. [Google Scholar] [CrossRef]
- Luo, Q.; Wang, Z.; Feng, M.; Chiang, D.; Woodward, D.; Liang, S.; Lu, J.; Huang, Q. Factors Controlling the Rate of Perfluorooctanoic Acid Degradation in Laccase-Mediator Systems: The Impact of Metal Ions. Environ. Pollut. 2017, 224, 649–657. [Google Scholar] [CrossRef] [Green Version]
- Sinsabaugh, R.L. Phenol Oxidase, Peroxidase and Organic Matter Dynamics of Soil. Soil Biol. Biochem. 2010, 42, 391–404. [Google Scholar] [CrossRef]
- Gonzalo, G.; Colpa, D.I.; Habib, M.H.M.; Fraaije, M.W. Bacterial Enzymes Involved in Lignin Degradation. J. Biotechnol. 2016, 236, 110–119. [Google Scholar] [CrossRef] [Green Version]
- Pascual, J.; Hernandez, A.T.; Garcia, C.; Ayuso, M. Enzymatic Activities in an Arid Soil. Bioresour. Technol. 1998, 64, 131–138. [Google Scholar] [CrossRef]
- Ademakinwa, A.N.; Agboola, F.K. Biochemical Characterization and Kinetic Studies on a Purified Yellow Laccase from Newly Isolated Aureobasidium Pullulans NAC8 Obtained from Soil Containing Decayed Plant Matter. J. Genet. Eng. Biotechnol. 2016, 14, 143–151. [Google Scholar] [CrossRef]
- Widsten, P.; Kandelbauer, A. Laccase Applications in the Forest Products Industry: A Review. Enzym. Microb. Technol. 2008, 42, 293–307. [Google Scholar] [CrossRef]
- Zinkernagel, V. Unterchungen zur Anfälligkeit und resistenz von Kopfsalat (Lactuca sativa) gegen falschen Mehltan Bremia lactucae III Peroxidase, peroxidatische Katalase und polyphenoloxydase Aktivitäten. J. Phytopathol. 1986, 115, 257–266. [Google Scholar] [CrossRef]
- Cunha, T.J.F.; Novotny, E.H.; Madari, B.E.; Martin-Neto, L.; Rezende, M.O.; Canelas, L.P.; de M. Benites, V. Spectroscopy Characterization of Humic Acids Isolated from Amazonian Dark Earth Soils (Terra Preta de Índio.). In Amazonian Dark Earths: Wim Sombroek’s Vision; Springer: Dordrecht, The Netherlands, 2009; pp. 363–372. [Google Scholar] [CrossRef] [Green Version]
- Haddad, G.; El-ali, F.; Mouneimne, A.H. Humic Matter of Compost: Determination of Humic Spectroscopic Ratio (E4/E6). Curr. Sci. Int. 2015, 4, 56–72. [Google Scholar]
- Putra, M.J.N.F.I.A.; Soemarno, S.; Suntari, R. Humification degree and its relationship with some soil physical characteristics on robusta coffee (Coffea canephora) plantation. J. Degrad. Min. Lands Manag. 2016, 3, 649–658. [Google Scholar] [CrossRef]
- Eyheraguibel, B. Caractérisation des Substances Humiques Biomimétiques—Effets sur les Végétaux. Ph.D. Thesis, Ecole doctorale: Sciences des Procédés, Sciences des Agroressources. Institut National Polytechnique de Toulouse, Toulouse, France, 2004; p. 230. [Google Scholar]
- Tahiri, A.; Destain, J.; Druart, P.; Thonart, P. Propriétés physico-chimiques et biologiques des substances humiques en relation avec le développement végétal (synthèse bibliographique. Biotechnol. Agron. Soc. Environ. 2014, 18, 436–445. [Google Scholar]
- Chen, Y.; Senesi, N.; Schnitzer, M. Information Provided on Humic Substances by E4-E6 Ratios. Soil Sci. Soc. Am. J. 1977, 41, 352–358. [Google Scholar] [CrossRef]
- Thurman, E.M. Organic Geochemistry of Natural Waters; Martinus Nijhoff, Dr. W. Junk Publishers: Dordrecht, The Netherlands, 1986. [Google Scholar]
- Huang, P. Soil Physical-Chemical-Biological Interfacial Interactions: An Overview; Springer: Berlin/Heidelberg, 2008; pp. 3–37. [Google Scholar] [CrossRef]
- Kulikowska, D.; Bernat, K. WasteWillow- Bark from Salicylate Extraction Successfully Reused as an Amendment for Sewage Sludge Composting. Sustainability 2021, 13, 6771. [Google Scholar] [CrossRef]
- Delmas, G.H. La Biolignine Structure et Application à L’élaboration de Résine. Ph.D. Thesis, Université de Toulouse, Toulouse, France, 2011. [Google Scholar]
- Bugg, T.D.H.; Ahmad, M.; Hardiman, E.M.; Rahmanpour, R. Pathways for degradation of lignin in bacteria and fungi. Nat. Prod. Rep. 2011, 28, 1883–1896. Available online: https://www.rsc.org/journals-books-databases/about-journals/npr/ (accessed on 10 November 2021). [CrossRef]
Parameter | Soil | Biolignin |
---|---|---|
MO (%) | 1.5 ± 0.035 | 92 ± 0.577 |
Ctotal (%) | 0.870 ± 0.031 | 53 ± 0.557 |
Ntotal (mg/kg) | 0.003 ± 0.001 | 0.225 ± 0.004 |
pH | 8.61 ± 0.327 | 3.17 ± 0.036 |
Na (mg/kg) | 4.82 ± 0.050 | 22.0 ± 0.011 |
P (mg/Kg) | 1.53 ± 0.031 | 6.66 ± 0.000 |
K (mg/Kg) | 7.84 ± 0.005 | 24.83 ± 0.000 |
CaCO3 (%) | 1.96 ± 0.471 | / |
EC (ms/cm) | 0.50 ± 0.061 | 3.93 ± 0.32 |
Parameter | Treatment | Repetition (Time) | Time * Treatment |
---|---|---|---|
Soil moisture | *** | *** | *** |
Soil temperature | ** | *** | / |
pH | ** | *** | *** |
Soil carbon content | / | *** | *** |
Soil nitrogen content | *** | *** | *** |
Ratio C/N | *** | *** | *** |
Bacteria | *** | *** | *** |
Fungi | ** | *** | *** |
Laccase activity | *** | *** | *** |
E4/E6 | *** | *** | *** |
D0 | D1 | D2 | |
---|---|---|---|
0 d | 0.534 ± 0.109 c | 2.25 ± 0.22 b | 4.166 ± 0.890 a |
30 d | 1.136 ± 0.341 c | 12.6 ± 1.900 a | 5.44 ± 0.953 b |
60 d | 1.181 ± 0.282 c | 4.857 ± 0.206 b | 12.666 ± 0.794 a |
90 d | 1.111 ± 0.096 b | 0.964 ± 0.155 b | 5.8 ± 0.507 a |
120 d | 1.818 ± 0.078 b | 1.411 ± 0.295 b | 9.666 ± 0.369 a |
180 d | 1.714 ± 0.237 b | 2.666 ± 0.785 b | 5.833 ± 0.780 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bendouma, A.; Houyou, Z.; Gherib, A.; Gouzi, H. The Valorization of Biolignin from Esparto Grass (Stipa tenacissima L.) Produced by Green Process CIMV (Compagnie Industrielle de la Matière Végétale) for Fertilization of Algerian Degraded Soil: Impact on the Physicochemical and Biological Properties. Sustainability 2021, 13, 13462. https://doi.org/10.3390/su132313462
Bendouma A, Houyou Z, Gherib A, Gouzi H. The Valorization of Biolignin from Esparto Grass (Stipa tenacissima L.) Produced by Green Process CIMV (Compagnie Industrielle de la Matière Végétale) for Fertilization of Algerian Degraded Soil: Impact on the Physicochemical and Biological Properties. Sustainability. 2021; 13(23):13462. https://doi.org/10.3390/su132313462
Chicago/Turabian StyleBendouma, Amal, Zohra Houyou, Abdelaziz Gherib, and Hicham Gouzi. 2021. "The Valorization of Biolignin from Esparto Grass (Stipa tenacissima L.) Produced by Green Process CIMV (Compagnie Industrielle de la Matière Végétale) for Fertilization of Algerian Degraded Soil: Impact on the Physicochemical and Biological Properties" Sustainability 13, no. 23: 13462. https://doi.org/10.3390/su132313462