Characteristics and Long-Term Trends of Heat Stress for South Africa
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Datasets
2.3. Apparent Temperature Index
2.4. Descriptive Statistics
2.5. Trend Analysis Using Mann-Kendall, Theil–Sen ‘s Slope and Z-score
2.6. Data Analysis and Visualization
3. Results
3.1. Annual Median Values of Apparent Temperature
Probability of Occurrences of the Apparent Temperature Exposure Categories
3.2. Statistical Analysis of Apparent Temperature
3.2.1. Mann–Kendall, Sen’s Slope, and Z-score Trends Analysis
3.2.2. Coefficient of Variation
3.2.3. Skewness and Kurtosis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Apparent Temperature | AT°C |
Automatic Weather Stations | AWS |
Eastern Cape | EC |
Environmental Systems Research Institute | ESRI |
Free State | FS |
Gauteng | GP |
Inverse Distance Weighting | IDW |
KwaZulu Natal | KZN |
Limpopo | LP |
Mann–Kendall | MK |
Mpumalanga | MP |
National Climate Change Response Policy | NCCRP |
National Oceanic and Atmospheric Administration | NOAA |
North West | NW |
Northern Cape | NC |
South African Weather Service | SAWS |
Representative Concentration Pathway | RCP |
United States National Weather Service | US NWS |
Urban Heat Island | UHI |
Western Cape | WC |
World Health Organization | WHO |
References
- Luber, G.; McGeehin, M. Climate change and extreme heat events. Am. J. Prev. Med. 2008, 35, 429–435. [Google Scholar] [CrossRef] [PubMed]
- Lundgren, K.; Kuklane, K.; Gao, C.; Holmér, I. Effects of heat stress on working populations when facing climate change. Ind. Health 2013, 51, 3–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Semenza, J.C. Climate change and human health. Int. J. Environ. Res. Public Health 2014, 11, 7347–7353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdel-Ghany, A.M.; Al-Helal, I.M.; Shady, M.R. Human thermal comfort and heat stress in an outdoor urban arid environment: A case study. Adv. Meteorol. 2013, 28, 693541. [Google Scholar] [CrossRef] [Green Version]
- Kampmann, D.F.; Bröde, B.P. Physiological responses to temperature and humidity compared to the assessment by UTCI. Int. Biometeorol. 2012, 56, 505–513. [Google Scholar] [CrossRef]
- James, A.D.; Christian, K. An assessment of thermal comfort in a warm and humid school building at Accra, Ghana. Adv. Appl. Sci. Res. 2012, 3, 535–547. [Google Scholar]
- Opitz-Stapleton, S.; Sabbag, L.; Hawley, K.; Tran, P.; Hoang, L.; Nguyen, P.H. Heat index trends and climate change implications for occupational heat exposure in Da Nang, Vietnam. Clim. Serv. 2016, 2-3, 41–51. [Google Scholar] [CrossRef] [Green Version]
- Rother, H.A.; John, J.; Wright, C.Y.; Irlam, J.; Oosthuizen, R.; Garland, R.M. Perceptions of occupational heat, sun exposure, and health risk prevention: A qualitative study of forestry workers in South Africa. Atmosphere. 2019, 11, 37. [Google Scholar] [CrossRef] [Green Version]
- Morrison, S.A.; Sims, S.T. Thermoregulation in children: Exercise, heat stress & fluid balance. Ann. Kinesiol. 2014, 5, 41–55. [Google Scholar]
- Scovronick, N.; Lloyd, S.J.; Kovats, R.S. Climate and health in informal urban settlements. Environ. Urban. 2015, 27, 657–678. [Google Scholar] [CrossRef]
- Casa, D.J.; DeMartini, J.K.; Bergeron, M.F.; Csillan, D.; Eichner, E.R.; Lopez, R.M.; Ferrara, M.S.; Miller, K.C.; O’Connor, F.; Sawka, M.N.; et al. National athletic trainers’ association position statement: Exertional heat illnesses. J. Athl. Train. 2015, 50, 986–1000. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramphal-Naley, L. Screening for heat stress in workers and athletes. Baylor Univ. Med. Cent. Proc. 2012, 25, 224–228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moonen, P.; Defraeye, T.; Dorer, V.; Blocken, B.; Carmeliet, J. Urban physics: Effect of the micro-climate on comfort, health and energy demand. Front. Archit. Res. 2012, 1, 197–228. [Google Scholar] [CrossRef] [Green Version]
- Busato, F.; Lazzarin, R.M.; Noro, M. Three years of study of the Urban Heat Island in Padua: Experimental results. Sustain. Cities Soc. 2014, 10, 251–258. [Google Scholar] [CrossRef]
- Luo, M.; Lau, N.C. Increasing heat stress in urban areas of Eastern China: Acceleration by urbanization. Geophys. Res. Lett. 2018, 45, 13060–13069. [Google Scholar] [CrossRef]
- Takane, Y.; Ohashi, Y.; Grimmond, C.S.B.; Hara, M.; Kikegawa, Y. Asian megacity heat stress under future climate scenarios: Impact of air-conditioning feedback. Environ. Res. Commun. 2020, 2, 015004. [Google Scholar] [CrossRef]
- Wouters, H.; de Ridder, K.; Poelmans, L.; Willems, P.; Brouwers, J.; Hosseinzadehtalaei, P.; Tabari, H.; Broucke, S.V.; van Lipzig, N.P.M.; Demuzere, M. Heat stress increase under climate change twice as large in cities as in rural areas: A study for a densely populated midlatitude maritime region. Geophys. Res. Lett. 2017, 44, 8997–9007. [Google Scholar] [CrossRef] [Green Version]
- Schuster, C.; Honold, J.; Lauf, S.; Lakes, T. Urban heat stress: Novel survey suggests health and fitness as future avenue for research and adaptation strategies. Environ. Res. Lett. 2017, 12, 044021. [Google Scholar] [CrossRef]
- Grubenhoff, J.A.; du Ford, K.; Roosevelt, G.E. Heat-related illness. Clin. Pediatr. Emerg. Med. 2007, 8, 59–64. [Google Scholar] [CrossRef]
- King, B.; Crews, K.A. Ecologies and Politics of Health, 1st ed.; Routlege: London, UK, 2013; pp. 1–298. [Google Scholar] [CrossRef]
- Takaro, T.K.; Henderson, S.B. Climate change and the new normal for cardiorespiratory disease. Can. Respir. J. 2015, 22, 52–54. [Google Scholar] [CrossRef]
- Wang, Y.C.; Lin, Y.K. Association between temperature and emergency room visits for cardiorespiratory diseases, metabolic syndrome-related diseases, and accidents in metropolitan Taipei. PLoS ONE 2014, 9, e99599. [Google Scholar] [CrossRef] [Green Version]
- Kenny, G.P.; Yardley, J.; Brown, C.; Sigal, R.J.; Jay, O. Heat stress in older individuals and patients with common chronic diseases. Cmaj 2010, 182, 1053–1060. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Li, C.; Feng, R.; Zhu, Y.; Wu, K.; Tan, X.; Ma, L. The short-term effect of ambient temperature on mortality in Wuhan, China: A time-series study using a distributed lag non-linear model. Int. J. Environ. Res. Public Health 2016, 13, 722. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paravantis, J.; Santamouris, M.; Cartalis, C.; Efthymiou, C.; Kontoulis, N. Mortality associated with high ambient temperatures, heatwaves, and the urban heat island in Athens, Greece. Sustainability 2017, 9, 606. [Google Scholar] [CrossRef] [Green Version]
- Tong, S.; Wang, X.Y.; Guo, Y. Assessing the short-term effects of heatwaves on mortality and morbidity in Brisbane, Australia: Comparison of case-crossover and time series analyses. PLoS ONE 2012, 7, e37500. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Russo, S.; Sillmann, J.; Fischer, E.M. Top ten European heatwaves since 1950 and their occurrence in the coming decades. Environ. Res. Lett. 2015, 10, 124003. [Google Scholar] [CrossRef]
- Garcia-Herrera, R.; Díaz, J.; Trigo, R.M.; Luterbacher, J.; Fischer, E.M. A review of the European summer heat wave of 2003. Crit. Rev. Environ. Sci. Technol. 2010, 40, 267–306. [Google Scholar] [CrossRef]
- Yin, P.; Chen, R.; Wang, L.; Liu, C.; Niu, Y.; Wang, W.; Jiang, Y.; Liu, Y.; Liu, J.; Qi, J.; et al. The added effects of heatwaves on cause-specific mortality: A nationwide analysis in 272 Chinese cities. Environ. Int. 2018, 121, 898–905. [Google Scholar] [CrossRef]
- Ma, W.; Zeng, W.; Zhou, M.; Wang, L.; Rutherford, S.; Lin, H.; Liu, T.; Zhang, Y.; Xiao, J.; Zhang, Y.; et al. The short-term effect of heat waves on mortality and its modifiers in China: An analysis from 66 communities. Environ. Int. 2015, 75, 103–109. [Google Scholar] [CrossRef] [PubMed]
- Rosenthal, J.K.; Kinney, P.L.; Metzger, K.B. Intra-urban vulnerability to heat-related mortality in New York City, 1997–2006. Health Place 2014, 30, 45–60. [Google Scholar] [CrossRef] [Green Version]
- Campbell, S.; Remenyi, T.A.; White, C.J.; Johnston, F.H. Heatwave and health impact research: A global review. Health Place 2018, 53, 210–218. [Google Scholar] [CrossRef] [PubMed]
- IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013. [Google Scholar] [CrossRef]
- Peng, R.D.; Bobb, J.F.; Tebaldi, C.; McDaniel, L.; Bell, M.L.; Dominici, F. Toward a quantitative estimate of future heat wave mortality under global climate change. Environ. Health Perspect. 2011, 119, 701–706. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodrigues, M.; Santana, P.; Rocha, A. Statistical modelling of temperature-attributable deaths in Portuguese metropolitan areas under climate change: Who is at risk? Atmosphere 2020, 11, 159. [Google Scholar] [CrossRef] [Green Version]
- Kingsley, S.L.; Eliot, M.N.; Gold, J.; Vanderslice, R.R.; Wellenius, G.A. Current and projected heat-related morbidity and mortality in Rhode Island. Environ. Health Perspect. 2016, 124, 460–467. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rai, M.; Breitner, S.; Wolf, K.; Peters, A.; Schneider, A.; Chen, K. Impact of climate and population change on temperature-related mortality burden in Bavaria, Germany. Environ. Res. Lett. 2019, 14, 124080. [Google Scholar] [CrossRef]
- Ziervogel, G.; New, M.; Archer van Garderen, E.; Midgley, G.; Taylor, A.; Hamann, R.; Stuart-Hill, S.; Myers, J.; Warburton, M. Climate change impacts and adaptation in South Africa. Wiley Interdiscip. Rev. Clim. Chang. 2014, 5, 605–620. [Google Scholar]
- Engelbrecht, F.; Adegoke, J.; Bopape, M.J.; Naidoo, M.; Garland, R.M.; Thatcher, M.; McGregor, J.; Katzfey, J.; Werner, M.; Ichoku, C.; et al. Projections of rapidly rising surface temperatures over Africa under low mitigation. Environ. Res. Lett. 2015, 10, 085004. [Google Scholar] [CrossRef]
- Jury, M.R. Climate trends across South Africa since 1980. Water 2018, 44, 297–307. [Google Scholar] [CrossRef] [Green Version]
- Kruger, A.C.; Shongwe, S. Temperature trends in South Africa: 1960–2003. Int. J. Climatol. 2004, 24, 1929–1945. [Google Scholar] [CrossRef]
- Collins, J.M. Temperature variability over Africa. J. Clim. 2011, 24, 3649–3666. [Google Scholar] [CrossRef] [Green Version]
- Garland, R.M.; Matooane, M.; Engelbrecht, F.A.; Bopape, M.J.M.; Landman, W.A.; Naidoo, M.; Merwe, J.V.D.; Wright, C.Y. Regional projections of extreme apparent temperature days in Africa and the related potential risk to human health. Int. J. Environ. Res. Public Health 2015, 12, 12577–12604. [Google Scholar] [CrossRef]
- Orimoloye, I.R.; Perez, S.P.; Mazinyo, N.W.; Iortyom, E.T. Climate variability and heat stress index have increasing potential ill-health and environmental impacts in East London, South Africa. Int. J. Appl. Eng. Res. 2017, 12, 6910–6918. [Google Scholar]
- Kapwata, T.; Gebreslasie, M.T.; Mathee, A.; Wright, C.Y. Current and potential future seasonal trends of indoor dwelling temperature and likely health risks in rural Southern Africa. Int. J. Environ. Res. Public Health 2018, 15, 952. [Google Scholar] [CrossRef] [Green Version]
- Department of Health. National Climate Change & Health Adaptation. Plan 2014–2019; Department of Health: Cape Town, South Africa, 2014. [Google Scholar]
- Republic of South Africa. National Climate Change Response Whitepaper; Government Printer: Pretoria, South Africa, 2011. Available online: http://www.gov.za/sites/www.gov.za/files/national_climatechange_response_whitepaper_0.pdf (accessed on 11 December 2020).
- World Health Organization (WHO). EuroHEAT: Improving Public Health Responses to Extreme Weather/Heatwaves. Summary for Policy-Makers; WHO Regional Office for Europe: Copenhagen, Denmark, 2009. [Google Scholar]
- Berry, P.; Yusa, A.; Morris-Oswald, T.; Rogaeva, A. Heat alert and response systems in urban and rural communities in Canada. Chang. Adapt. Socio Ecol. Syst. 2014, 1, 84–97. [Google Scholar] [CrossRef]
- Steadman, R.G. A universal scale of apparent temperature. J. Appl. Meteorol. Climatol. 1984, 23, 1674–1687. [Google Scholar] [CrossRef]
- Encyclopaedia Britannica. An Introduction to South Africa, with a Focus on Its Geography and History. 2020. Available online: https://www.britannica.com/video/136534/introduction-focus-history-South-Africa-geography (accessed on 15 July 2021).
- Pocket Guide to South Africa. Provinces 2016–2017. Available online: https://www.gcis.gov.za/sites/default/files/pictures/provinces1617.pdf (accessed on 1 August 2021).
- Statistics South Africa. Library Cataloguing-in-Publication (CIP) Data; 2011 Statistical Release; Statistics South Africa Census: Pretoria, South Africa, 2011. [Google Scholar]
- Daron, J. Regional Climate Messages for Southern Africa. Scientific Report from the CARIAA Adaptation at Scalein Semi-Arid Regions (ASSAR) Project. 2014. Available online: http://www.assar.uct.ac.za/sites/default/files/image_tool/images/138/RDS_reports/climate_messages/Southern%20Africa%20Climate%20Messages%20-%20Version%201%20-%20Regional%20Level.pdf (accessed on 15 July 2021).
- Mahlobo, D.; Funde, S.; Phakula, S. Climate Data & SAWS; South African Weather Service: Pretoria, South Africa, 2013. [Google Scholar]
- Blazejczyk, K.; Epstein, Y.; Jendritzky, G.; Staiger, H.; Tinz, B. Comparison of UTCI to selected thermal indices. Int. J. Biometeorol. 2012, 56, 515–535. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Epstein, Y.; Moran, D.S. Thermal comfort and the heat stress indices. Ind. Health 2006, 44, 388–398. [Google Scholar] [CrossRef] [Green Version]
- Buzan, J.R.; Oleson, K.; Huber, M. Implementation and comparison of a suite of heat stress metrics within the Community Land Model version 4.5. Geosci. Model Dev. 2015, 8, 151–170. [Google Scholar] [CrossRef] [Green Version]
- Masterton, J.M.; Richardson, F.A. HUMIDEX, A Method of Quantifying Human Discomfort Due to Excessive Heat and Humidity, CLI 1–79; Environment Canada, Atmospheric Environment Service: Downsview, ON, Canada, 1979. [Google Scholar]
- NOAA. Heat Stress Index. Available online: http://www.nws.noaa.gov/om/heat/heat_index.shtml (accessed on 15 July 2021).
- Keone, H.D. An Introduction to Statistics; CreateSpace Independent Publishing Platform: Scotts Vally, CA, USA, 2014. [Google Scholar]
- Brown, J.D.P. Skewness and kurtosis. Shiken JALT Test. Eval. SIG Newsl. 1997, 1, 20–23. [Google Scholar]
- Plichta, S.B.; Kelvin, E.A. Munro’s Statistical Methods for Health Care Research, 6th ed.; Wolters Kluwer/Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2013. [Google Scholar]
- Galip, A. A Simple Class of Measures of Skewness; MPRA Paper 72353; University Library of Munich: Munich, Germany, 2016. [Google Scholar]
- Hahs-Vaughn, D.; Lomax, R. An Introduction to Statistical Concepts, 3rd ed.; Routledge: New York, NY, USA, 2012. [Google Scholar] [CrossRef]
- DeCarlo, L.T. On the meaning and use of kurtosis. Psychol. Methods 1997, 2, 292–307. [Google Scholar] [CrossRef]
- Mann, H.B. Non-parametric tests against trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Measure; Griffin: London, UK, 1975. [Google Scholar]
- Theil, H. A Rank-Invariant Method of Linear and Polynomial Regression Analysis; Springer: Amsterdam, The Netherlands, 1950; pp. 345–381. [Google Scholar]
- Sen, P.K. Estimates of the regression coefficient based on Kendall’s tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Malik, A.; Kumar, A. Spatio-temporal trend analysis of rainfall using parametric and non-parametric tests: Case study in Uttarakhand, India. Theor. Appl. Climatol. 2020, 140, 183–207. [Google Scholar] [CrossRef]
- Babak, O.; Deutsch, C.V. Statistical approach to inverse distance interpolation. Stoch. Environ. Res. Risk Assess. 2009, 23, 543–553. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, Z.; Zhou, C.; Ming, W.; Du, Z. An adaptive inverse-distance weighting interpolation method considering spatial differentiation in 3D geological modeling. Geosciences 2021, 11, 51. [Google Scholar] [CrossRef]
- Lu, G.Y.; Wong, D.W. An adaptive inverse-distance weighting spatial interpolation technique. Comput. Geosci. 2008, 34, 1044–1055. [Google Scholar] [CrossRef]
- Crider, K.G.; Maples, E.H.; Gohlke, J.M. Incorporating occupational risk in heat stress vulnerability mapping. J. Environ. Health 2014, 77, 16–22. [Google Scholar]
- Baccini, M.; Biggeri, A.; Accetta, G.; Kosatsky, T.; Katsouyanni, K.; Analitis, A.; Anderson, H.R.; Bisanti, L.; D’Ippoliti, D.; Danova, J.; et al. Heat effects on mortality in 15 European cities. Epidemiology 2008, 19, 711–719. [Google Scholar] [CrossRef] [PubMed]
- Almeida, S.P.; Casimiro, E.; Calheiros, J. Effects of apparent temperature on daily mortality in Lisbon and Oporto, Portugal. Environ. Health A Glob. Access Sci. Source 2010, 9, 12. [Google Scholar] [CrossRef] [Green Version]
- Wichmann, J. Heat effects of ambient apparent temperature on all-cause mortality in Cape Town, Durban and Johannesburg, South Africa: 2006–2010. Sci. Total Environ. 2017, 587–588, 266–272. [Google Scholar] [CrossRef] [Green Version]
- Azongo, D.K.; Awine, T.; Wak, G.; Binka, F.N.; Oduro, A.R. A timeseries analysis of weather variability and all-cause mortality in the Kasena-Nankana Districts of Northern Ghana, 1995–2010. Glob. Health Action 2012, 5, 14–22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Egondi, T.; Kyobutangi, C.; Kovats, S.; Muindi, K.; Ettarh, R.; Rocklov, J. Time-series analysis of weather and mortality patters in Nairobi’s informal settlements. Glob. Health Action 2012, 5, 23–32. [Google Scholar] [CrossRef] [PubMed]
- Statistics South Africa. Report-03-01-60—Census 2011: Profile of Older Persons in South Africa; Statistics South Africa: Pretoria, South Africa, 2014. [Google Scholar]
- Statistics South Africa. Midyear Population Estimates; Statistics South Africa: Pretoria, South Africa, 2017. [Google Scholar]
- Weimann, A.; Oni, T. A systematized review of the health impact of urban informal settlements and implications for upgrading interventions in South Africa, a rapidly urbanizing middle-income country. Int. J. Environ. Res. Public Health 2019, 16, 3608. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baffi, S.; Turok, I.; Vacchiani-Marcuzzo, C. The South African Urban System. In International and Transnational Perspectives on Urban Systems; Rozenblat, C., Pumain, D., Velasquez, E., Eds.; International and Transnational Perspectives on Urban Systems; Springer: Singapore, 2018; pp. 258–314. [Google Scholar]
- Tran, K.; Azhar, G.; Nair, R.; Dileep, M.; Jaiswal, A.; Knowlton, K.; Hess, J. Assessing Vulnerability to Extreme Heat Among Residents of Urban Slums in Ahmedabad, India; Emory University: Atlanta, GA, USA, 2012. [Google Scholar]
- Sylla, M.B.; Faye, A.; Giorgi, F.; Diedhiou, A.; Kunstmann, H. Projected heat stress under 1.5 °C and 2 °C global warming scenarios creates unprecedented discomfort for humans in West Africa. Earth’s Future 2018, 6, 1029–1044. [Google Scholar] [CrossRef]
US NWS Classification (°C) | Apparent Temperature Range (°C) | US NWS Classified Health Effects |
---|---|---|
Caution | 27–31 | Fatigue is possible with prolonged exposure and physical activity |
Extreme caution | 32–38 | Heatstroke, heat cramps, or heat exhaustion is possible |
Danger | 39–50 | Heat cramps or heat exhaustion likely, and heat stroke possible with prolonged exposure and physical activity |
Extreme danger | >51 | Heatstroke highly likely |
Skewness | Distribution |
---|---|
If skewness is less than −1 or greater than 1 | A highly skewed distribution |
If skewness is between −1 and −0.5 or between 0.5 and 1 | A moderately skewed distribution |
If skewness is between −0.5 and 0.5 | Approximately symmetric (normal) distribution |
Kurtosis | Curve Type |
---|---|
Curve is mesokurtic | |
Curve is platykurtic | |
Curve is leptokurtic |
TSS | Rate of Change | No of Stations |
---|---|---|
TSS ≥ 0.3 | High positive rate of change | 5 |
0.2 ≥ TSS ≤ 0.29 | Medium positive rate of change | 6 |
0.1 ≥ TSS ≤ 0.19 | Subtle positive rate of change | 18 |
0.0 ≥ TSS ≤ 0.09 | Low positive rate of change | 18 |
TSS ≤ 0.0 | Low negative rate of change | 4 |
Positive (+) Z-Score | Negative (−) Z-Score | Zero (0) Z-Score |
---|---|---|
41 stations | 3 stations | 7 stations |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ncongwane, K.P.; Botai, J.O.; Sivakumar, V.; Botai, C.M.; Adeola, A.M. Characteristics and Long-Term Trends of Heat Stress for South Africa. Sustainability 2021, 13, 13249. https://doi.org/10.3390/su132313249
Ncongwane KP, Botai JO, Sivakumar V, Botai CM, Adeola AM. Characteristics and Long-Term Trends of Heat Stress for South Africa. Sustainability. 2021; 13(23):13249. https://doi.org/10.3390/su132313249
Chicago/Turabian StyleNcongwane, Katlego P., Joel O. Botai, Venkataraman Sivakumar, Christina M. Botai, and Abiodun M. Adeola. 2021. "Characteristics and Long-Term Trends of Heat Stress for South Africa" Sustainability 13, no. 23: 13249. https://doi.org/10.3390/su132313249
APA StyleNcongwane, K. P., Botai, J. O., Sivakumar, V., Botai, C. M., & Adeola, A. M. (2021). Characteristics and Long-Term Trends of Heat Stress for South Africa. Sustainability, 13(23), 13249. https://doi.org/10.3390/su132313249