Fabrication of Mg-Doped Sargassum Biochar for Phosphate and Ammonium Recovery
Abstract
:1. Introduction
2. Materials and Methods
2.1. MgO-Modified Biochar Fabrication
2.2. Sorption Experiments
2.3. Biochar Characterization
2.4. Statistical Analysis
3. Results and Discussion
3.1. Effect of Pyrolysis Temperature and Modification on Sargassum Biochar’s Physicochemical Properties
3.2. Nutrient Adsorption Capacity of Mg-SB as a Function of Pyrolysis Temperature
3.3. Nutrient Adsorption as a Function of Different Modification Methods
3.4. XPS Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bird, M.I.; Wurster, C.M.; de Paula Silva, P.H.; Bass, A.M.; De Nys, R. Algal biochar–production and properties. Bioresour. Technol. 2011, 102, 1886–1891. [Google Scholar] [CrossRef]
- Roberts, D.A.; Paul, N.A.; Dworjanyn, S.A.; Bird, M.I.; De Nys, R. Biochar from commercially cultivated seaweed for soil amelioration. Sci. Rep. 2015, 5, 9665. [Google Scholar] [CrossRef] [Green Version]
- Poo, K.M.; Son, E.B.; Chang, J.S.; Ren, X.; Choi, Y.J.; Chae, K.J. Biochars derived from wasted marine macro-algae (Saccharina japonica and Sargassum fusiforme) and their potential for heavy metal removal in aqueous solution. J. Environ. Manag. 2018, 206, 364–372. [Google Scholar] [CrossRef] [PubMed]
- Park, S.H.; Cho, H.J.; Ryu, C.; Park, Y.K. Removal of copper (II) in aqueous solution using pyrolytic biochars derived from red macroalga Porphyra tenera. J. Ind. Eng. Chem. 2016, 36, 314–319. [Google Scholar] [CrossRef]
- Jung, K.W.; Kim, K.; Jeong, T.U.; Ahn, K.H. Influence of pyrolysis temperature on characteristics and phosphate adsorption capability of biochar derived from waste-marine macroalgae (Undaria pinnatifida roots). Bioresour. Technol. 2016, 200, 1024–1028. [Google Scholar] [CrossRef]
- Mehta, C.M.; Khunjar, W.O.; Nguyen, V.; Tait, S.; Batstone, D.J. Technologies to recover nutrients from waste streams: A critical review. Crit. Rev. Environ. Sci. Technol. 2015, 45, 385–427. [Google Scholar] [CrossRef] [Green Version]
- Rahman, M.M.; Salleh, M.A.M.; Rashid, U.; Ahsan, A.; Hossain, M.M.; Ra, C.S. Production of slow release crystal fertilizer from wastewaters through struvite crystallization–A review. Arab. J. Chem. 2014, 7, 139–155. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.; Ryu, H.D.; Kim, M.S.; Kim, J.; Lee, S.I. Enhancing struvite precipitation potential for ammonia nitrogen removal in municipal landfill leachate. J. Hazard. Mater. 2007, 146, 81–85. [Google Scholar] [CrossRef]
- Nelson, N.O.; Mikkelsen, R.L.; Hesterberg, D.L. Struvite precipitation in anaerobic swine lagoon liquid: Effect of pH and Mg: P ratio and determination of rate constant. Bioresour. Technol. 2003, 89, 229–236. [Google Scholar] [CrossRef]
- Zheng, W.; Sharma, B.K.; Rajagopalan, N. Using Biochar as a Soil Amendment for Sustainable Agriculture. Waste Utilization-Biochar. 2010. Available online: http://hdl.handle.net/2142/25503 (accessed on 10 September 2021).
- Zeng, Z.; Zhang, S.; Li, T.Q.; Zhao, F.L.; He, Z.L.; Zhao, H.P.; Yang, X.E.; Wang, H.L.; Zhao, J.; Rafiq, M.T. Sorption of ammonium and phosphate from aqueous solution by biochar derived from phytoremediation plants. J. Zhejiang Univ. Sci. B 2013, 14, 1152–1161. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Gao, B.; Yao, Y.; Xue, Y.; Inyang, M. Synthesis of porous MgO-biochar nanocomposites for removal of phosphate and nitrate from aqueous solutions. Chem. Eng. J. 2012, 210, 26–32. [Google Scholar] [CrossRef]
- Muhmood, A.; Lu, J.; Kadam, R.; Dong, R.; Guo, J.; Wu, S. Biochar seeding promotes struvite formation, but accelerates heavy metal accumulation. Sci. Total Environ. 2019, 652, 623–632. [Google Scholar] [CrossRef]
- Kim, H.S.; Sanjeewa, K.K.; Fernando, I.P.; Ryu, B.; Yang, H.W.; Ahn, G.; Kang, M.C.; Heo, S.; Je, J.; Jeon, Y. A comparative study of Sargassum horneri Korea and China strains collected along the coast of Jeju Island South Korea: Its components and bioactive properties. Algae 2018, 33, 341–349. [Google Scholar] [CrossRef]
- Sanjeewa, K.K.A.; Fernando, I.P.S.; Kim, E.A.; Ahn, G.; Jee, Y.; Jeon, Y.J. Anti-inflammatory activity of a sulfated polysaccharide isolated from an enzymatic digest of brown seaweed Sargassum horneri in RAW 264.7 cells. Nutr. Res. Pract. 2017, 11, 3–10. [Google Scholar] [CrossRef] [Green Version]
- Lehmann, J.; Joseph, S. Biochar for environmental management: An introduction. In Biochar for Environmental Management, 2nd ed.; Routledge: London, UK, 2015; pp. 33–46. [Google Scholar]
- Lee, Y.E.; Jo, J.H.; Kim, I.T.; Yoo, Y.S. Influence of NaCl concentration on food-waste biochar structure and templating effects. Energies 2018, 11, 2341. [Google Scholar] [CrossRef] [Green Version]
- Kumar, P.S.; Korving, L.; Keesman, K.J.; van Loosdrecht, M.C.; Witkamp, G.J. Effect of pore size distribution and particle size of porous metal oxides on phosphate adsorption capacity and kinetics. Chem. Eng. J. 2019, 358, 160–169. [Google Scholar] [CrossRef]
- Wang, C.C.; Hao, X.D.; Guo, G.S.; Van Loosdrecht, M.C.M. Formation of pure struvite at neutral pH by electrochemical deposition. Chem. Eng. J. 2010, 159, 280–283. [Google Scholar] [CrossRef]
- Tansel, B.; Lunn, G.; Monje, O. Struvite formation and decomposition characteristics for ammonia and phosphorus recovery: A review of magnesium-ammonia-phosphate interactions. Chemosphere 2018, 194, 504–514. [Google Scholar] [CrossRef]
- Chan, K.Y.; Xu, Z. Biochar: Nutrient properties and their enhancement. In Biochar for Environmental Management, 1st ed.; Routledge: London, UK, 2012; pp. 99–116. [Google Scholar]
- Verheijen, F.; Jeffery, S.; Bastos, A.C.; Van der Velde, M.; Diafas, I. Biochar application to soils. In A Critical Scientific Review of Effects on Soil Properties, Processes, and Functions; JRC European Commission: Luxembourg, 2010; Volume 24099, p. 162. [Google Scholar]
- Lehmann, J.; Rillig, M.C.; Thies, J.; Masiello, C.A.; Hockaday, W.C.; Crowley, D. Biochar effects on soil biota—A review. Soil Biol. Biochem. 2011, 43, 1812–1836. [Google Scholar] [CrossRef]
- Stoch, J.; Ladecka, M. An XPS study of the KCl surface oxidation in oxygen glow discharge. Appl. Surf. Sci. 1988, 31, 426–436. [Google Scholar] [CrossRef]
- Lu, H.; Zhang, W.; Yang, Y.; Huang, X.; Wang, S.; Qiu, R. Relative distribution of Pb2+ sorption mechanisms by sludge-derived biochar. Water Res. 2012, 46, 854–862. [Google Scholar] [CrossRef]
- Shafeeyan, M.S.; Daud, W.M.A.W.; Houshmand, A.; Shamiri, A. A review on surface modification of activated carbon for carbon dioxide adsorption. J. Anal. Appl. Pyrolysis 2010, 89, 143–151. [Google Scholar] [CrossRef]
- Boehm, H.P. Surface oxides on carbon and their analysis: A critical assessment. Carbon 2002, 40, 145–149. [Google Scholar] [CrossRef]
- Singh, B.; Fang, Y.; Cowie, B.C.; Thomsen, L. NEXAFS and XPS characterisation of carbon functional groups of fresh and aged biochars. Org. Geochem. 2014, 77, 1–10. [Google Scholar] [CrossRef]
- Wei, L.; Hong, T.; Li, X.; Li, M.; Zhang, Q.; Chen, T. New insights into the adsorption behavior and mechanism of alginic acid onto struvite crystals. Chem. Eng. J. 2019, 358, 1074–1082. [Google Scholar] [CrossRef]
- Shi, Q.; Zhang, H.; Shahab, A.; Zeng, H.; Zeng, H.; Nabi, I.; Siddique, J.; Ullah, H. Efficient performance of magnesium oxide loaded biochar for the significant removal of Pb2+ and Cd2+ from aqueous solution. Ecotoxicol. Environ. Saf. 2021, 221, 112426. [Google Scholar] [CrossRef] [PubMed]
- Gong, B.; Pigram, P.J.; Lamb, R.N. Identification of inorganic nitrogen in an Australian bituminous coal using X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (TOFSIMS). Int. J. Coal Geol. 1997, 34, 53–68. [Google Scholar] [CrossRef]
(Mean wt% ± SD; n = 2) | Ultimate Analysis | |||||
---|---|---|---|---|---|---|
C | H | N | S | O | C/N | |
Raw | 28.19 ± 0.3 | 4.51 ± 0.0 | 2.55 ± 0.0 | 3.44 ± 4.9 | 34.22 ± 0.1 | 11.08 ± 0.3 |
400 °C SB | 38.51 ± 4.6 | 3.83 ± 0.4 | 3.36 ± 0.4 | 6.24 ± 0.5 | 25.02 ± 0.0 | 11.48 ± 0.0 |
500 °C SB | 38.13 ± 1.4 | 3.78 ± 0.2 | 2.45 ± 0.2 | 6.78 ± 0.3 | 20.63 ± 0.4 | 15.60 ± 0.4 |
600 °C SB | 39.38 ± 0.6 | 3.78 ± 0.1 | 2.34 ± 0.2 | 1.99 ± 2.8 | 15.59 ± 0.3 | 16.83 ± 1.4 |
(Mean wt% ± SD; n = 2) | 400 °C | 500 °C | 600 °C |
---|---|---|---|
Pyrolysis yield | 60.07 ± 0.7 | 48.92 ± 1.2 | 46.08 ± 0.6 |
Modification yield | 58.62 ± 0.9 | 61.82 ± 3.7 | 56.19 ± 5.4 |
RAW | 400 °C SB | 500 °C SB | 600 °C SB | 400 °C Mg-SB | 500 °C Mg-SB | 600 °C Mg-SB | |
---|---|---|---|---|---|---|---|
Vm (cm3 (STP) g−1) | 0.1042 | 0.567 | 1.871 | 1.8214 | 1.2907 | 3.4962 | 10.647 |
as,BET (m2 g−1) | 0.45346 | 2.4677 | 8.1435 | 7.9277 | 5.6177 | 15.217 | 46.342 |
Total pore volume (p/p0 = 0.990) (cm3 g−1) | 0.0030 | 0.0147 | 0.0517 | 0.0536 | 0.0309 | 0.0883 | 0.1358 |
Average pore diameter (nm) | 26.043 | 23.757 | 25.409 | 27.037 | 21.994 | 23.209 | 11.723 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, Y.-E.; Jeong, Y.; Shin, D.-C.; Ahn, K.-H.; Jung, J.-H.; Kim, I.-T. Fabrication of Mg-Doped Sargassum Biochar for Phosphate and Ammonium Recovery. Sustainability 2021, 13, 12752. https://doi.org/10.3390/su132212752
Lee Y-E, Jeong Y, Shin D-C, Ahn K-H, Jung J-H, Kim I-T. Fabrication of Mg-Doped Sargassum Biochar for Phosphate and Ammonium Recovery. Sustainability. 2021; 13(22):12752. https://doi.org/10.3390/su132212752
Chicago/Turabian StyleLee, Ye-Eun, Yoonah Jeong, Dong-Chul Shin, Kwang-Ho Ahn, Jin-Hong Jung, and I-Tae Kim. 2021. "Fabrication of Mg-Doped Sargassum Biochar for Phosphate and Ammonium Recovery" Sustainability 13, no. 22: 12752. https://doi.org/10.3390/su132212752
APA StyleLee, Y.-E., Jeong, Y., Shin, D.-C., Ahn, K.-H., Jung, J.-H., & Kim, I.-T. (2021). Fabrication of Mg-Doped Sargassum Biochar for Phosphate and Ammonium Recovery. Sustainability, 13(22), 12752. https://doi.org/10.3390/su132212752