Effect of the Influent Substrate Concentration on Nitrogen Removal from Summer to Winter in Field Pilot-Scale Multistage Constructed Wetland–Pond Systems for Treating Low-C/N River Water
Abstract
:1. Introduction
2. Materials and Methods
2.1. Construction of the MCWPs
2.2. Startup and Operation of the MCWPs
2.3. Method of Determination and Analysis
3. Results and Discussion
3.1. TN Removal Effect in the EPs and OPs
3.2. TN Removal Effect in the FHSCWs and SHSCWs
3.3. TN Removal Effect in the SFCWs and SPPs
3.4. TN Total Removal Effect in the MCWPs
3.5. Effect of Temperature on Nitrogen Removal
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wilbers, G.; Becker, M.; Nga, L.T.; Sebesvari, Z.; Renaud, F.G. Spatial and temporal variability of surface water pollution in the Mekong Delta, Vietnam. Sci. Total Environ. 2014, 485, 653–665. [Google Scholar] [CrossRef]
- Zhou, W.L.; Liu, X.; Dong, X.J.; Wang, Z.; Yuan, Y.; Wang, H.; He, S.B. Sulfur-based autotrophic denitrification from the micro-polluted water. J. Environ. Sci. 2016, 44, 180–188. [Google Scholar] [CrossRef] [PubMed]
- Haas, M.B.; Guse, B.; Fohrer, N. Assessing the impacts of best management practices on nitrate pollution in an agricultural dominated lowland catchment considering environmental protection versus economic development. J. Environ. Manag. 2017, 196, 347–364. [Google Scholar] [CrossRef] [PubMed]
- Paredes, I.; Ramírez, F.; Forero, M.G.; Greena, A.J. Stable isotopes in helophytes reflect anthropogenic nitrogen pollution in entry streams at the Doñana World Heritage Site. Ecol. Indic. 2019, 97, 130–140. [Google Scholar] [CrossRef] [Green Version]
- Sajedi-Hosseini, F.; Malekian, A.; Choubin, B.; Rahmati, O.; Cipullo, S.; Coulon, F.; Pradhan, B. A novel machine learning-based approach for the risk assessment of nitrate groundwater contamination. Sci. Total Environ. 2018, 644, 954–962. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carvalho, P.N.; Arias, C.A.; Brix, H. Constructed wetlands for water treatment: New developments. Water 2017, 9, 397. [Google Scholar] [CrossRef] [Green Version]
- Ilyas, H.; Masih, I. The performance of the intensified constructed wetlands for organic matter and nitrogen removal: A review. J. Environ. Manag. 2017, 198, 372–383. [Google Scholar] [CrossRef]
- Zeng, Y.G. Research on Removal Characteristics of Pollutants in Slightly Polluted Water by Constructed Wetland System; Chongqing University: Chongqing, China, 2010. [Google Scholar]
- Huang, L.; Gao, X.; Guo, J.S.; Ma, X.X.; Liu, M. Study on the Purification Efficiency of Micro-polluted River Treated by Subsurface Horizontal Flow Constructed Wetlands. Procedia Environ. Sci. 2011, 10, 908–913. [Google Scholar] [CrossRef] [Green Version]
- Ye, F.; Li, Y. Enhancement of nitrogen removal in towery hybrid constructed wetland to treat domestic wastewater for small rural communities. Ecol. Eng. 2009, 35, 1043–1050. [Google Scholar] [CrossRef]
- Xu, M.; Liu, W.J.; Li, C.; Xiao, C.; Ding, L.L.; Xu, K.; Geng, J.J.; Ren, H.Q. Evaluation of the treatment performance and microbial communities of a combined constructed wetland used to treat industrial park wastewater. Environ. Sci. Pollut. Res. 2016, 23, 10990–11001. [Google Scholar] [CrossRef]
- Saeed, T.; Sun, G.Z. A review on nitrogen and organics removal mechanisms in subsurface flow constructed wetlands: Dependency on environmental parameters, operating conditions and supporting media. J. Environ. Manag. 2012, 112, 429–448. [Google Scholar] [CrossRef]
- Green, M.B. Experience with establishment and operation of reed bed treatment for small communities in the UK. Wetl. Ecol. Manag. 1996, 4, 147–158. [Google Scholar] [CrossRef]
- Vymazal, J. Removal of nutrients in various types of constructed wetlands. Sci. Total Environ. 2007, 380, 48–65. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.J.; Xie, J.Z.; Song, M.L.; Gao, Z.L.; Zheng, D.X.; Liu, X.; Ning, G.H.; Cheng, X.; Bruning, H. Nitrogen removal performance and microbial community changes in subsurface wastewater infiltration systems (SWISs) at low temperature with different bioaugmentation strategies. Bioresour. Technol. 2018, 250, 603–610. [Google Scholar] [CrossRef] [PubMed]
- Lu, S.Y.; Jin, X.C.; Yu, G. Nitrogen removal mechanism of constructed wetland. Acta Ecologica Sinica 2006, 26, 2670–2677. [Google Scholar] [CrossRef]
- Yang, X.L.; Ye, F.; Song, H.L.; Wang, A.H. Enhanced biological nitrogen removal at low-temperature based on operation data of wastewater treatment plants. China Water Wastewater 2009, 25, 82–85,88. [Google Scholar] [CrossRef]
- Hwang, J.H.; Oleszkiewicz, J.A. Effect of cold-temperature shock on nitrification. Water Environ. Res. 2007, 79, 964–968. [Google Scholar] [CrossRef]
- Zheng, Y.C.; Wang, X.C.; Xiong, J.Q.; Liu, Y.J.; Zhao, Y.Q. Hybrid constructed wetlands for highly polluted river water treatment and comparison of surface-and subsurface-flow cells. J. Environ. Sci. 2014, 26, 35–42. [Google Scholar] [CrossRef]
- Yang, Y.L.; Lu, J.L.; Yu, H.K.; Yang, X.L. Characteristics of disinfection by-products precursors removal from micro-polluted water by constructed wetlands. Ecol. Eng. 2016, 93, 262–268. [Google Scholar] [CrossRef]
- Huang, J.; Reneau, R.B., Jr.; Hagedom, C. Nitrogen removal in constructed wetlands employed to treat domestic wastewater. Water Res. 2000, 34, 2582–2588. [Google Scholar] [CrossRef]
- Ding, Y.; Wang, W.; Wang, Y.H.; Song, X.S. Effects of C/N ratio of different kinds of influent on the nitrogen removing effectiveness in horizontal subsurface flow constricted wetland. Ind. Water Treat. 2014, 34, 29–32. [Google Scholar]
- Wu, J.; Zhang, J.; Jia, W.L.; Xie, H.J.; Gu, R.R.; Li, G.; Gao, B.Y. Impact of COD/N ratio on nitrous oxide emission from microcosm wetlands and their performance in removing nitrogen from wastewater. Bioresour. Technol. 2009, 100, 2910–2917. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.W.; Guo, Y.; You, Y.J.; Song, X.R.; Meng, Q.L.; Hao, H.F. Denitrification characteristic of microbial population tamed at different C/N ratios. Environ. Chem. 2014, 33, 770–775. [Google Scholar] [CrossRef]
- Guo, J.; Li, Z.F.; Zhu, Q.L.; Cui, L.H. Nitrogen removal of urban river water by ecological pond-constructed wetland-ecological pond hybrid system. Trans. CSAE 2011, 27, 191–195. [Google Scholar] [CrossRef]
- Huang, J.H.; Mo, W.R.; Tian, S.L.; Peng, F.Q.; Nie, F.; Zhou, X.Y. Oxidation Pond/Constructed Wetland for Treatment of Urban Polluted River Water. China Water Wastewater 2011, 27, 35–38. [Google Scholar] [CrossRef]
- Gorito, A.M.; Ribeiro, A.R.; Almeida, C.M.R.; Silva, A.M.T. A review on the application of constructed wetlands for the removal of priority substances and contaminants of emerging concern listed in recently launched EU legislation. Environ. Pollut. 2017, 227, 428–443. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.J. Surface-flow constructed treatment wetlands for pollutant removal: Applications and perspectives. Wetlands 2011, 31, 805–814. [Google Scholar] [CrossRef]
- Wang, X.O.; Tian, Y.M.; Zhao, X.H.; Peng, S.; Wu, Q.; Yan, L.J. Effects of aeration position on organics, nitrogen and phosphorus removal in combined oxidation pond-constructed wetland systems. Bioresour. Technol. 2015, 198, 7–15. [Google Scholar] [CrossRef]
- Stein, O.R.; Hook, P.B. Temperature, plants, and oxygen: How does season affect constructed wetland performance? J. Environ. Sci. Health 2005, 40, 1331–1342. [Google Scholar] [CrossRef]
- Cooper, P. The performance of vertical flow constructed wetland systems with special reference to the significance of oxygen transfer and hydraulic loading rates. Water Sci. Technol. 2005, 51, 81–90. [Google Scholar] [CrossRef]
- Rossmann, M.; Matos, A.T.; Abreu, E.C.; Silva, F.F.; Borges, A.C. Effect of influent aeration on removal of organic matter from coffee processing wastewater in constructed wetlands. J. Environ. Manag. 2013, 128, 912–919. [Google Scholar] [CrossRef]
- Zhang, R.S.; Li, G.H.; Zhou, Q.; Zhang, X. Effects of Plants on Nitrogen/Phosphorus Removal in Subsurface Constructed Wetlands. Environ. Sci. 2005, 26, 83–86. [Google Scholar] [CrossRef]
- Zhao, D.H.; Zhang, M.; Liu, Z.; Sheng, J.; An, S.Q. Can cold-season macrophytes at the senescence stage improve nitrogen removal in integrated constructed wetland systems treating low carbon/nitrogen effluent? Bioresour. Technol. 2018, 265, 380–386. [Google Scholar] [CrossRef]
- Ji, B.; Kang, P.Y.; Wei, T.; Chang, Y.T.; Qiao, S.X.; Zhao, Y.Q. Removal and Enhancement of Nitrogen in Constructed Wetlands in Cold Climate: A Review. China Water Wastewater 2019, 35, 35–40. [Google Scholar] [CrossRef]
- Lu, S.Y.; Zhang, P.Y.; Yu, G.; Zhu, W.P.; Xiang, C.S. The contaminants release rule of Zizania caduciflora, Phragmites austrails and Eichhornia crassipes. China Environ. Sci. 2005, 25, 554–557. [Google Scholar] [CrossRef]
- Verhofstad, M.J.J.M.; Poelen, M.D.M.; van Kempen, M.M.L.; Bakker, E.S.; Smolders, A.J.P. Finding the harvesting frequency to maximize nutrient removal in a constructed wetland dominated by submerged aquatic plants. Ecol. Eng. 2017, 106, 423–430. [Google Scholar] [CrossRef]
- Demars, B.O.L.; Edwards, A.C. Tissue nutrient concentrations in aquatic macrophytes: Comparison across biophysical zones, surface water habitats and plant life forms. Chem. Ecol. 2008, 24, 413–422. [Google Scholar] [CrossRef]
- Zuidam, J.P.V.; Peeters, E.T. Occurrence of macrophyte monocultures in drainage ditches relates to phosphorus in both sediment and water. SpringerPlus 2013, 2, 564. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.Y.; Harpenslager, S.F.; Van Kempen, M.M.L.; Verbaarschot, E.J.H.; Loeffen, L.M.J.M.; Roelofs, J.G.M.; Smolders, A.J.P.; Lamers, L.P.M. Aquatic macrophytes can be used for wastewater polishingbut not for purification in constructed wetlands. Biogeosciences 2017, 14, 755–766. [Google Scholar] [CrossRef] [Green Version]
- Dong, X.F.; Wang, T.; Lu, S.Y.; Lu, H.B.; Li, J.X.; Li, X.; Xiao, L.P. Concentration Effect on the treatment of micropollutant in river with multistage constructed wetland-pond systems. Acta Sci. Circumstantiae 2021, 41, 3563–3577. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, X.P.; Xing, J.L.; Xie, H.J.; Shi, Y.; Guo, W. Biological Nutrients Removal from Simulated Wastewater with Low Carbon-to-Nitrogen Ratio in a New Submerged Composite Membrane-Nitrifying/Denitrifying Bioreactor. Technol. Water Treat. 2017, 43, 79–84. [Google Scholar] [CrossRef]
- Cao, F.H.; Luo, Z.F.; Zhou, D.; Zeng, R.J.; Wang, Y.M. Hydroxyethylcellulose-graft-poly(2-(dimethylamino)ethyl methacrylate) as physically adsorbed coating for protein separation by CE. Electrophoresis 2011, 32, 365–374. [Google Scholar] [CrossRef] [PubMed]
- Lu, S.L.; Hu, H.Y. Study on Denitrification Capacity of Constructed Wetlands. China Water Wastewater 2008, 24, 63–69. [Google Scholar]
- Vymazal, J.; Brix, H.; Cooper, P.F.; Haberl, R.; Perfler, R.; Laber, J. Removal Mechanisms and Types of Constructed Wetlands; Backhuys Publishers: Leiden, The Netherlands, 1998; pp. 17–66. [Google Scholar]
- Gerke, S.; Baker, L.A.; Xu, Y. Nitrogen transformations in a wetland receiving lagoon effluent: Sequential model and implications for water reuse. Water Res. 2001, 35, 3857–3866. [Google Scholar] [CrossRef]
- Fleming-Singer, M.S.; Horne, A.I. Enhanced nitrate removal efficiency in wetland microcosms using an episediment layer for denitrifi cation. Environ. Sci. Technol. 2002, 36, 1231–1237. [Google Scholar] [CrossRef] [PubMed]
- Verhoeven, J.T.A.; Meuleman, A.F.M. Wetlands for wastewater treatment: Opportunities and limitations. Ecol. Eng. 1999, 12, 5–12. [Google Scholar] [CrossRef]
- Mucha, A.P.; Almeida, C.M.R.; Bordalo, A.A.; Vasconcelos, M.T.S.D. LMWOA (low molecular weight organic acid) exudation by salt marsh plants: Natural variation and response to Cu contamination. Estuar. Coast. Shelf Sci. 2010, 88, 63–70. [Google Scholar] [CrossRef]
- Wang, Y.Y.; Fang, L.; Lin, L.; Luan, T.G.; Tam, N.F.Y. Effects of low molecular-weight organic acids and dehydrogenase activity in rhizosphere sediments of mangrove plants on phytoremediation of polycyclic aromatic hydrocarbons. Chemosphere 2014, 99, 152–159. [Google Scholar] [CrossRef]
- Elefsiniotis, P.; Wareham, D.G.; Smith, M.O. Use of volatile fatty acids from an acid-phase digester for denitrification. J. Biotechnol. 2004, 114, 289–297. [Google Scholar] [CrossRef]
- Li, Z.G.; Li, L.M.; Pan, Y.H.; Wu, S.C. Influence of the root exudates of wheat shoots on the denitrifiers in rhizosphere. Acta Pedol. Sin. 1995, 32, 408–413. [Google Scholar]
- Zhang, H.; Chen, G.R.; Wu, Z.B.; Deng, J.Q. The study on the relationship between N, P removing rates and the distribution of bacteria in two artificial wetlands. J. HuaZhong Norm. Univ. (Nat. Sci.) 1999, 3, 575–578. [Google Scholar] [CrossRef]
- Jing, X.Y.; Yang, D.J. Nitrogen removal and nitrogen-transformation bacteria in Cyperus alternifolius constructed wetland. Ecol. Sci. 2004, 23, 89–91. [Google Scholar] [CrossRef]
- Liu, W.; Qiu, J.R.; Wei, Z.B.; Wu, Q.T. Effects of different plants and plant root exudates on wastewater purification. Chin. J. Environ. Eng. 2009, 3, 971–976. [Google Scholar]
- Salvato, M.; Borin, M.; Doni, S.; Macci, C.; Ceccanti, B.; Marinari, S.; Masciandaro, G. Wetland plants, micro-organisms and enzymatic activities interrelations in treating N polluted water. Ecol. Eng. 2012, 47, 36–43. [Google Scholar] [CrossRef]
- Christ, M.J.; David, M.B. Temperature and moisture effects on the production of dissolved organic carbon in a spodosol. Soil Biol. Biochem. 1996, 28, 1191–1199. [Google Scholar] [CrossRef]
- Zhai, X.; Piwpuan, N.; Arias, C.A.; Headley, T.; Brix, H. Can root exudates from emergent wetland plants fuel denitrification in subsurface flow constructed wetland systems? Ecol. Eng. 2013, 61, 555–563. [Google Scholar] [CrossRef]
- Zhang, J.; Deng, H.G.; Wu, A.Q.; Chen, S.Y.; Wang, D.Q. Decomposition of Potamogeton crispus and its effect on the aquatic environment of Dongping Lake. Acta Sci. Circumstantiae 2013, 33, 2590–2596. [Google Scholar] [CrossRef]
- Wen, Y.; Chen, Y.; Zheng, N.; Yang, D.H.; Zhou, Q. Effects of plant biomass on nitrate removal and transformation of carbon sources in subsurface-flow constructed wetlands. Bioresour. Technol. 2010, 101, 7286–7292. [Google Scholar] [CrossRef]
- Si, J.; Xing, Y.; Lu, S.Y.; Jin, X.C.; Hu, X.Z.; Zhang, Y.A.; Bao, Y.W. Release Rule Research of Submerged Plants with Temperature Impact in Contabescence. Chin. Agric. Sci. Bull. 2009, 25, 217–223. [Google Scholar]
- Li, Y.F.; Liu, J.; Wang, X.D.; Sun, H.C.; Guan, X.Y. Application and Research of Vertical Constructed Wetland in Cold Areas. J. Shenyang Jianzhu Univ. (Nat. Sci.) 2006, 22, 281–284. [Google Scholar] [CrossRef]
- Wang, D.; Li, R.B. The artificial wetland system and its application research on waste-water treatment in northern area. Shanxi Archit. 2005, 32, 172–173. [Google Scholar] [CrossRef]
- Zhang, X.L.; Zhou, L. Treating municipal sewage with artifical marsh technique applied in the north. Environ. Eng. 2005, 23, 23–26. [Google Scholar] [CrossRef]
- Li, Y.P.; Zhang, H.K.; Zhu, L.Q.; Chen, H.W.; Du, G.C.; Gao, X.; Pu, Y.S. Evaluation of the long-term performance in a large-scale integrated surface flow constructed wetland-pond system: A case study. Bioresour. Technol. 2020, 309, 123310. [Google Scholar] [CrossRef] [PubMed]
- Kadlec, R.H.; Wallace, S.D. Treatment Wetlands, 2nd ed.; CRC Press: Boca Raton, FL, USA; Taylor & Francis Group: Abingdon, UK, 2009; Volume 242, pp. 285–304. [Google Scholar]
- Vymazal, J. The use of hybrid constructed wetlands for wastewater treatment with special attention to nitrogen removal: A review of a recent development. Water Res. 2013, 17, 4795–4811. [Google Scholar] [CrossRef] [PubMed]
- Mclatchey, G.P.; Reddy, K.R. Regulation of organic matter decomposition and nutrient release in a wetland soil. J. Environ. Qual. 1998, 27, 1268–1274. [Google Scholar] [CrossRef]
- Brinson, M.M.; Lugo, A.E.; Brown, S. Primary productivity, decomposition and consumer activity in freshwater wetlands. Annu. Rev. Ecol. Syst. 2003, 12, 123–161. [Google Scholar] [CrossRef]
- Brock, T.C.M.; Huijbregts, C.A.M.; Van de Steeg-Huberts, M.J.H.A.; Vlassak, M.A. In situ studies on the breakdown of Nymphoides peltata (Gmel.) O. Kuntze (Menyanthaceae); Some methodological aspects of the litter bag technique. Hydrobiol. Bull. 1982, 16, 35–49. [Google Scholar] [CrossRef]
- Cheesman, A.W.; Turner, B.L.; Inglett, P.W.; Reddy, K.R. Phosphorus transformations during decomposition of wetland macrophytes. Environ. Sci. Technol. 2010, 44, 9265–9271. [Google Scholar] [CrossRef]
- Serna, A.; Richards, J.H.; Scinto, L.J. Plant decomposition in wetlands: Effects of hydrologic variation in a re-created everglades. J. Environ. Qual. 2013, 42, 562–572. [Google Scholar] [CrossRef] [PubMed]
- Vymazal, J.; Kröpfelová, L. Wastewater Treatment in Constructed Wetlands with Horizontal Sub-surface Flow; Springer Science & Business Media B.V: Dordrecht, The Netherlands, 2008. [Google Scholar]
- Wang, S.Y.; Wang, W.D.; Liu, L.; Zhuang, L.J.; Zhao, S.Y.; Su, Y.; Li, Y.X.; Wang, M.Z.; Wang, C.; Xu, L.Y.; et al. Microbial nitrogen cycle hotspots in the plant-bed/ditch system of a constructed wetland with N2O mitigation. Environ. Sci. Technol. 2018, 52, 6226–6236. [Google Scholar] [CrossRef]
- Kits, K.D.; Sedlacek, C.J.; Lebedeva, E.V.; Han, P.; Bulaev, A.; Pjevac, P.; Daebeler, A.; Romano, S.; Albertsen, M.; Stein, L.Y.; et al. Kinetic analysis of a complete nitrifier reveals an oligotrophic lifestyle. Nature 2017, 549, 269–272. [Google Scholar] [CrossRef] [Green Version]
- Fu, G.K.; Wang, M.; Zhang, Z.; Zhou, Q. Reaction Kinetics of three types of constructed wetland for advanced domestic wastewater treatment. J. Civ. Archit. Environ. Eng. 2012, 34, 111–117. [Google Scholar] [CrossRef]
- Domozych, D.S.; Domozych, C.R. Desmids and biofilms of freshwater wetlands: Development and microarchitecture. Microb. Ecol. 2008, 55, 81–93. [Google Scholar] [CrossRef] [PubMed]
- Roeselers, G.; Loosdrecht, M.C.M.V.; Muyzer, G. Phototrophic biofilms and their potential applications. J. Appl. Phycol. 2008, 20, 227–235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, S.Y.; Zhang, P.Y.; Jin, X.C.; Xiang, C.S.; Gui, M.; Zhang, J.; Li, F.M. Nitrogen removal from agricultural runoff by full-scale constructed wetland in China. Hydrobiologia 2009, 621, 115–126. [Google Scholar] [CrossRef]
- Wen, Z.D.; Wu, W.M.; Ren, N.Q.; Gao, D.W. Synergistic effect using vermiculite as media with a bacterial biofilm of Arthrobacter sp. for biodegradation of di-(2-ethylhexyl) phthalate. J. Hazard Mater 2016, 304, 118–125. [Google Scholar] [CrossRef]
- Wang, L.; Li, T. Effects of seasonal temperature variation on nitrification, anammox process, and bacteria involved in a pilot-scale constructed wetland. Environ. Sci. Pollut. Res. 2015, 22, 3774–3783. [Google Scholar] [CrossRef]
- Yang, Y.; Zhao, Y.; Liu, R.; Morgan, D. Global development of various emerged substrates utilized in constructed wetlands. Bioresour. Technol. 2018, 261, 441–452. [Google Scholar] [CrossRef]
- Zhao, G.Y.; Zhou, Q. Adsorption of phosphrous from wastewater onto zeolite. Technol. Water Treat. 2007, 33, 34–37. [Google Scholar] [CrossRef]
- Cao, X. Investigation of Efficiency for Removal of Ammonia-Nitrogen by Biological Aerated Filter from Low Temperature and Micropolluted Raw Water; Harbin Institute of Technology: Harbin, China, 2017. [Google Scholar]
- Li, L.F.; Nian, Y.G.; Jiang, G.M. Contribution of Macrophytes Assimilation in Constructed Wetlands to Nitrogen and Phosphorous Removal. Res. Environ. Sci. 2009, 22, 337–342. [Google Scholar] [CrossRef]
Unit | RWT | EP | OP | FHSCW | SHSCW | SFCW | SPP |
---|---|---|---|---|---|---|---|
Dimension/mm | Φ65 × 90 | 200 × 140 × 2000 | 630 × 300 × 1500 | 1000 × 260 × 1250 | 1000 × 260 × 1250 | 1000 × 800 × 500 | 500 × 300 × 1550 |
Water level/mm | 1800 | 1080 | 1200 | 1200 | 450 | 1500 | |
HRT/d | 0.22 | 0.89 | 0.54 | 0.54 | 1.57 | 0.89 |
Parameter | S1 | S2 | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Influent (mg/L) | Effluent (mg/L) | Removal Efficiency (%) b | Influent (mg/L) | Effluent (mg/L) | Removal Efficiency (%) | |||||||||||
EP | OP | FHSCW | SHSCW | SFCW | SPP | EP | OP | FHSCW | SHSCW | SFCW | SPP | |||||
TN | 3.72 | 3.42 | 3.25 | 3.45 | 3.36 | 3.15 | 3.04 | 19.56 | 4.15 | 4.26 | 3.81 | 3.97 | 3.90 | 3.33 | 2.87 | 34.84 |
NH4+-N | 0.52 | 0.46 | 0.43 | 0.53 | 0.38 | 0.44 | 0.37 | - | 0.71 | 0.57 | 0.57 | 0.63 | 0.50 | 0.55 | 0.61 | 8.37 |
CODMn TP | 3.02 | 3.09 | 3.58 | 3.56 | 2.18 | 2.37 | 4.01 | - | 3.39 | 2.80 | 3.35 | 3.53 | 3.19 | 2.75 | 3.63 | - |
0.11 | 0.10 | 0.11 | 0.35 | 0.47 | 0.45 | 0.45 | - | 0.08 | 0.06 | 0.06 | 0.27 | 0.31 | 0.25 | 0.23 | - | |
pH | 8.02 | 8.10 | 8.24 | 8.38 | 8.63 | 8.59 | 8.80 | - | 8.18 | 8.20 | 8.32 | 8.54 | 8.83 | 8.80 | 8.89 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, T.; Xiao, L.; Lu, H.; Lu, S.; Zhao, X.; Liu, F. Effect of the Influent Substrate Concentration on Nitrogen Removal from Summer to Winter in Field Pilot-Scale Multistage Constructed Wetland–Pond Systems for Treating Low-C/N River Water. Sustainability 2021, 13, 12456. https://doi.org/10.3390/su132212456
Wang T, Xiao L, Lu H, Lu S, Zhao X, Liu F. Effect of the Influent Substrate Concentration on Nitrogen Removal from Summer to Winter in Field Pilot-Scale Multistage Constructed Wetland–Pond Systems for Treating Low-C/N River Water. Sustainability. 2021; 13(22):12456. https://doi.org/10.3390/su132212456
Chicago/Turabian StyleWang, Tao, Liping Xiao, Hongbin Lu, Shaoyong Lu, Xiaoliang Zhao, and Fuchun Liu. 2021. "Effect of the Influent Substrate Concentration on Nitrogen Removal from Summer to Winter in Field Pilot-Scale Multistage Constructed Wetland–Pond Systems for Treating Low-C/N River Water" Sustainability 13, no. 22: 12456. https://doi.org/10.3390/su132212456
APA StyleWang, T., Xiao, L., Lu, H., Lu, S., Zhao, X., & Liu, F. (2021). Effect of the Influent Substrate Concentration on Nitrogen Removal from Summer to Winter in Field Pilot-Scale Multistage Constructed Wetland–Pond Systems for Treating Low-C/N River Water. Sustainability, 13(22), 12456. https://doi.org/10.3390/su132212456