An Assessment of the Effects of Applying Ash from the Thermal Disposal of Sewage Sludge for Fertilizing Energy Plants Using the Example of Giant Miscanthus (Miscanthus sinensis giganteus)
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Camilleri, M.A. The Circular Economy’s Closed Loop and Product Service Systems for Sustainable Development: A Review and Appraisal. J. Sustain. Dev. 2018, 27, 1–17. [Google Scholar] [CrossRef]
- Calzolari, T.; Genovese, A.; Brint, A. The adoption of circular economy practices in supply chains—An assessment of European Multi-National Enterprises. J. Clean. Prod. 2021, 312, 127616. [Google Scholar] [CrossRef]
- Silvestri, F.; Spigarelli, F.; Tassinari, M. Regional development of Circular Economy in the European Union: A multidimensional analysis. J. Clean. Prod. 2020, 255, 120218. [Google Scholar] [CrossRef]
- Harley, K.; Santen, R.; Kirchherr, J. Policies for transitioning towards a circular economy: Expectations from the European Union (EU). Resour. Conserv. Recycl. 2020, 155, 104634. [Google Scholar] [CrossRef]
- Friant, M.C.; Vermeulen, W. Analysing European Union circular economy policies: Words versus sctions. Sustain. Prod. Consum. 2021, 27, 337–353. [Google Scholar] [CrossRef]
- Fratini, C.F.; Georg, S.; Jorgensen, M.S. Exploring circular economy imaginaries in Europen cities: A research agenda for the governance of urban sustainability transitions. J. Clean. Prod. 2019, 228, 974–989. [Google Scholar] [CrossRef]
- Bień, J.D.; Bień, B. Zagospodarowanie komunalnych osadów ściekowych metodami termicznymi w obliczu zakazu składowania po 1 stycznia 2016. Ecol. Eng. 2015, 45, 36–43. [Google Scholar]
- Aleisa, E.; Alsulaili, A.; Almuzaini, T. Recirculating treated sewage sludge for agricultural use: Life cycle assessment for a circular economy. J. Waste Manag. 2021, 135, 79–89. [Google Scholar] [CrossRef]
- Gherghel, A.; Teodosiu, C.; Gisi, S. Areview on wastewater sludge valorization and its challenges in the context of circular economy. J. Clean. Prod. 2019, 228, 244–263. [Google Scholar] [CrossRef]
- Tsybina, A.; Wuensch, C.H. Analysis of sewage sludge thermal treatment methods in the context of circular economy. Detritus 2018, 2, 3–15. [Google Scholar] [CrossRef]
- Kijo-Kleczkowska, A.; Środa, K.; Kosowska-Golachowska, M.; Musiał, T.; Wolski, K. Combustion of pelleted sewage sludge with reference to coal and biomass. Fuel 2016, 170, 141–160. [Google Scholar] [CrossRef]
- Henclik, A.; Kulczycka, A.; Gorazda, K.; Wzorek, Z. Uwarunkowania gospodarki osadami ściekowymi w Polsce i Niemczech. Environ. Prot. Eng. 2014, 17, 185–197. [Google Scholar]
- Burzała, B. Termiczne przekształcanie osadów ściekowych jako jedna z metod ich utylizacji. J. New Energy 2014, 1, 29–32. [Google Scholar]
- Bień, J.D. Zagospodarowanie komunalnych osadów ściekowych metodami termicznymi. Environ. Prot. Eng. 2012, 15, 439–449. [Google Scholar] [CrossRef]
- Białowiec, A.; Janczukowicz, W.; Krzemieniewski, M. Możliwości zagospodarowania popiołów po termicznym unieszkodliwianiu osadów ściekowych w aspekcie regulacji prawnych. Annu. Set Environ. Prot. 2009, 11, 959–971. [Google Scholar]
- Stankowski, S.; Macirowski, R. Rolnicze wykorzystanie popiołów z biomasy. In Zagospodarowanie Ubocznych Produktów Spalania Biomasy; Seminarium Naukowe: Warszawa, Poland, 2011; pp. 159–180. [Google Scholar]
- Biswas, B.K.; Inoue, K.; Harada, H.; Ohto, K.; Kawakita, H. Leaching of phosphorus from incinerated sewage sludge ash by means of acid extraction followed by adsorption on orange waste gel. Int. J. Environ. Sci. 2009, 21, 1753–1760. [Google Scholar] [CrossRef]
- Guedes, P.; Couto, N.; Ottosen, L.M.; Ribeiro, A.B. Phosphorus recovery from sewage sludge ash through an electrodialytic process. J. Waste Manag. 2014, 34, 886–892. [Google Scholar] [CrossRef]
- Pettersson, A.; Amand, L.E.; Steenari, B.M. Leaching of ashes from co-combustion of sewage sludge and wood—Part 1: Recovery of phosphorus. Biomass Bioenerg 2005, 32, 224–235. [Google Scholar] [CrossRef] [Green Version]
- Stasta, P.; Boran, J.; Bebar, L.; Stehlik, P.; Oral, J. Thermal processing of sewage sludge. Appl. Therm. Eng. 2006, 26, 1420–1426. [Google Scholar] [CrossRef]
- Clifton-Brown, J.C.; Lewandowski, I. Screening Miscanthus genotypes in field trials to optimize biomass yield and quality in Southern Germany. Eur. J. Agron. 2002, 16, 97–110. [Google Scholar] [CrossRef]
- Christian, D.G.; Poulton, P.R.; Riche, A.B.; Yates, N.E. The recovery of 15 N-labelled fertilizer appliee to Miscanthus x giganteus. Biomass Bioenergy 1997, 12, 4–21. [Google Scholar] [CrossRef]
- Chae, W.B.; Hong, S.J.; Gi_ord, J.M.; Rayburn, A.L.; Widholm, J.M.; Juvik, J.A. Synthetic polyploid production of Miscanthus sacchariflorus, Miscanthus sinensis, and Miscanthus × giganteus. Glob. Chang. Biol. 2013, 5, 338–350. [Google Scholar] [CrossRef]
- Baxter, X.C.; Darvell, L.I.; Jones, J.M.; Barraclough, T.; Yates, N.E.; Shield, I. Miscanthus combustion properties and variations with Miscanthus agronomy. Fuel 2014, 117, 851–869. [Google Scholar] [CrossRef] [Green Version]
- PN-ISO 10390/1997 Jakość Gleby—Oznaczanie pH; Polish Committee for Standardization: Warsaw, Poland, 1997.
- PN-R-04023:1996 Analiza Chemiczno-Rolnicza Gleby—Oznaczanie Zawartości Przyswajalnego Fosforu W Glebach Mineralnych; Polish Committee for Standardization: Warsaw, Poland, 1996.
- PN-R-04022:1996+Azl:2004 Analiza Chemiczno-Rolnicza Gleby—Oznaczanie Zawartości Przyswajalnego Potasu W Glebach Mineralnych; Polish Committee for Standardization: Warsaw, Poland, 1996.
- PN-R-04020:1994+Azl:2004 Analiza Chemiczno-Rolnicza Gleby—Oznaczanie Zawartości Przyswajalnego Magnezu; Polish Committee for Standardization: Warsaw, Poland, 1994.
- PN-EN 14918:2010 Biopaliwa Stałe—Oznaczanie Wartości Opałowej; Polish Committee for Standardization: Warsaw, Poland, 2010.
- Mocek, A. Gleboznawstwo, 2015; Polish Scientific Publishers PWN: Warsaw, Poland, 2015. [Google Scholar]
- Kalembasa, D.; Malinowska, E. Zawartość potasu w różnych klonach trawy Miscanthus w zależności od nawożenia mineralnego. Fertil. Fertil. 2015, 3, 359–364. [Google Scholar]
- Kalembasa, D.; Malinowska, E.; Jaremko, D.; Jeżowski, S. Wpływ nawożenia NPK na strukturę plonu traw Miscanthus ssp. Bull. Plant Breed. Acclim. Inst. 2004, 234, 205–211. [Google Scholar]
- Lewandowski, I.; Heinz, A. Delayed harvest of Miscanthus—influences on biomass quantity and quality and enviromental impacts of energy production. Eur. J. Agron. 2003, 19, 45–63. [Google Scholar] [CrossRef]
- Ciesielczuk, T.; Kaszuba, G.; Nemś, A. Nawożenie popiołami z termicznego przekształcania biomasy źródłem pierwiastków śladowych dla gleb. Prot. Environ. Nat. Resour. 2011, 49, 219–227. [Google Scholar]
- Krüger, O.; Christian, A. Recovery potential of German sewage sludge ash. Waste Manag. 2015, 45, 400–406. [Google Scholar] [CrossRef] [PubMed]
- Jiménez, E.I.; García, V.P. Composting of domestic refuse and sewage sludge. I. Evolution of temperature, pH, C/N ratio and cation-exchange capacity. Resour. Conserv. Recycl. 1991, 6, 45–60. [Google Scholar] [CrossRef]
- Meller, E.; Bilenda, E. Wpływ popiołów ze spalania biomasy na właściwości fizykochemiczne gleb lekkich. Energy Policy 2012, 15, 287–292. [Google Scholar]
- Piekarczyk, M.; Kotwica, K.; Jaskulski, D. Wpływ stosowania popiołu ze słomy jęczmienia jarego na chemiczne właściwości gleby lekkiej. Fragm. Agron. 2011, 29, 127–135. [Google Scholar]
- Kowalczyk-Juśko, A. Metodyka szacowania regionalnych zasobów biomasy na cele energetyczne. Zesz. Nauk. SGGW W Warszawie 2010, 85, 103–116. [Google Scholar]
- Ercoli, L.; Matiotti, M.; Masoni, A.; Bonari, E. Effect of irrigation and nitro gen Fertilization on biomass field and efficiency of energy use in corp production of Miscanthus. Field Crops Res. 1999, 63, 3–11. [Google Scholar] [CrossRef]
- Iżewska, A. Zawartość metali ciężkich w trzcinie chińskiej jako wskaźnik jej wykorzystania do utylizacji osadów ściekowych i kompostów z osadów ściekowych. Zesz. Probl. Postępów Nauk. Rol. 2006, 512, 165–171. [Google Scholar]
- Lewandowski, I.; Clifton-Brown, J.; Trindade, L.M.; van der Linden, G.C.; Schwarz, K.-U.; Müller-Sämann, K.; Anisimov, A.; Chen, C.-L.; Dolstra, O.; Donnison, I.S.; et al. Progress on Optimizing Miscanthus Biomass Production for the European Bioeconomy: Results of the EU FP7 Project OPTIMISC. Front. Plant Sci. 2016, 7, 1620. [Google Scholar] [CrossRef] [Green Version]
- Podleśny, J. Trawa Miscanthus x giganteus—Jej charakterystyka oraz możliwości wykorzystania. Post. Nauk Rol. 2005, 2, 41–52. [Google Scholar]
- Jeżowski, S.; Głowacka, K.; Bocianowski, J. Zmienność wybranych klonów traw olbrzymich z rodzaju Miscanthus pod względem plonowania w pierwszych latach uprawy. Zesz. Probl. Postępów Nauk. Rol. 2007, 517, 339–348. [Google Scholar]
- Hansen King, J.A.; Bradley, R.I.; Harrion, R.; Carter, A.D. Carbon sequestration and saving potential associated with changes to the management of agricultural soils in Engeland. Soil Use Manag. 2004, 20, 394–402. [Google Scholar] [CrossRef]
- Borzęcka-Walker, M. Symulacje plonu potencjalnego i sekwestracji węgla w glebie w uprawie miskanta. Fragm. Agron. 2006, 4, 195–202. [Google Scholar]
- Lal, R. Soil carbon sequestration to mitigate climate change. Geoderma 2004, 123, 1–22. [Google Scholar] [CrossRef]
- Kahle, P.; Beuch, S.; Boelcke, B.; Leinwebe, R.P.; Schulten, H.-R. Cropping of Miscanthus in Central Europe: Biomass production and influence on nutrients and soil organic matter. Eur. J. Agron. 2001, 15, 171–184. [Google Scholar] [CrossRef]
- Komorowicz, M.; Wróblewska, H.; Pawłowski, J. Skład chemiczny i właściwości energetyczne biomasy z wybranych surowców odnawialnych. Environ. Prot. Nat. Resour. 2009, 40, 402–410. [Google Scholar]
- Mółka, J.; Łapczyńska-Kordon, B. Właściwości energetyczne wybranych gatunków biomasy. J. Agric. Eng. 2011, 6, 141–147. [Google Scholar]
First replication | |||
A1N1 | A2N1 | A3N1 | A4N1 |
A1N2 | A2N2 | A3N2 | A4N2 |
A1N3 | A2N3 | A3N3 | A4N3 |
Second replication | |||
A1N1 | A2N1 | A3N1 | A4N1 |
A1N2 | A2N2 | A3N2 | A4N2 |
A1N3 | A2N3 | A3N3 | A4N3 |
Third replication | |||
A1N2 | A2N2 | A3N3 | A4N2 |
A1N3 | A2N3 | A3N3 | A4N3 |
A1N1 | A2N2 | A3N1 | A4N1 |
Soil pH and Salinity Used in the Experiment | ||||||
pHH2O | pHKCL | Soil Salinity [Ds m−1] | ||||
5.48 | 5.1 | 0.15 | ||||
The content of assimilable forms of macronutrients in the soil used in the experiment | ||||||
Phosphorus (gP∙kg−1) | Potassium (gK∙kg−1) | Calcium (gCa∙kg−1) | Magnesium (gMg∙kg−1) | |||
6.1 | 9.85 | 28.14 | 14.42 | |||
Total content of selected metals in the soil from the experiment | ||||||
Iron (mg∙kg−1 DW) | Nickel (mg∙kg−1 DW) | Copper (mg∙kg−1 DW) | Chromium (mg∙kg−1 DW) | Zinc (mg∙kg−1 DW) | Cadmium (mg∙kg−1 DW) | Manganese (mg∙kg−1 DW) |
4265 | 14.6 | 9.2 | 28.4 | 10.6 | <0.30 | 394.6 |
pH | Nitrogen (g/kg) | Phosphorus (g/kg) | Potassium (g/kg) | Calcium (g/kg) | Magnesium (g/kg) | Lead (mg∙kg−1) |
9.2 | <1.0 | 48.6 | 21.6 | 7.7 | 1.9 | 36.42 |
Nickel (mg∙kg−1) | Copper (mg∙kg−1) | Chromium (mg∙kg−1) | Zinc (mg∙kg−1) | Cadmium (mg∙kg−1) | Mercury (mg∙kg−1) | |
100.1 | 439.82 | 47.86 | 1756.28 | 7.90 | 0.01 |
Factor | Fertilization with Ash from Thermal Utilization of Municipal Sewage Sludge (g∙pot−1) | ||||
---|---|---|---|---|---|
Nitrogen Fertilization (g∙pot−1) | Repetition | A1—0 | A2—4.16 | A3—8.32 | A4—16.64 |
I | 162 | 181 | 181 | 180 | |
II | 181 | 193 | 201 | 196 | |
0 | III | 175 | 184 | 199 | 193 |
I | 187 | 198 | 215 | 211 | |
II | 181 | 202 | 214 | 205 | |
0.1 | III | 185 | 205 | 218 | 204 |
I | 198 | 212 | 207 | 205 | |
II | 202 | 208 | 215 | 214 | |
0.2 | III | 204 | 212 | 212 | 209 |
NIRα=0.05 | P = 7.681; N = 6.022; N/P = n.i. |
Factor | Fertilization with Ash from Thermal Utilization of Municipal Sewage Sludge (g∙pot−1) | ||||
---|---|---|---|---|---|
Nitrogen Fertilization (g∙pot−1) | Repetition | A1—0 | A2—4.16 | A3—8.32 | A4—16.64 |
I | 0.88 | 1.10 | 1.10 | 1.10 | |
II | 1.10 | 1.15 | 1.20 | 1.00 | |
0 | III | 1.05 | 1.10 | 1.15 | 1.05 |
I | 1.20 | 1.20 | 1.25 | 1.20 | |
II | 1.10 | 1.15 | 1.20 | 1.15 | |
0.1 | III | 1.15 | 1.20 | 1.15 | 1.20 |
I | 1.25 | 1.30 | 1.25 | 1.25 | |
II | 1.20 | 1.25 | 1.35 | 1.20 | |
0.2 | III | 1.25 | 1.30 | 1.30 | 1.20 |
NIRα=0.05 | P = 0.066; N = 0.052; P/N = n.i. |
Factor | Fertilization with Ash from Thermal Utilization of Municipal Sewage Sludge (g∙pot−1) | ||||
---|---|---|---|---|---|
Nitrogen Fertilization (g∙pot−1) | Repetition | A1—0 | A2—4.16 | A3—8.32 | A4—16.64 |
I | 5 | 7 | 8 | 7 | |
II | 6 | 6 | 7 | 8 | |
0 | III | 5 | 7 | 7 | 7 |
I | 8 | 8 | 9 | 8 | |
II | 7 | 8 | 8 | 8 | |
0.1 | III | 7 | 9 | 9 | 9 |
I | 7 | 8 | 9 | 9 | |
II | 8 | 8 | 9 | 9 | |
0.2 | III | 7 | 9 | 8 | 8 |
NIRα=0.05 | P = 0.751; N = 0.589; N/P = n.i. |
Factor | Fertilization with Ash from Thermal Utilization of Municipal Sewage Sludge (g∙pot−1) | ||||
---|---|---|---|---|---|
Nitrogen Fertilization (g∙pot−1) | Repetition | A1—0 | A2—4.16 | A3—8.32 | A4—16.64 |
I | 17.20 | 17.41 | 17.46 | 17.40 | |
II | 17.17 | 17.35 | 17.48 | 17.36 | |
0 | III | 17.40 | 17.36 | 17.42 | 17.32 |
I | 17.70 | 17.32 | 17.82 | 17.46 | |
II | 17.72 | 17.36 | 17.64 | 17.42 | |
0.1 | III | 17.76 | 17.33 | 17.58 | 17.47 |
I | 17.94 | 17.62 | 17.71 | 17.62 | |
II | 17.84 | 17.58 | 17.64 | 17.68 | |
0.2 | III | 17.94 | 17.61 | 17.68 | 17.66 |
NIRα=0.05 | P = 0.078; N = 0.061; N/P = 0.122 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rybka, S.; Tereszkiewicz, K. An Assessment of the Effects of Applying Ash from the Thermal Disposal of Sewage Sludge for Fertilizing Energy Plants Using the Example of Giant Miscanthus (Miscanthus sinensis giganteus). Sustainability 2021, 13, 12306. https://doi.org/10.3390/su132112306
Rybka S, Tereszkiewicz K. An Assessment of the Effects of Applying Ash from the Thermal Disposal of Sewage Sludge for Fertilizing Energy Plants Using the Example of Giant Miscanthus (Miscanthus sinensis giganteus). Sustainability. 2021; 13(21):12306. https://doi.org/10.3390/su132112306
Chicago/Turabian StyleRybka, Sławomir, and Krzysztof Tereszkiewicz. 2021. "An Assessment of the Effects of Applying Ash from the Thermal Disposal of Sewage Sludge for Fertilizing Energy Plants Using the Example of Giant Miscanthus (Miscanthus sinensis giganteus)" Sustainability 13, no. 21: 12306. https://doi.org/10.3390/su132112306
APA StyleRybka, S., & Tereszkiewicz, K. (2021). An Assessment of the Effects of Applying Ash from the Thermal Disposal of Sewage Sludge for Fertilizing Energy Plants Using the Example of Giant Miscanthus (Miscanthus sinensis giganteus). Sustainability, 13(21), 12306. https://doi.org/10.3390/su132112306