Fluoride Toxicity Limit—Can the Element Exert a Positive Effect on Plants?
Abstract
:1. Introduction
2. Fluoride Content in the Plant Root Zone
3. Fluoride in Plants–Uptake
4. Effects of Fluoride on Plants
4.1. Visual Signs of Fluoride Phytotoxicity in Plants
4.2. Biochemical Changes in Plants
4.3. Ontogenetic Changes
5. Changes in the Chemical Composition of Plants Induced by Fluoride
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Schmedt auf der Günne, J.; Mangstl, M.; Kraus, F. Occurrence of difluorine F2 in nature—In situ proof and quantification by NMR spectroscopy. Angew. Chem. Int. Ed. 2012, 51, 1–4. [Google Scholar] [CrossRef]
- Tressaud, A. Fluorine: A Paradoxical Element; Elsevier: Amsterdam, The Netherlands, 2019; Volume 5, pp. 1–258. [Google Scholar] [CrossRef]
- Singh, S.; Singh, J.; Singh, N. Studies on the impact of fluoride toxicity on growth parameters of Raphanus sativus L. Indian J. Sci. Res. 2013, 4, 61–63. [Google Scholar]
- Ullah, R.; Zafar, M.S.; Shahani, N. Potential fluoride toxicity from oral medicaments: A review. Iran. J. Basic. Med. Sci. 2017, 20, 841–848. [Google Scholar] [CrossRef]
- Ahmad, M.A.; Bibi, H.; Munir, I.; Ahmad, M.N.; Zia, A.; Mustafa, G.; Ullah, I.; Khan, I. Fluoride toxicity and its effect on two varieties of Solanum lycopersicum. Fluoride 2018, 51, 267–277. [Google Scholar]
- Dutkiewicz, T. Forms of Human Exposure to Environmental Factors; Karski, J.B., Pawlak, J., Eds.; Environment and Health: Warsaw, Poland, 1995; pp. 107–113. [Google Scholar]
- Kurdi, M.S. Chronic fluorosis: The disease and its anaesthetic implications. Indian J. Anaesth. 2016, 60, 157–162. [Google Scholar] [CrossRef]
- Ranjan, R.; Ranjan, A. Fluoride Toxicity in Animals; Springer Briefs in Animal Sciences: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Helmenstine, A.M. What Is the Difference between Fluorine and Fluoride? Thought Co. 27 August 2020. Available online: thoughtco.com/fluorine-vs-fluoride-3975953 (accessed on 6 September 2021).
- Lacson, C.F.Z.; Lu, M.-H.; Huang, Y.-H. Fluoride-containing water: A global perspective and a pursuit to sustainable water defluoridation management—An overview. J. Clean. Prod. 2021, 280, 124236. [Google Scholar] [CrossRef]
- Kim, N.D.; Taylor, M.D.; Drewry, J.J. Anthropogenic fluorine accumulation in the Waikato and Bay of Plenty regions of New Zealand: Comparison of field data with projections. Environ. Earth Sci. 2016, 75, 147. [Google Scholar] [CrossRef]
- Sharma, R.; Rajinder, K. Fluoride toxicity triggered oxidative stress and the activation of antioxidative defence responses in Spirodela polyrhiza L. Schleiden. J. Plant Interact. 2019, 14, 440–452. [Google Scholar] [CrossRef] [Green Version]
- Bharti, V.K.; Giri, A.; Kumar, K. Fluoride sources, toxicity and its amelioration: A Review. Ann. Environ. Sci. Toxicol. 2017, 2, 021–032. [Google Scholar] [CrossRef]
- Naik, R.G.; Dodamani, A.; Vishwakarma, P.; Jadhav, H.C.; Khairnar, M.R.; Deshmukh, M.A.; Wadgave, U. Level of fluoride in soil, grain and water in Jalgaon District, Maharashtra, India. J. Clin. Diagn. Res. 2017, 11, ZC05–ZC07. [Google Scholar] [CrossRef]
- Ramteke, L.P.; Sahayam, A.C.; Ghosh, A.; Rambabu, U.; Reddy, M.R.P.; Popat, K.M.; Rebary, B.; Kubavat, D.; Marathe, K.V.; Ghosh, P.K. Study of fluoride content in some commercial phosphate fertilizers. J. Fluor. Chem. 2018, 210, 149–155. [Google Scholar] [CrossRef]
- Guth, S.; Hüser, S.; Roth, A.; Degen, G.; Diel, P.; Edlund, K.; Eisenbrand, G.; Engel, K.-H.; Epe, B.; Grune, T.; et al. Toxicity of fluoride: Critical evaluation of evidence for human developmental neurotoxicity in epidemiological studies, animal experiments and in vitro analyses. Arch. Toxicol. 2020, 94, 1375–1415. [Google Scholar] [CrossRef] [PubMed]
- Dehbandi, R.; Moore, F.; Keshavarzi, B.; Abbasnejad, A. Fluoride hydrogeochemistry and bioavailability in groundwater and soil of an endemic fluorosis belt, central Iran. Environ. Earth. Sci. 2017, 76, 177. [Google Scholar] [CrossRef]
- Shahab, S.; Mustafa, G.; Khan, I.; Zahid, M.; Yasinzai, M.; Ameer, N.; Asghar, N.; Ullah, I.; Nadhman, A.; Ahmed, A.; et al. Effects of fluoride ion toxicity on animals, plants, and soil health: A review. Fluoride 2017, 50, 393–408. [Google Scholar]
- Yeşilnacar, M.İ.; Demir Yetiş, A.; Dülgergil, Ç.; Kumral, M.; Atasoy, A.D. Geomedical assessment of an area having high-fluoride groundwater in southeastern Turkey. Environ. Earth Sci. 2016, 75, 162. [Google Scholar] [CrossRef]
- García, M.G.; Borgnino, L. Fluoride in the context of the environment. In Fluorine: Chemistry, Analysis, Function and Effects; Royal Society of Chemistry: London, UK, 2015; Volume 3, p. 21. [Google Scholar] [CrossRef]
- Peckham, S.; Awofeso, N. Water fluoridation: A critical review of the physiological effects of ingested fluoride as a public health intervention. Sci. World J. 2014, 2014, 293019. [Google Scholar] [CrossRef] [Green Version]
- Fuge, R. Flourine in the environment, a review of its sources and geochemistry. Appl. Geochem. 2018, 100, 393–406. [Google Scholar] [CrossRef] [Green Version]
- Singh, G.; Kumari, B.; Sinam, G.K.; Kumar, N.; Mallick, S. Fluoride distribution and contamination in the water, soil and plants continuum and its remedial technologies, an Indian perspective—A review. Environ. Pollut. 2018, 239, 95–108. [Google Scholar] [CrossRef]
- Hong, B.D.; Joo, R.N.; Lee, K.S.; Lee, D.S.; Rhie, J.H.; Min, S.W.; Song, S.G.; Chung, D.Y. Fluoride in soil and plant. Korean J. Agr. Sci. 2016, 43, 522–536. [Google Scholar]
- Bombik, E.; Bombik, A.; Rymuza, K. The influence of environmental pollution with fluorine compounds on the level of fluoride in soil, feed and eggs of laying hens in Central Pomerania, Poland. Environ. Monit. Assess. 2020, 192, 178. [Google Scholar] [CrossRef] [Green Version]
- Xiajin, W.; Finbin, X.; Aoshan, Y. Processes occurring in the soil and fluorine. World News Nat. Sci. 2017, 8, 37–42. [Google Scholar]
- Edmunds, W.M.; Smedley, P.L. Fluoride in natural waters. In Essentials of Medical Geology, 2nd ed.; Springer: Dordrecht, The Netherlands, 2013; Volume 311, p. 336. [Google Scholar]
- Bibi, S.; Farooqi, A.; Yasmin, A.; Kamran, M.A.; Niazi, N.K. Arsenic and fluoride removal by Potato Peel and Rice Husk (PPRH) ash in aqueous environments. Int. J. Phytoremediat. 2017, 19, 1029–1036. [Google Scholar] [CrossRef] [PubMed]
- Smolik, B.; Telesiński, A.; Szymczak, J.; Zakrzewska, H. Assessing of humus usefulness in limiting of soluble fluoride content in soil. Ochr. Środ. Zas. Nat. 2011, 49, 202–208. [Google Scholar]
- Katiyar, P.; Pandey, N.; Kant Sahu, K. Biological approaches of fluoride remediation: Potential for environmental clean-up. Environ. Sci. Pollut. Res. Int. 2020, 27, 13044–13055. [Google Scholar] [CrossRef]
- Shanker, S.A.; Srinivasulu, D.; Kumar Pindi, K. A study on bioremediation of fluoride-contaminated water via a novel bacterium Acinetobacter sp. (GU566361) isolated from potable water. Res. Chem. 2020, 2, 100070. [Google Scholar] [CrossRef]
- Banerjee, A.; Singh, A.; Sudarshan, M.; Roychoudhury, A. Silicon nanoparticle-pulsing mitigates fluoride stress in rice by fine-tuning the ionomic and metabolomic balance and refining agronomic traits. Chemosphere 2021, 262, 127826. [Google Scholar] [CrossRef] [PubMed]
- Ghassemi-Golezani, K.; Farhangi-Abriz, S. Biochar alleviates fluoride toxicity and oxidative stress in safflower (Carthamus tinctorius L.) seedlings. Chemosphere 2019, 223, 406–415. [Google Scholar] [CrossRef] [PubMed]
- Moon, D.H.; Jo, R.; Koutsospyros, A.; Cheong, K.; Park, J.-H. Soil washing of fluorine contaminated soil using various washing solutions. Bull. Environ. Contam. Toxicol. 2015, 94, 334–339. [Google Scholar] [CrossRef] [Green Version]
- Pelc, J.; Smolik, B.; Krupa-Małkiewicz, M. Effect of sodium fluoride on some morphological and physiological parameters of 10-day-old seedlings of various plant species. Folia Pomeranae Univ. Technol. Stetin. Agric. Aliment. Piscaria Zootech. 2017, 338, 151–158. [Google Scholar] [CrossRef]
- Panda, D. Fluoride toxicity stress: Physiological and biochemical consequences on plants. Int. J. Bioresour. Environ. Agric. Sci. 2015, 1, 170–184. [Google Scholar]
- Baunthiyal, M.; Ranghar, S. Accumulation of F by plants: Potential for phytoremediation. Clean Soil Air Water 2013, 41, 1–6. [Google Scholar] [CrossRef]
- Kumar, K.; Giri, A.; Vivek, P.; Kalaiyarasan, T.; Kumar, B. Effects of fluoride on respiration and photosynthesis in plants: An overview. Ann. Environ. Sci. Toxicol. 2017, 2, 43–47. [Google Scholar] [CrossRef]
- Ruan, J.; Ma, J.; Shi, Y.; Han, W. The impact of pH and calcium on the uptake of fluoride by tea plants (Camellia sinensis L.). Ann. Botany. 2004, 93, 97–105. [Google Scholar] [CrossRef]
- Das, C.; Uttiya, D.; Deep, C.; Kumar, D.J.; Kumar, M.N. Fluoride toxicity effects in potato plant (Solanum tuberosum, L.) grown in contaminated soils. Oct. J. Environ. Res. 2015, 3, 136–143. [Google Scholar]
- Gramowska, H.; Siepak, J. The effect of the fluorine level on the state of leaves and needles of trees in Poznań city and its vicinities. Roczn. Ochr. Srod. 2002, 4, 445–447. [Google Scholar]
- Gautam, R.; Bhsrdway, N.; Saini, Y. Fluoride accumulation by vegetables and crops grown in Nawa Tehsil of Nagaur Ditrict (Rajasthan, India). J. Phytol. 2010, 2, 80–85. [Google Scholar]
- Kłódka, D.; Musik, D.; Wójcik, K.; Telesiński, A. Fluorine content in selected vegetables grown within the area affected by emission of that element from the “POLICE”. Bromat. Chem. Toksykol. 2008, XLI, 964–969. [Google Scholar]
- Agarwal, R.; Chauhan, S.S. Bioaccumulation of sodium fluoride toxicity in plant parts at different phases and its impact on crop Hordeum vulgare (Barley) variety RD 2052. Int J. Multidiscp. Res. Dev. 2015, 2, 16–21. [Google Scholar]
- Maleki, A.; Daraei, H.; Mohammadi, E.; Zandi, S.; Teymouri, P.; Mahvi, A.H.; Gharibi, F. Daily fluoride intake from Iranian Green Tea: Evaluation of various flavorings on fluoride release. Environ. Health Insights 2016, 28, 59–63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vakdevi, V.; Gopalan, V.; Arjun, L.K. Comparison of fluoride levels (Total and Extracted) in young, old tea leaves and market tea samples along with impact of tea infusion on dental fluorosis in fluoride endemic villages of Nalgonda District, India. Adv. Dent. Oral Health 2019, 10, 555793. [Google Scholar] [CrossRef]
- Zhang, X.C.; Gao, H.J.; Wu, H.H.; Yang, T.Y.; Zhang, Z.Z.; Mao, J.D.; Wan, X.C. Ca2+ and CaM are involved in Al3+ pretreatment-promoted fluoride accumulation in tea plants (Camellia sinesis L.). Plant Physiol. Biochem. 2015, 96, 288–295. [Google Scholar] [CrossRef] [PubMed]
- Ponikvar-Svet, M. Exposure of humans to fluorine and its assessment. Fluor. Health 2008, 12, 487–549. [Google Scholar] [CrossRef]
- Koblar, A.; Tavčar, G.; Ponikvar-Svet, M. Fluoride in teas of different types and forms and the exposure of humans to fluoride with tea and diet. Food Chem. 2012, 2, 130. [Google Scholar] [CrossRef]
- Esfehani, M.; Ghasemzadeh, S.; Mirzadeh, M. Comparison of fluoride ion concentration in black, green and white tea. Int. J. Ayurvedic Med. 2018, 9, 263–265. [Google Scholar]
- Mochammad, Y. Determination of fluoride in black, green and herbal teas by ion-selective electrode using a standard-addition method. Dent. J. (Maj. Ked. Gigi) 2005, 38, 91–95. [Google Scholar] [CrossRef]
- Khandare, A.L.; Shanker Rao, G. Uptake of fluoride, aluminum and molybdenum by some vegetables from irrigation water. J. Hum. Ecol. 2006, 19, 283–288. [Google Scholar] [CrossRef] [Green Version]
- Senkondo, Y.H.; Mkumbo, S.; Sospeter, P. Fluorine and copper accumulation in lettuce grown on fluoride and copper contaminated soils. Commun. Soil Sci. Plant Anal. 2018, 49, 2638–2652. [Google Scholar] [CrossRef]
- Bachanek, T.; Hendzel, B.; Wolańska, E.; Samborski, D.; Jarosz, Z.; Pitura, K.M.; Dzida, K.; Podymniak, M.; Borowicz, B.T.; Niewczas, A.; et al. Condition of mineralized tooth tissue in a population of 15-year-old adolescents living in a region of Ukraine with slightly exceeded fluorine concentration in the water. Ann. Agric. Environ. Med. 2019, 26, 623–629. [Google Scholar] [CrossRef]
- Kusa, Z.; Wardas, W.; Sochacka, J.; Pawłowska-Góral, K. Fluoride accumulation in selected vegetables during their vegetation. Pol. J. Environ. Stud. 2004, 13, 55–58. [Google Scholar]
- Yadav, R.K.; Sharma, S.; Bansal, M.; Singh, A.; Panday, V.; Maheshwari, R. Effects of fluoride accumulation on growth of vegetables and crops in Dausa District, Rajasthan, India. Adv. Biores. 2012, 3, 14–16. [Google Scholar]
- Emekli-Alturfan Yarat, A.; Akyzus, S. Fluoride levels in various black tea, herbal and fruit infusions consumer in Turkey. Food Chem. Toxicol. 2009, 47, 1495–1498. [Google Scholar] [CrossRef] [PubMed]
- Telesiński, A.; Grzeszczuk, M.; Jadczak, D.; Zakrzewska, H. Fluoride content and biological value of flowers of some chamomile (Matricaria recutita L.) cultivars. J. Elem. 2013, 17, 703–712. [Google Scholar] [CrossRef]
- Caudhary, A.; Goutham, B.S.; Navpreet, K.; Gupta, R. Estimation of fluoride concentration of various citrus and non-citrus fruits commonly consumed and commercially available in Mathura city. J. Indian Assoc. Public Health Dent. 2013, 11, 9. [Google Scholar]
- Jaudenes, J.R.; Gutiérrez, Á.J.; Paz, S.; Rubio, C.; Hardisson, A. Fluoride risk assessment from consumption of different foods commercialized in a European region. Appl. Sci. 2020, 10, 6582. [Google Scholar] [CrossRef]
- Zohoori, F.V.; Maguire, A. Development of a database of the fluoride content of selected drinks and foods in the UK. Caries Res. 2016, 50, 331–336. [Google Scholar] [CrossRef] [Green Version]
- Balestrasse, C.B.; Lavado, K.R. Effects of high arsenic and fluoride soil concentrations on soybean plants. Phyton-Int. J. Exp. Bot. 2015, 84, 407–416. [Google Scholar]
- Telesiński, A.; Śnioszek, M. Bioindicators of environmental pollution with fluorine. Bromat. Chem. Toksykol. 2009, 4, 1148–1154. [Google Scholar]
- Choudhary, S.; Rani, M.; Singh, R.; Prasad, S.; Patra, A.; Ogireddy, S.D. Impact of fluoride on agriculture: A review on it’ s sources, toxicity in plants and mitigation strategies. Int. J. Chem. Stud. 2019, 7, 1675–1680. [Google Scholar]
- Sharma, R.; Kaur, R. Insights into fluoride-induced oxidative stress and antioxidant defences in plants. Acta Physiol. Plant. 2018, 40, 181. [Google Scholar] [CrossRef]
- Foranasiero, R.B. Phytotoxic effects of fluorides. Plant Sci. 2001, 161, 979–985. [Google Scholar] [CrossRef]
- Cai, H.; Dong, Y.; Li, Y.; Li, D.; Peng, C.; Zhang, Z.; Wan, X. Physiological and cellular responses to fluoride stress in tea (Camellia sinensis) leaves. Acta Physiol. Plant 2016, 38, 144. [Google Scholar] [CrossRef]
- Ram, A.; Verma, P.; Gadi, B.R. Effect of fluoride and salicylic acid on seedling growth and biochemical parameters of watermelon (Citrullus lanatus). Fluoride 2014, 47, 49–55. [Google Scholar]
- Chakrabarti, S.; Patra, P.K. Biochemical and antioxidant responses of paddy (Oryza sativa L.) to fluoride stress. Fluoride 2015, 48, 56–61. [Google Scholar]
- Rodrigues, D.A.; Sales, J.D.F.; Filho, S.C.V.; Rodrigues, A.A.; Teles, E.M.G.; Costa, A.C.; Reis, E.L.; Silva, T.A.D.C.; Müller, C. Bioindicator potential of Ricinus communis to simulated rainfall containing potassium fluoride. PeerJ 2020, 1, e9445. [Google Scholar] [CrossRef]
- Karolewski, P.; Siepak, J.; Gramowska, H. Response of Scots pine, Norway spruce and Douglas fir needles to environment pollution with fluorine compounds. Dendrobiology 2000, 45, 41–46. [Google Scholar]
- Gao, J.; Liu, C.; Zhang, J.; Zhu, S.; Shen, Y.; Zhang, R. Effect of fluoride on photosynthetic pigment content and antioxidant system of Hydrilla verticillata. Int. J. Phytoremediat. 2018, 20, 1257–1263. [Google Scholar] [CrossRef] [PubMed]
- Pal, K.C.; Mondal, N.K.; Bhaumik, R.; Banerjee, A.; Datta, J.K. Incorporation of fluoride in vegetation and associated biochemical changes due to fluoride contamination in water and soil: A comparative field study. Ann. Environ. Sci. 2012, 6, 123–139. [Google Scholar]
- Landis, W.G.; Sofield, R.M.; Yu, M. Introduction to Environmental Toxicology, Molecular Substructures to Ecological Landscapes, 4th ed.; CRC Press, Taylor & Francis Group: Boca Raton, FL, USA, 2011; pp. 255–268. [Google Scholar]
- Pant, S.; Pant, P.; Bhiravamurthy, P. Effects of fluoride on early root and shoot growth of typical crop plants of India. Fluoride 2008, 41, 57–60. [Google Scholar]
- Mondal, N.K. Effect of fluoride on photosynthesis, growth and accumulation of four widely cultivated rice (Oryza sativa L.) varieties in India. Ecotoxicol. Environ. Saf. 2017, 144, 36–44. [Google Scholar] [CrossRef] [PubMed]
- Sachan, P.; Lal, N. Effect of sodium fluoride on germination, seedling growth and photosynthetic pigments in Cicer arietinum L. and Hordeum vulgare L. MOJ Eco Environ. Sci. 2018, 3, 300–304. [Google Scholar] [CrossRef]
- Szostek, R.; Ciećko, Z. Effect of soil contamination with fluorine on the content of phosphorus in biomass of crops. J. Elem. 2015, 20, 731–742. [Google Scholar] [CrossRef]
- Fung, K.F.; Wong, M.H. Effects of soil pH on the uptake of Al, F and other elements by tea plants. J. Sci. Food Agric. 2002, 82, 146–152. [Google Scholar] [CrossRef]
- Nagaraju, A.; Thejaswi, A.; Aitkenhead-Peterson, J.A. Fluoride and heavy metal accumulation by vegetation in the fluoride affected area of Talupula, Anantapur district, Andhra Pradesh. J. Geol. Soc. India 2017, 89, 27–32. [Google Scholar] [CrossRef]
- Jha, S.K.; Nayak, A.K.; Sharma, Y.K. Fluoride toxicity effects in onion (Allium cepa L.) grown in contaminated soils. Chemosphere 2009, 76, 353. [Google Scholar] [CrossRef] [PubMed]
- Boukhris, A.; Laffont-Schwob, I.; Folzer, H.; Rabier, J.; Mezghani, I. Tolerance strategies of two Mediterranean native xerophytes under fluoride pollution in Tunisia. Environ. Sci. Pollut. Res. Int. 2018, 25, 34753–34764. [Google Scholar] [CrossRef] [PubMed]
Kind of Tea | mg F/L |
---|---|
White | 1.37 |
Black | 1.84 |
Green | 0.23 |
Grup | Species | Concentration (mg·kg) |
---|---|---|
vegetables | onion | 0.01 [60] |
lettuce | 0.08 [60]; 0.05 [61] | |
potato | 0.99 [60] | |
tomatoe | 0.96 [60]; 0.01 [61] | |
carrots | 0.04 [60] | |
celery | 0.01 [60] | |
cucumber | 0.01 [60] | |
fruits | bananas | 1.72 [60] |
plums | <0.005 [61] | |
berries | 0.008 [60] | |
kiwi | 0.010 [60] | |
oranges | 0.023 [61] | |
grapes | 0.028 [61] | |
cherries | 0.010 [61] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jarosz, Z.; Pitura, K. Fluoride Toxicity Limit—Can the Element Exert a Positive Effect on Plants? Sustainability 2021, 13, 12065. https://doi.org/10.3390/su132112065
Jarosz Z, Pitura K. Fluoride Toxicity Limit—Can the Element Exert a Positive Effect on Plants? Sustainability. 2021; 13(21):12065. https://doi.org/10.3390/su132112065
Chicago/Turabian StyleJarosz, Zbigniew, and Karolina Pitura. 2021. "Fluoride Toxicity Limit—Can the Element Exert a Positive Effect on Plants?" Sustainability 13, no. 21: 12065. https://doi.org/10.3390/su132112065
APA StyleJarosz, Z., & Pitura, K. (2021). Fluoride Toxicity Limit—Can the Element Exert a Positive Effect on Plants? Sustainability, 13(21), 12065. https://doi.org/10.3390/su132112065