Neutral Sugar Content and Composition as a Sensitive Indicator of Fire Severity in the Andisols of an Araucaria–Nothofagus Forest in Southern Chile
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description and Soil Sampling
2.2. Density Fractionation
2.3. Laboratory Analyses, Total Carbon, and Nitrogen Determination
2.4. Determination of Neutral Sugars
2.5. Solid-State 13C NMR Spectroscopy
2.6. Statistical Analysis
3. Results
3.1. Soil Characteristics and oPOM Fractions
3.2. Solid-State 13C NMR Spectroscopy
3.3. Neutral Sugars Content in Bulk Soils and Occluded Particulate Organic Matter in Soil
4. Discussion
4.1. Effects of Fire on Soil Characteristics, oPOM Fractions and Sugars
4.2. Sources of Sugars in Soil
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Veblen, T.T. Regeneration Patterns in Araucaria Araucana Forests in Chile. J. Biogeogr. 1982, 9, 11–28. [Google Scholar] [CrossRef]
- González, M.E.; Veblen, T.T.; Sibold, J.S. Fire History of Araucaria–Nothofagus Forests in Villarrica National Park, Chile. J. Biogeogr. 2005, 32, 1187–1202. [Google Scholar] [CrossRef]
- González, M.E.; Veblen, T.T.; Sibold, J.S. Influence of Fire Severity on Stand Development of Araucaria Araucana–Nothofagus Pumilio Stands in the Andean Cordillera of South-Central Chile. Austral Ecol. 2010, 35, 597–615. [Google Scholar] [CrossRef]
- Mataix-Solera, J.; Cerdà, A.; Arcenegui, V.; Jordán, A.; Zavala, L.M. Fire Effects on Soil Aggregation: A Review. Earth-Sci. Rev. 2011, 109, 44–60. [Google Scholar] [CrossRef]
- Memoli, V.; Panico, S.C.; Santorufo, L.; Barile, R.; Di Natale, G.; Di Nunzio, A.; Toscanesi, M.; Trifuoggi, M.; De Marco, A.; Maisto, G. Do Wildfires Cause Changes in Soil Quality in the Short Term? Int. J. Environ. Res. Public Health 2020, 17, 5343. [Google Scholar] [CrossRef] [PubMed]
- Knelman, J.E.; Schmidt, S.K.; Garayburu-Caruso, V.; Kumar, S.; Graham, E.B. Multiple, Compounding Disturbances in a Forest Ecosystem: Fire Increases Susceptibility of Soil Edaphic Properties, Bacterial Community Structure, and Function to Change with Extreme Precipitation Event. Soil Syst. 2019, 3, 40. [Google Scholar] [CrossRef] [Green Version]
- Villadas, P.J.; Díaz-Díaz, S.; Rodríguez-Rodríguez, A.; del Arco-Aguilar, M.; Fernández-González, A.J.; Pérez-Yépez, J.; Arbelo, C.; González-Mancebo, J.M.; Fernández-López, M.; León-Barrios, M. The Soil Microbiome of the Laurel Forest in Garajonay National Park (La Gomera, Canary Islands): Comparing Unburned and Burned Habitats after a Wildfire. Forests 2019, 10, 1051. [Google Scholar] [CrossRef] [Green Version]
- Santorufo, L.; Memoli, V.; Panico, S.C.; Santini, G.; Barile, R.; Giarra, A.; Di Natale, G.; Trifuoggi, M.; De Marco, A.; Maisto, G. Combined Effects of Wildfire and Vegetation Cover Type on Volcanic Soil (Functions and Properties) in a Mediterranean Region: Comparison of Two Soil Quality Indices. Int. J. Environ. Res. Public Health 2021, 18, 5926. [Google Scholar] [CrossRef]
- Cambardella, C.A.; Elliott, E.T. Particulate Soil Organic-Matter Changes across a Grassland Cultivation Sequence. Soil Sci. Soc. Am. J. 1992, 56, 777–783. [Google Scholar] [CrossRef]
- Chan, K.Y.; Heenan, D.P.; Oates, A. Soil Carbon Fractions and Relationship to Soil Quality under Different Tillage and Stubble Management. Soil Tillage Res. 2002, 63, 133–139. [Google Scholar] [CrossRef]
- Chen, H.; Rhoades, C.C.; Chow, A.T. Characteristics of Soil Organic Matter 14 Years after a Wildfire: A Pyrolysis-Gas-Chromatography Mass Spectrometry (Py-GC-MS) Study. J. Anal. Appl. Pyrolysis 2020, 152, 104922. [Google Scholar] [CrossRef]
- Golchin, A.; Oades, J.M.; Skjemstad, J.O.; Clarke, P. Soil Structure and Carbon Cycling. Soil Res. 1994, 32, 1043–1068. [Google Scholar] [CrossRef]
- Kölbl, A.; Kögel-Knabner, I. Content and Composition of Free and Occluded Particulate Organic Matter in a Differently Textured Arable Cambisol as Revealed by Solid-State 13C NMR Spectroscopy. J. Plant Nutr. Soil Sci. 2004, 167, 45–53. [Google Scholar] [CrossRef]
- Rivas, Y.; Huygens, D.; Knicker, H.; Godoy, R.; Matus, F.; Boeckx, P. Soil Nitrogen Dynamics Three Years after a Severe Araucaria–Nothofagus Forest Fire. Austral Ecol. 2012, 37, 153–163. [Google Scholar] [CrossRef]
- Gunina, A.; Kuzyakov, Y. Sugars in Soil and Sweets for Microorganisms: Review of Origin, Content, Composition and Fate. Soil Biol. Biochem. 2015, 90, 87–100. [Google Scholar] [CrossRef]
- Boon, J.J.; Pastorova, I.; Botto, R.E.; Arisz, P.W. Structural Studies on Cellulose Pyrolysis and Cellulose Chars by PYMS, PYGCMS, FTIR, NMR and by Wet Chemical Techniques. Biomass Bioenergy 1994, 7, 25–32. [Google Scholar] [CrossRef]
- Shrestha, G.; Traina, S.J.; Swanston, C.W. Black Carbon’s Properties and Role in the Environment: A Comprehensive Review. Sustainability 2010, 2, 294–320. [Google Scholar] [CrossRef] [Green Version]
- Martín, A.; Díaz-Raviña, M.; Carballas, T. Evolution of Composition and Content of Soil Carbohydrates Following Forest Wildfires. Biol. Fertil. Soils 2009, 45, 511–520. [Google Scholar] [CrossRef]
- Mastrolonardo, G.; Rumpel, C.; Forte, C.; Doerr, S.H.; Certini, G. Abundance and Composition of Free and Aggregate-Occluded Carbohydrates and Lignin in Two Forest Soils as Affected by Wildfires of Different Severity. Geoderma 2015, 245–246, 40–51. [Google Scholar] [CrossRef] [Green Version]
- Panichini, M.; Neculman, R.; Godoy, R.; Arancibia-Miranda, N.; Matus, F. Understanding Carbon Storage in Volcanic Soils under Selectively Logged Temperate Rainforests. Geoderma 2017, 302, 76–88. [Google Scholar] [CrossRef]
- Hu, S.; Coleman, D.C.; Beare, M.H.; Hendrix, P.F. Soil Carbohydrates in Aggrading and Degrading Agroecosystems: Influences of Fungi and Aggregates. Agric. Ecosyst. Environ. 1995, 54, 77–88. [Google Scholar] [CrossRef]
- Chantigny, M.H.; Angers, D.A.; Beauchamp, C.J. Decomposition of De-Inking Paper Sludge in Agricultural Soils as Characterized by Carbohydrate Analysis. Soil Biol. Biochem. 2000, 32, 1561–1570. [Google Scholar] [CrossRef]
- Oades, J.M. Soil Organic Matter and Structural Stability: Mechanisms and Implications for Management. Plant Soil 1984, 76, 319–337. [Google Scholar] [CrossRef]
- CONAF. Antecedentes Sobre Impacto de Incendios Forestales en la IX Región. Documento de Visita a la Zona Afectada por Incendios; Corporación Nacional Forestal de Chile: Temuco, Chile, 2002. [Google Scholar]
- Keeley, J.E. Fire Intensity, Fire Severity and Burn Severity: A Brief Review and Suggested Usage. Int. J. Wildland Fire 2009, 18, 116–126. [Google Scholar] [CrossRef]
- González, M.E.; Veblen, T.T. Incendios En Bosques de Araucaria Araucana y Consideraciones Ecológicas al Madereo de Aprovechamiento En Áreas Recientemente Quemadas. Rev. Chil. Hist. Nat. 2007, 80, 243–253. [Google Scholar] [CrossRef] [Green Version]
- Black, G.R.; Hartge, K.H. Bulk Density. In Methods of Soil Analysis, Part I. Physical and Mineralogical Methods; Agronomy Monograph; American Society of Agronomy/Soil Science Society of America: Madison, WI, USA, 1986; pp. 363–375. [Google Scholar]
- Soil Survey Laboratory Staff. Soil Survey Laboratory Methods Manual. Soil Survey Investigations Report; USDA-SCS: Washington DC, USA, 1992; Volume 42. [Google Scholar]
- Kaiser, K.; Eusterhues, K.; Rumpel, C.; Guggenberger, G.; Kögel-Knabner, I. Stabilization of Organic Matter by Soil Minerals—Investigations of Density and Particle-Size Fractions from Two Acid Forest Soils. J. Plant Nutr. Soil Sci. 2002, 165, 451–459. [Google Scholar] [CrossRef]
- Kölbl, A.; Leifeld, J.; Kögel-Knabner, I. A Comparison of Two Methods for the Isolation of Free and Occluded Particulate Organic Matter. J. Plant Nutr. Soil Sci. 2005, 168, 660–667. [Google Scholar] [CrossRef]
- Schmidt, M.W.I.; Rumpel, C.; Kögel-Knabner, I. Evaluation of an Ultrasonic Dispersion Procedure to Isolate Primary Organomineral Complexes from Soils. Eur. J. Soil Sci. 1999, 50, 87–94. [Google Scholar] [CrossRef]
- Spielvogel, S.; Prietzel, J.; Kögel-Knabner, I. Changes of Lignin Phenols and Neutral Sugars in Different Soil Types of a High-Elevation Forest Ecosystem 25 Years after Forest Dieback. Soil Biol. Biochem. 2007, 39, 655–668. [Google Scholar] [CrossRef]
- Amelung, W.; Cheshire, M.V.; Guggenberger, G. Determination of Neutral and Acidic Sugars in Soil by Capillary Gas-Liquid Chromatography after Trifluoroacetic Acid Hydrolysis. Soil Biol. Biochem. 1996, 28, 1631–1639. [Google Scholar] [CrossRef]
- Black, G.E.; Fox, A. Recent Progress in the Analysis of Sugar Monomers from Complex Matrices Using Chromatography in Conjunction with Mass Spectrometry or Stand-Alone Tandem Mass Spectrometry. J. Chromatogr. A 1996, 720, 51–60. [Google Scholar] [CrossRef]
- Rumpel, C.; Dignac, M.-F. Gas Chromatographic Analysis of Monosaccharides in a Forest Soil Profile: Analysis by Gas Chromatography after Trifluoroacetic Acid Hydrolysis and Reduction–Acetylation. Soil Biol. Biochem. 2006, 38, 1478–1481. [Google Scholar] [CrossRef]
- Knicker, H. Pyrogenic Organic Matter in Soil: Its Origin and Occurrence, Its Chemistry and Survival in Soil Environments. Quat. Int. 2011, 243, 251–263. [Google Scholar] [CrossRef]
- Golchin, A.; Clarke, P.; Oades, J.M. The Heterogeneous Nature of Microbial Products as Shown by Solid-State13C CP/MAS NMR Spectroscopy. Biogeochemistry 1996, 34, 71–97. [Google Scholar] [CrossRef]
- Kögel-Knabner, I. The Macromolecular Organic Composition of Plant and Microbial Residues as Inputs to Soil Organic Matter. Soil Biol. Biochem. 2002, 34, 139–162. [Google Scholar] [CrossRef]
- Mueller, C.W.; Koegel-Knabner, I. Soil Organic Carbon Stocks, Distribution, and Composition Affected by Historic Land Use Changes on Adjacent Sites. Biol. Fertil. Soils 2009, 45, 347–359. [Google Scholar] [CrossRef]
- Tisdall, J.M.; Oades, J.M. Organic Matter and Water-Stable Aggregates in Soils. J. Soil Sci. 1982, 33, 141–163. [Google Scholar] [CrossRef]
- Oades, J.M. The role of biology in the formation, stabilization and degradation of soil structure. In Soil Structure/Soil Biota Interrelationships; Brussaard, L., Kooistra, M.J., Eds.; Elsevier: Amsterdam, The Netherlands, 1993; pp. 377–400. ISBN 978-0-444-81490-6. [Google Scholar]
- Jastrow, J.D.; Miller, R.M.; Boutton, T.W. Carbon Dynamics of Aggregate-Associated Organic Matter Estimated by Carbon-13 Natural Abundance. Soil Sci. Soc. Am. J. 1996, 60, 801–807. [Google Scholar] [CrossRef]
- Ashagrie, Y.; Zech, W.; Guggenberger, G.; Mamo, T. Soil Aggregation, and Total and Particulate Organic Matter Following Conversion of Native Forests to Continuous Cultivation in Ethiopia. Soil Tillage Res. 2007, 94, 101–108. [Google Scholar] [CrossRef]
- Matus, F.; Garrido, E.; Sepúlveda, N.; Cárcamo, I.; Panichini, M.; Zagal, E. Relationship between Extractable Al and Organic C in Volcanic Soils of Chile. Geoderma 2008, 148, 180–188. [Google Scholar] [CrossRef]
- Takahashi, T.; Dahlgren, R.A. Nature, Properties and Function of Aluminum–Humus Complexes in Volcanic Soils. Geoderma 2016, 263, 110–121. [Google Scholar] [CrossRef] [Green Version]
- Pattinson, G.S.; Hammill, K.A.; Sutton, B.G.; Mcgee, P.A. Simulated fire reduces the density of arbuscular mycorrhizal fungi at the soil surface. Mycol. Res. 1999, 103, 491–496. [Google Scholar] [CrossRef]
- Neary, D.G.; Klopatek, C.C.; DeBano, L.F.; Ffolliott, P.F. Fire Effects on Belowground Sustainability: A Review and Synthesis. For. Ecol. Manag. 1999, 122, 51–71. [Google Scholar] [CrossRef]
- Hilscher, A.; Knicker, H. Degradation of Grass-Derived Pyrogenic Organic Material, Transport of the Residues within a Soil Column and Distribution in Soil Organic Matter Fractions during a 28 month Microcosm Experiment. Org. Geochem. 2011, 42, 42–54. [Google Scholar] [CrossRef]
- Baldock, J.A.; Oades, J.M.; Waters, A.G.; Peng, X.; Vassallo, A.M.; Wilson, M.A. Aspects of the Chemical Structure of Soil Organic Materials as Revealed by Solid-State13C NMR Spectroscopy. Biogeochemistry 1992, 16, 1–42. [Google Scholar] [CrossRef]
- Golchin, A.; Baldock, J.A.; Oades, J.M. Soil Processes and the Carbon Cycle, 1st ed.; CRC Press: Boca Raton, FL, USA, 1997; A Model Linking Organic Matter Decomposition, Chemistry, and Aggregate Dynamics. [Google Scholar]
- Alexis, M.A.; Rumpel, C.; Knicker, H.; Leifeld, J.; Rasse, D.; Péchot, N.; Bardoux, G.; Mariotti, A. Thermal Alteration of Organic Matter during a Shrubland Fire: A Field Study. Org. Geochem. 2010, 41, 690–697. [Google Scholar] [CrossRef]
- Baldock, J.A.; Smernik, R.J. Chemical Composition and Bioavailability of Thermally Altered Pinus Resinosa (Red Pine) Wood. Org. Geochem. 2002, 33, 1093–1109. [Google Scholar] [CrossRef]
- Almendros, G.; González-Vila, F.J.; Martín, F.; Fründ, R.; Lüdemann, H.-D. Solid State NMR Studies of Fire-Induced Changes in the Structure of Humic Substances. Sci. Total Environ. 1992, 117–118, 63–74. [Google Scholar] [CrossRef] [Green Version]
- Almendros, G.; Dorado, J.; González-Vila, F.J.; Martin, F. Pyrolysis of Carbohydrate-Derived Macromolecules: Its Potential in Monitoring the Carbohydrate Signature of Geopolymers. J. Anal. Appl. Pyrolysis 1997, 40–41, 599–610. [Google Scholar] [CrossRef]
- Skjemstad, J.O.; Clarke, P.; Taylor, J.A.; Oades, J.M.; Mcclure, S.G. The Chemistry and Nature of Protected Carbon in Soil. Soil Res. 1996, 34, 251–271. [Google Scholar] [CrossRef]
- Röderstein, M.; Hertel, D.; Leuschner, C. Above- and below-ground litter production in three tropical montane forests in southern Ecuador. J. Trop. Ecol. 2005, 21, 483–492. [Google Scholar] [CrossRef] [Green Version]
- Guggenberger, G.; Thomas, R.J.; Zech, W. Soil Organic Matter within Earthworm Casts of an Anecic-Endogeic Tropical Pasture Community, Colombia. Appl. Soil Ecol. 1996, 3, 263–274. [Google Scholar] [CrossRef]
- Pan, X.; Song, W.; Zhang, D. Earthworms (Eisenia Foetida, Savigny) Mucus as Complexing Ligand for Imidacloprid. Biol. Fertil. Soils 2010, 46, 845–850. [Google Scholar] [CrossRef]
- He, Z.; Olk, D.C.; Tewolde, H.; Zhang, H.; Shankle, M. Carbohydrate and Amino Acid Profiles of Cotton Plant Biomass Products. Agriculture 2020, 10, 2. [Google Scholar] [CrossRef] [Green Version]
- Rumpel, C.; Eusterhues, K.; Kögel-Knabner, I. Non-Cellulosic Neutral Sugar Contribution to Mineral Associated Organic Matter in Top- and Subsoil Horizons of Two Acid Forest Soils. Soil Biol. Biochem. 2010, 42, 379–382. [Google Scholar] [CrossRef]
- Murayama, S. Changes in the Monosaccharide Composition during the Decomposition of Straws under Field Conditions. Soil Sci. Plant Nutr. 1984, 30, 367–381. [Google Scholar] [CrossRef] [Green Version]
Fire Severity 1 | Soil Depth | SOC 2 | Total N | C/N | BD 3 | pHwater |
---|---|---|---|---|---|---|
(cm) | (g kg−1) | (g kg−1) | (Mg m−3) | |||
U | 0–5 | 156.8 (7.6) * | 8.0 (0.4) * | 19.5 (1.7) | 0.40 (0.03) | 4.9 (0.3) |
5–10 | 162.9 (26.8) * | 5.2 (0.6) | 31.3 (4.1) * | 0.45 (0.05) | 5.3 (0.1) | |
LS | 0–5 | 121.1 (23.9) | 5.8 (1.0) | 20.9 (3.2) | 0.46 (0.02) | 5.4 (0.2) |
5–10 | 84.1 (12.1) | 5.1 (0.8) | 16.5 (0.3) | 0.41 (0.02) | 5.2 (0.1) | |
MS | 0–5 | 81.2 (14.9) | 5.5 (0.6) | 14.8 (0.4) | 0.44 (0.03) | 5.3 (0.2) |
5–10 | 107.9 (17.7) | 4.4 (0.4) | 24.5 (4.2) | 0.47 (0.04) | 5.0 (0.3) | |
HS | 0–5 | 98.4 (13.9) | 4.1 (0.4) | 24.0 (4.1) | 0.47 (0.00) | 5.1 (0.2) |
5–10 | 72.9 (13.8) | 2.6 (0.2) | 28.0 (2.1) | 0.46 (0.03) | 5.2 (0.1) |
Fire Severity 1 | Soil Depth (cm) | oPOMc 2 | oPOMf 3 | SOC 4 | Total N | ||
---|---|---|---|---|---|---|---|
oPOMc 2 | oPOMf 3 | oPOMc 2 | oPOMf 3 | ||||
g kg−1 soil | g kg−1 fraction | ||||||
U | 0–5 | 23.0 (0.9) * | 33.4 (1.4) * | 9.7 (0.06) * | 15.3 (0.06) * | 1.6 (0.06) | 1.7 (0.02) |
5–10 | 10.5 (1.0) | 20.5 (3.5) | 3.7 (0.01) | 9.8 (0.03) | 0.5 (0.04) | 0.8 (0.03) | |
LS | 0–5 | 9.3 (3.5) | 23.3 (0.3) * | 4.6 (0.04) | 7.7 (0.03) | 0.7 (0.03) | 1.4 (0.03) |
5–10 | 13.0 (1.3) | 28.3 (2.0) * | 5.9 (0.05) | 6.7 (0.04) | 0.6 (0.02) | 1.0 (0.01) | |
MS | 0–5 | 8.0 (0.5) | 3.6 (3.4) | 3.6 (0.02) | 1.2 (0.07) | 0.4 (0.03) | 0.2 (0.02) |
5–10 | 10.7 (0.8) | 12.6 (1.3) | 3.7 (0.02) | 3.7 (0.04) | 0.5 (0.02) | 0.2 (0.01) | |
HS | 0–5 | 16.3 (6.3) | 6.6 (1.7) | 7.5 (0.05) | 2.8 (0.01) | 1.6 (0.01) | 0.3 (0.22) |
5–10 | 17.0 (2.7) | 9.6 (0.6) | 7.6 (0.03) | 2.9 (0.01) | 0.9 (0.06) | 0.4 (0.03) |
Fire Severity 1 | Soil Depth (cm) | Carboxyl C (160–245 ppm) | Aryl C (110–160 ppm) | O-alkyl C (45–110 ppm) | Alkyl C (0–45 ppm) | ||||
---|---|---|---|---|---|---|---|---|---|
oPOMc 2 | oPOMf 3 | oPOMc | oPOMf | oPOMc | oPOMf | oPOMc | oPOMf | ||
% | |||||||||
U | 0–5 | 6.2 | 8.2 | 15.4 | 14.4 | 48.2 | 37.5 | 30.3 | 45.9 |
5–10 | 11.9 | 6.6 | 15.4 | 17.4 | 26.8 | 29.5 | 45.9 | 46.5 | |
LS | 0–5 | 13.0 | 12.7 | 21.9 | 23.7 | 29.1 | 28.3 | 36.0 | 35.3 |
5–10 | 11.7 | 8.3 | 21.8 | 27.0 | 30.2 | 34.9 | 36.2 | 29.8 | |
MS | 0–5 | 13.6 | 11.9 | 40.3 | 28.2 | 21.1 | 24.2 | 24.9 | 35.8 |
5–10 | 13.6 | 12.6 | 40.4 | 23.0 | 20.9 | 28.0 | 25.1 | 36.4 | |
HS | 0–5 | 18.0 | 22.9 | 54.4 | 42.3 | 16.2 | 22.7 | 11.4 | 12.1 |
5–10 | 13.2 | 14.4 | 35.7 | 29.7 | 27.2 | 25.4 | 23.9 | 31.1 |
Fire Severity 1 | Soil Depth (cm) | Rhamnose | Fucose | Arabinose | Xylose | Mannose | Galactose | Glucose | Total Sugar | G+M/A+X 2 | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Desoxyhexoses | Pentoses | Hexoses | ||||||||||
mg | mg g C−1 | |||||||||||
HS | 0–5 | n.d 3 | n.d | n.d | n.d | 0.87 (0.02) | 1.49 (0.13) | 0.31 (0.21) | 105.3 (12.4) | n.d | ||
5–10 | 0.07 (0.04) | 0.03 (0.0) | n.d | 0.03 (0.00) | 0.72 (0.01) | 1.19 (0.03) | 0.75 (0.01) | 147.6 (2.4) | n.d | |||
MS | 0–5 | 0.14 (0.01) | 0.22 (0.00) | 0.19 (0.00) | 0.13 (0.00) | 0.92 (0.01) | 1.87 (0.06) | 2.08 (0.02) | 153.7 (2.3) | 8.9 | ||
5–10 | 0.23 (0.00) | 0.23 (0.02) | 0.17 (0.04) | 0.19 (0.03) | 1.03 (0.04) | 1.81 (0.00) | 1.97 (0.05) | 185.5 (6.1) | 7.0 | |||
LS | 0–5 | 0.02 (0.00) | 0.02 (0.00) | 0.02 (0.00) | 0.03 (0.00) | 0.91 (0.04) | 1.47 (0.02) | 0.64 (0.00) | 127.5 (4.8) | 5.3 | ||
5–10 | 0.23 (0.03) | 0.26 (0.00) | 0.23 (0.01) | 0.35 (0.00) | 1.02 (0.00) | 1.68 (0.03) | 2.48 (0.07) | 219.5 (3.4) | 3.3 | |||
U | 0–5 | 0.60 (0.01) | 0.36 (0.01) | 0.72 (0.04) | 0.90 (0.02) | 1.69 (0.06) | 3.11 (0.17) | 6.98 (0.10) | 357.3 (10.9) | 3.0 | ||
5–10 | 0.32 (0.02) | 0.24 (0.01) | 0.34 (0.00) | 0.41 (0.00) | 1.16 (0.01) | 2.12 (0.11) | 3.85 (0.02) | 223.2 (2.9) | 4.0 |
Fire Severity 1 | Soil Depth (cm) | Fraction (oPOM) (μm) | Rhamnose | Fucose | Arabinose | Xylose | Mannose | Galactose | Glucose | Total Sugar | G+M/A+X 2 | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Desoxyhexoses | Pentoses | Hexoses | |||||||||||
mg | mg g C−1 | ||||||||||||
HS | 0–5 | oPOMc 3 | 0.04 (0.00) | n.d 4 | 0.18 (0.01) | 0.27 (0.00) | 1.06 (0.07) | 1.75 (0.01) | 1.59 (0.00) | 27.9 (0.5) | 6.3 | ||
oPOMf 5 | 0.28 (0.02) | 0.18 (0.01) | 0.59 (0.00) | 0.63 (0.00) | 0.51 (0.02) | 2.13 (0.08) | 3.47 (0.02) | 37.8 (3.6) | 2.2 | ||||
5–10 | oPOMc | 0.09 (0.00) | 0.07 (0.00) | 0.31 (0.00) | 0.52 (0.00) | 1.04 (0.03) | 2.02 (0.01) | 2.78 (0.05) | 48.7 (0.4) | 3.7 | |||
oPOMf | 0.28 (0.02) | 0.19 (0.00) | 0.14 (0.00) | 0.13 (0.00) | 1.11 (0.03) | 2.07 (0.02) | 2.01 (0.04) | 75.7 (0.2) | 11.5 | ||||
MS | 0–5 | oPOMc | 0.22 (0.02) | 0.18 (0.02) | 0.52 (0.01) | 0.40 (0.02) | 1.21 (0.00) | 2.44 (0.07) | 2.73 (0.08) | 62.8 (1.8) | 3.9 | ||
oPOMf | 0.60 (0.00) | 0.54 (0.02) | 0.29 (0.01) | 0.24 (0.01) | 1.51(0.00) | 2.94 (0.03) | 4.14 (0.14) | 94.1 (1.6) | 8.4 | ||||
5–10 | oPOMc | 0.45 (0.01) | 0.44 (0.01) | 0.32 (0.02) | 0.20 (0.02) | 1.42 (0.02) | 2.81 (0.04) | 3.39 (0.13) | 80.3 (2.3) | 7.6 | |||
oPOMf | 0.05 (0.00) | 0.03 (0.02) | 0.11 (0.00) | 0.10 (0.01) | 1.02 (0.04) | 1.66 (0.06) | 2.03 (0.07) | 89.7 (3.6) | 12.9 | ||||
LS | 0–5 | oPOMc | n.d. | n.d. | n.d. | 0.06 (0.00) | 0.88 (0.01) | 1.26 (0.01) | 1.49 (0.01) | 67.8 (0.2) | n.d. | ||
oPOMf | 0.87 (0.00) | 0.39 (0.01) | 0.79 (0.01) | 0.95 (0.02) | 1.90 (0.17) | 2.88 (0.09) | 5.73 (0.14) | 181.3 (4.4) | 2.6 | ||||
5–10 | oPOMc | 0.51 (0.01) | 0.33 (0.01) | 1.23 (0.00) | 1.46 (0.00) | 0.98 (0.16) | 3.45 (0.17) | 5.26 (0.68) | 92.3 (8.5) | 1.6 | |||
oPOMf | 0.64 (0.05) | 0.32 (0.05) | 0.35 (0.09) | 0.49 (0.00) | 0.87 (0.40) | 2.10 (0.05) | 2.61 (0.04) | 128.5 (1.2) | 3.3 | ||||
U | 0–5 | oPOMc | 0.90 (0.11) | 0.50 (0.00) | 1.30 (0.03) | 1.58 (0.01) | 1.42 (0.09) | 3.96 (0.17) | 8.50 (0.29) | 173.9 (5.8) | 1.9 | ||
oPOMf | 0.90 (0.03) | 0.50 (0.03) | 0.96 (0.03) | 1.19 (0.06) | 1.35 (0.01) | 3.56 (0.18) | 8.00 (0.25) | 126.4 (4.5) | 2.3 | ||||
5–10 | oPOMc | 0.19 (0.03) | 0.10 (0.00) | 0.41 (0.01) | 0.42 (0.00) | 1.40 (0.02) | 1.91 (0.05) | 2.91 (0.03) | 116.9 (0.0) | 2.8 | |||
oPOMf | 0.04 (0.01) | 0.51 (0.02) | 0.79 (0.01) | 1.07 (0.02) | 2.31 (0.33) | 3.62 (0.02) | 5.79 (0.16) | 176.6 (6.8) | 3.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rivas, Y.; Retamal-Salgado, J.; Knicker, H.; Matus, F.; Rivera, D. Neutral Sugar Content and Composition as a Sensitive Indicator of Fire Severity in the Andisols of an Araucaria–Nothofagus Forest in Southern Chile. Sustainability 2021, 13, 12061. https://doi.org/10.3390/su132112061
Rivas Y, Retamal-Salgado J, Knicker H, Matus F, Rivera D. Neutral Sugar Content and Composition as a Sensitive Indicator of Fire Severity in the Andisols of an Araucaria–Nothofagus Forest in Southern Chile. Sustainability. 2021; 13(21):12061. https://doi.org/10.3390/su132112061
Chicago/Turabian StyleRivas, Yessica, Jorge Retamal-Salgado, Heike Knicker, Francisco Matus, and Diego Rivera. 2021. "Neutral Sugar Content and Composition as a Sensitive Indicator of Fire Severity in the Andisols of an Araucaria–Nothofagus Forest in Southern Chile" Sustainability 13, no. 21: 12061. https://doi.org/10.3390/su132112061
APA StyleRivas, Y., Retamal-Salgado, J., Knicker, H., Matus, F., & Rivera, D. (2021). Neutral Sugar Content and Composition as a Sensitive Indicator of Fire Severity in the Andisols of an Araucaria–Nothofagus Forest in Southern Chile. Sustainability, 13(21), 12061. https://doi.org/10.3390/su132112061