Modeling the Spatial Distribution of Soil Nitrogen Content at Smallholder Maize Farms Using Machine Learning Regression and Sentinel-2 Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Field Data Collection and Laboratory Analysis
2.3. Sentinel-2 Data Acquisition and Pre-Processing
2.4. Spectral Indices
2.5. Environmental Variables
2.6. Machine Learning Regression Models
2.6.1. Random Forest Regression
2.6.2. Gradient Boosting Regression
2.6.3. Extreme Gradient Boosting Regression
2.6.4. Experiments
2.7. Model Evaluation
3. Results
3.1. Statistical Analaysis for Soil Nitrogen Content Measurements
3.2. Model Evaluation
3.3. Variable Importance
3.4. Mapping Soil Nitrogen Content for Smallholder Maize Farms
4. Discussion
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sinclair, T.R.; Muchow, R.C. Effect of Nitrogen Supply on Maize Yield: I. Modeling Physiological Responses. Agron. J. 1995, 87, 632–641. [Google Scholar] [CrossRef]
- Otto, R.; Castro, S.A.Q.; Mariano, E.; Castro, S.G.Q.; Franco, H.C.J.; Trivelin, P.C.O. Nitrogen Use Efficiency for Sugarcane-Biofuel Production: What Is Next? Bioenerg. Res. 2016, 9, 1272–1289. [Google Scholar] [CrossRef]
- Chlingaryan, A.; Sukkarieh, S.; Whelan, B. Machine Learning Approaches for Crop Yield Prediction and Nitrogen Status Estimation in Precision Agriculture: A Review. Comput. Electron. Agric. 2018, 151, 61–69. [Google Scholar] [CrossRef]
- Batjes, N.H. Total Carbon and Nitrogen in the Soils of the World. Eur. J. Soil Sci. 1996, 47, 151–163. [Google Scholar] [CrossRef]
- Lemcoff, J.H.; Loomis, R.S. Nitrogen Influences on Yield Determination in Maize. Crop Sci. 1986, 26, 1017–1022. [Google Scholar] [CrossRef]
- Osterholz, W.R.; Rinot, O.; Liebman, M.; Castellano, M.J. Can Mineralization of Soil Organic Nitrogen Meet Maize Nitrogen Demand? Plant Soil 2017, 415, 73–84. [Google Scholar] [CrossRef] [Green Version]
- Shi, W.; Tao, F. Vulnerability of African Maize Yield to Climate Change and Variability during 1961–2010. Food Sec. 2014, 6, 471–481. [Google Scholar] [CrossRef]
- Fischer, K.; Hajdu, F. Does Raising Maize Yields Lead to Poverty Reduction? A Case Study of the Massive Food Production Programme in South Africa. Land Use Policy 2015, 46, 304–313. [Google Scholar] [CrossRef]
- Jones, P.G.; Thornton, P.K. Representative Soil Profiles for the Harmonized World Soil Database at Different Spatial Resolutions for Agricultural Modelling Applications. Agric. Syst. 2015, 139, 93–99. [Google Scholar] [CrossRef]
- Batjes, N.H. SOTER-Based Soil Parameter Estimates for Southern Africa; Report 2004/04; ISRIC—World Soil Information: Wageningen, The Netherlands, 2004. [Google Scholar]
- Jones, A.; Breuning-Madsen, H.; Brossard, M.; Dampha, A.; Deckers, J.; Dewitte, O.; Gallali, T.; Hallett, S.; Jones, R.; Kilasara, M.; et al. Soil Atlas of Africa; European Commission, Publications Office of the European Union: Luxembourg, Luxembourg, 2013; ISBN 978-92-79-26715-4. [Google Scholar] [CrossRef]
- Chivasa, W.; Mutanga, O.; Biradar, C. Application of Remote Sensing in Estimating Maize Grain Yield in Heterogeneous African Agricultural Landscapes: A Review. Int. J. Remote Sens. 2017, 38, 6816–6845. [Google Scholar] [CrossRef]
- Drusch, M.; Del Bello, U.; Carlier, S.; Colin, O.; Fernandez, V.; Gascon, F.; Hoersch, B.; Isola, C.; Laberinti, P.; Martimort, P.; et al. Sentinel-2: ESA’s Optical High-Resolution Mission for GMES Operational Services. Remote Sens. Environ. 2012, 120, 25–36. [Google Scholar] [CrossRef]
- Wang, Q.; Blackburn, G.A.; Onojeghuo, A.O.; Dash, J.; Zhou, L.; Zhang, Y.; Atkinson, P.M. Fusion of Landsat 8 OLI and Sentinel-2 MSI Data. IEEE Trans. Geosci. Remote Sens. 2017, 55, 3885–3899. [Google Scholar] [CrossRef] [Green Version]
- Filella, I.; Penuelas, J. The Red Edge Position and Shape as Indicators of Plant Chlorophyll Content, Biomass and Hydric Status. Int. J. Remote Sens. 1994, 15, 1459–1470. [Google Scholar] [CrossRef]
- Shi, T.; Cui, L.; Wang, J.; Fei, T.; Chen, Y.; Wu, G. Comparison of Multivariate Methods for Estimating Soil Total Nitrogen with Visible/near-Infrared Spectroscopy. Plant Soil 2013, 366, 363–375. [Google Scholar] [CrossRef]
- Yang, J.; Gong, W.; Shi, S.; Du, L.; Sun, J.; Song, S. Estimation of Nitrogen Content Based on Fluorescence Spectrum and Principal Component Analysis in Paddy Rice. Plant Soil Environ. 2016, 62, 178–183. [Google Scholar] [CrossRef] [Green Version]
- de Brogniez, D.; Ballabio, C.; Stevens, A.; Jones, R.J.A.; Montanarella, L.; van Wesemael, B. A Map of the Topsoil Organic Carbon Content of Europe Generated by a Generalized Additive Model: Soil Organic Carbon Content at Pan-European Level. Eur. J. Soil Sci. 2015, 66, 121–134. [Google Scholar] [CrossRef]
- Xu, Y.; Smith, S.E.; Grunwald, S.; Abd-Elrahman, A.; Wani, S.P.; Nair, V.D. Estimating Soil Total Nitrogen in Smallholder Farm Settings Using Remote Sensing Spectral Indices and Regression Kriging. Catena 2018, 163, 111–122. [Google Scholar] [CrossRef] [Green Version]
- Friedl, M.A.; Brodley, C.E. Decision Tree Classification of Land Cover from Remotely Sensed Data. Remote Sens. Environ. 1997, 61, 399–409. [Google Scholar] [CrossRef]
- Chang, D. Estimation of Soil Physical Properties Using Remote Sensing and Artificial Neural Network. Remote Sen. Environ. 2000, 74, 534–544. [Google Scholar] [CrossRef]
- Heumann, B.W. An Object-Based Classification of Mangroves Using a Hybrid Decision Tree—Support Vector Machine Approach. Remote Sens. 2011, 3, 2440–2460. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Zhou, X.; Zhu, X.; Dong, Z.; Guo, W. Estimation of Biomass in Wheat Using Random Forest Regression Algorithm and Remote Sensing Data. Crop J. 2016, 4, 212–219. [Google Scholar] [CrossRef] [Green Version]
- Belgiu, M.; Drăguţ, L. Random Forest in Remote Sensing: A Review of Applications and Future Directions. ISPRS J. Photogramm. Remote Sens. 2016, 114, 24–31. [Google Scholar] [CrossRef]
- Cooner, A.; Shao, Y.; Campbell, J. Detection of Urban Damage Using Remote Sensing and Machine Learning Algorithms: Revisiting the 2010 Haiti Earthquake. Remote Sens. 2016, 8, 868. [Google Scholar] [CrossRef] [Green Version]
- Izquierdo-Verdiguier, E.; Gomez-Chova, L.; Bruzzone, L.; Camps-Valls, G. Semisupervised Kernel Feature Extraction for Remote Sensing Image Analysis. IEEE Trans. Geosci. Remote Sens. 2014, 52, 5567–5578. [Google Scholar] [CrossRef]
- Li, X.; Chen, W.; Cheng, X.; Wang, L. A Comparison of Machine Learning Algorithms for Mapping of Complex Surface-Mined and Agricultural Landscapes Using ZiYuan-3 Stereo Satellite Imagery. Remote Sens. 2016, 8, 514. [Google Scholar] [CrossRef] [Green Version]
- Siebert, S.J.; Van Wyk, A.E.; Bredenkamp, G.J.; Siebert, F. Vegetation of the Rock Habitats of the Sekhukhuneland Centre of Plan Endemism, South Africa. Bothalia 2003, 33, 207–228. [Google Scholar] [CrossRef] [Green Version]
- SDM. Greater Sekhukhune Cross Border District Municipality Integrated Development Plan: 2019/20; SDM: Groblersdal, South Africa, 2019. [Google Scholar]
- Wang, S.; Adhikari, K.; Wang, Q.; Jin, X.; Li, H. Role of Environmental Variables in the Spatial Distribution of Soil Carbon (C), Nitrogen (N), and C:N Ratio from the Northeastern Coastal Agroecosystems in China. Ecol. Indic. 2018, 84, 263–272. [Google Scholar] [CrossRef]
- Mandal, U.K. Spectral color indices based geospatial modeling of soil organic matter in Chitwan district, Nepal. In Proceedings of the International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Prague, Czech Republic, 12–19 July 2016; Volume 41. [Google Scholar] [CrossRef]
- Merzlyak, M.N.; Gitelson, A.A.; Chivkunova, O.B.; Rakitin, V.Y. Non-destructive optical detection of pigment changes during leaf senescence and fruit ripening. Physiol. Plant. 1999, 106, 135–141. [Google Scholar] [CrossRef] [Green Version]
- Fernández-Manso, A.; Fernández-Manso, O.; Quintano, C. SENTINEL-2A Red-Edge Spectral Indices Suitability for Discriminating Burn Severity. Int. J. Appl. Earth Obs. Geoinf. 2016, 50, 170–175. [Google Scholar] [CrossRef]
- Chen, J.M. Evaluation of Vegetation Indices and a Modified Simple Ratio for Boreal Applications. Can. J. Remote Sens. 1996, 22, 229–242. [Google Scholar] [CrossRef]
- Miura, T.; Huete, A.R.; Yoshioka, H. Evaluation of Sensor Calibration Uncertainties on Vegetation Indices for MODIS. IEEE Trans. Geosci. Remote Sens. 2000, 38, 1399–1409. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Kaufman, Y.J.; Merzlyak, M.N. Use of a Green Channel in Remote Sensing of Global Vegetation from EOS-MODIS. Remote Sens. Environ. 1996, 58, 289–298. [Google Scholar] [CrossRef]
- Madeira, J.; Bedidi, A.; Cervelle, B.; Pouget, M.; Flay, N. Visible spectrometric indices of hematite (Hm) and goethite (Gt) content in lateritic soils: The application of a Thematic Mapper (TM) image for soil-mapping in Brasilia, Brazil. Int. J. Remote Sens. 1997, 18, 2835–2852. [Google Scholar] [CrossRef]
- Bullard, J.E. Quantifying Iron Oxide Coatings on Dune Sands Using Spectrometric Measurements: An Example from the Simpson-Strzelecki Desert. Aust. J. Geophys. Res. 2002, 107, 2125. [Google Scholar] [CrossRef]
- Wu, S.; Li, J.; Huang, G.H. A study on DEM-derived primary topographic attributes for hydrologic applications: Sensitivity to elevation data resolution. Appl. Geogr. 2008, 28, 210–223. [Google Scholar] [CrossRef]
- Sörensen, R.; Zinko, U.; Seibert, J. On the calculation of the topographic wetness index: Evaluation of different methods based on field observations. Hydrol. Earth Syst. Sci. 2006, 10, 101–112. [Google Scholar] [CrossRef] [Green Version]
- Kubota, T.; Shige, S.; Hashizume, H.; Aonashi, K.; Takahashi, N.; Seto, S.; Hirose, M.; Takayabu, Y.N.; Ushio, T.; Nakagawa, K.; et al. Global Precipitation Map Using Satellite-Borne Microwave Radiometers by the GSMaP Project: Production and Validation. IEEE Trans. Geosci. Remote Sens. 2007, 45, 2259–2275. [Google Scholar] [CrossRef]
- Ermida, S.L.; Soares, P.; Mantas, V.; Göttsche, F.-M.; Trigo, I.F. Google Earth Engine Open-Source Code for Land Surface Temperature Estimation from the Landsat Series. Remote Sens. 2020, 12, 1471. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Pal, M. Random Forest Classifier for Remote Sensing Classification. Int. J. Remote Sens. 2005, 26, 217–222. [Google Scholar] [CrossRef]
- Hutengs, C.; Vohland, M. Downscaling Land Surface Temperatures at Regional Scales with Random Forest Regression. Remote Sens. Environ. 2016, 178, 127–141. [Google Scholar] [CrossRef]
- Lerman, P.M. Fitting Segmented Regression Models by Grid Search. J. Appl. Stat. 1980, 29, 77. [Google Scholar] [CrossRef]
- Dangeti, P. Statistics for Machine Learning: Techniques for Exploring Supervised, Unsupervised, and Reinforcement Learning Models with Python and R.; Packt Publishing: Birmingham, UK, 2017; ISBN 9781788295758. [Google Scholar]
- Friedman, J.H. Greedy Function Approximation: A Gradient Boosting Machine. Ann. Statist. 2001, 29, 1189–1232. [Google Scholar] [CrossRef]
- Zemel, R.S.; Pitassi, T. A gradient-based boosting algorithm for regression problems. Adv. Neural Inf. Process. Syst. 2001, 696–702. [Google Scholar] [CrossRef]
- Wei, Z.; Meng, Y.; Zhang, W.; Peng, J.; Meng, L. Downscaling SMAP Soil Moisture Estimation with Gradient Boosting Decision Tree Regression over the Tibetan Plateau. Remote Sens. Environ. 2019, 225, 30–44. [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [Google Scholar]
- Georganos, S.; Grippa, T.; Vanhuysse, S.; Lennert, M.; Shimoni, M.; Wolff, E. Very High Resolution Object-Based Land Use–Land Cover Urban Classification Using Extreme Gradient Boosting. IEEE Geosci. Remote Sens. Lett. 2018, 15, 607–611. [Google Scholar] [CrossRef] [Green Version]
- Carslaw, D.C.; Ropkins, K. Openair—An R Package for Air Quality Data Analysis. Environ. Model. Softw. 2012, 27–28, 52–61. [Google Scholar] [CrossRef]
- Cumming, G.; Calin-Jageman, R. Introduction to the New Statistics: Estimation, Open Science, and Beyond; Routledge: New York, NY, USA, 2016. [Google Scholar]
- Taylor, K.E. Summarizing Multiple Aspects of Model Performance in a Single Diagram. J. Geophys. Res. 2001, 106, 7183–7192. [Google Scholar] [CrossRef]
- Nyamangara, J.; Mudhara, M.; Giller, K.E. Effectiveness of cattle manure and nitrogen fertilizer application on the agronomic and economic performance of maize. S. Afr. J. Plant Soil 2005, 22, 59–63. [Google Scholar] [CrossRef] [Green Version]
- Mansfield, E.R.; Helms, B.P. Detecting Multicollinearity. Am. Stat. 1982, 36, 158. [Google Scholar] [CrossRef]
- Farrar, D.E.; Glauber, R.R. Multicollinearity in Regression Analysis: The Problem Revisited. Rev. Econ. Stat. 1967, 49, 92. [Google Scholar] [CrossRef]
- Jaya, I.G.N.M.; Ruchjana, B.; Abdullah, A. Comparison of Different Bayesian And Machine Learning Methods in Handling Multicollinearity Problem: A Monte Carlo Simulation Study. ARPN J. Eng. Appl. Sci. 2020, 15, 1998–2011. [Google Scholar]
- Farrell, A.; Wang, G.; Rush, S.A.; Martin, J.A.; Belant, J.L.; Butler, A.B.; Godwin, D. Machine Learning of Large-scale Spatial Distributions of Wild Turkeys with High-dimensional Environmental Data. Ecol. Evol. 2019, 9, 5938–5949. [Google Scholar] [CrossRef]
- Jeong, G.; Oeverdieck, H.; Park, S.J.; Huwe, B.; Ließ, M. Spatial Soil Nutrients Prediction Using Three Supervised Learning Methods for Assessment of Land Potentials in Complex Terrain. Catena 2017, 154, 73–84. [Google Scholar] [CrossRef]
- Sorenson, P.T.; Small, C.; Tappert, M.C.; Quideau, S.A.; Drozdowski, B.; Underwood, A.; Janz, A. Monitoring organic carbon, total nitrogen, and pH for reclaimed soils using field reflectance spectroscopy. Can. J. Soil Sci. 2017, 97, 241–248. [Google Scholar] [CrossRef]
- Zhang, Y.; Sui, B.; Shen, H.; Ouyang, L. Mapping stocks of soil total nitrogen using remote sensing data: A comparison of random forest models with different predictors. Comput. Electron. Agric. 2019, 160, 23–30. [Google Scholar] [CrossRef]
- Deng, X.; Ma, W.; Ren, Z.; Zhang, M.; Grieneisen, M.L.; Chen, X.; Fei, X.; Qin, F.; Zhan, Y.; Lv, X. Spatial and Temporal Trends of Soil Total Nitrogen and C/N Ratio for Croplands of East China. Geoderma 2020, 361, 114035. [Google Scholar] [CrossRef]
- López-Calderón, M.J.; Estrada-Ávalos, J.; Rodríguez-Moreno, V.M.; Mauricio-Ruvalcaba, J.E.; Martínez-Sifuentes, A.R.; Delgado-Ramírez, G.; Miguel-Valle, E. Estimation of Total Nitrogen Content in Forage Maize (Zea Mays L.) Using Spectral Indices: Analysis by Random Forest. Agriculture 2020, 10, 451. [Google Scholar] [CrossRef]
- Li, Y.; Li, C.; Li, M.; Liu, Z. Influence of variable selection and forest type on forest aboveground biomass estimation using machine learning algorithms. Forests 2019, 10, 1073. [Google Scholar] [CrossRef] [Green Version]
- Beguin, J.; Fuglstad, G.A.; Mansuy, N.; Paré, D. Predicting soil properties in the Canadian boreal forest with limited data: Comparison of spatial and non-spatial statistical approaches. Geoderma 2017, 306, 195–205. [Google Scholar] [CrossRef]
- Forkuor, G.; Hounkpatin, O.K.L.; Welp, G.; Thiel, M. High Resolution Mapping of Soil Properties Using Remote Sensing Variables in South-Western Burkina Faso: A Comparison of Machine Learning and Multiple Linear Regression Models. PLoS ONE 2017, 12, e0170478. [Google Scholar] [CrossRef]
- Zhou, T.; Geng, Y.; Chen, J.; Sun, C.; Haase, D.; Lausch, A. Mapping of Soil Total Nitrogen Content in the Middle Reaches of the Heihe River Basin in China Using Multi-Source Remote Sensing-Derived Variables. Remote Sens. 2019, 11, 2934. [Google Scholar] [CrossRef] [Green Version]
- Zhou, T.; Geng, Y.; Chen, J.; Pan, J.; Haase, D.; Lausch, A. High-Resolution Digital Mapping of Soil Organic Carbon and Soil Total Nitrogen Using DEM Derivatives, Sentinel-1 and Sentinel-2 Data Based on Machine Learning Algorithms. Sci. Total Environ. 2020, 729, 138244. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Miao, Y.; Feng, G.; Yuan, F.; Yue, S.; Gao, X.; Liu, Y.; Liu, B.; Ustin, S.L.; Chen, X. Improving Estimation of Summer Maize Nitrogen Status with Red Edge-Based Spectral Vegetation Indices. Field Crops Res. 2014, 157, 111–123. [Google Scholar] [CrossRef]
- Knoepp, J.; Swank, W. Using Soil Temperature and Moisture to Predict Forest Soil Nitrogen Mineralization. Biol. Fertil. Soils 2002, 36, 177–182. [Google Scholar] [CrossRef]
- Baxter, S.J.; Oliver, M.A. The Spatial Prediction of Soil Mineral N and Potentially Available N Using Elevation. Geoderma 2005, 128, 325–339. [Google Scholar] [CrossRef]
- SDG. Sustainable Development Goals; United Nations: New York, NY, USA, 2019. [Google Scholar]
- Poffenbarger, H.J.; Sawyer, J.E.; Barker, D.W.; Olk, D.C.; Six, J.; Castellano, M.J. Legacy Effects of Long-Term Nitrogen Fertilizer Application on the Fate of Nitrogen Fertilizer Inputs in Continuous Maize. Agric. Ecosyst. Environ. 2018, 265, 544–555. [Google Scholar] [CrossRef] [Green Version]
- FAO. Save and Grow in Practice: Maize, Rice and Wheat, a Guide to Sustainable Cereal Production; Food and Agriculture Organization: Rome, Italy, 2016. [Google Scholar]
Soil Type | Topsoil Sand Fraction (%) | Topsoil Silt Fraction (%) | Topsoil Clay Fraction (%) | Topsoil Texture | pH (H2O) | Bulk Density (kg/dm3) | Organic Carbon (% Weight) |
---|---|---|---|---|---|---|---|
Haplic Acrisols | 57 | 19 | 24 | Sand clay loam | 5.1 | 1.4 | 0.8 |
Ferric Luvisols | 65 | 18 | 17 | Sandy loam | 6.4 | 1.5 | 0.6 |
Lithic Leptosols | 43 | 29 | 28 | Clay loam | 7.5 | 1.3 | 0.4 |
Variable | Description | ||
---|---|---|---|
Raw Bands | Central Wavelength (nm) | Bandwidth (nm) | Spatial Resolution (m) |
B2–Blue | 490 | 65 | 10 |
B3–Green | 560 | 35 | 10 |
B4–Red | 665 | 30 | 10 |
B5–RE1 | 705 | 15 | 20 |
B6–RE2 | 740 | 15 | 20 |
B7–RE3 | 783 | 20 | 20 |
B8–NIR | 842 | 115 | 10 |
B8a–RE4 | 865 | 20 | 20 |
B11–SWIR1 | 1610 | 90 | 20 |
B12–SWIR2 | 2190 | 180 | 20 |
Vegetation Indices | Equation | Source | Property |
---|---|---|---|
PSRI | [32] | Senescence-induced reflectance changes | |
NDVIRE1n | [33] | Sparse biomass | |
NDVIRE2n | [33] | Sparse biomass | |
NDVIRE3n | [33] | Sparse biomass | |
MSRRE | [34] | Correction for leaf specular reflection | |
EVI | [35] | Chlorophyll sensitive | |
GNDVI | [36] | Chlorophyll sensitive | |
Soil Indices | Equation | Source | Property |
BI | [31,37] | Average reflectance magnitude | |
CI | [31,37] | Soil Colour | |
HI | [31,37] | Primary Colours | |
RI | [38] | Hematite content | |
SI | [31,37] | Spectral slope |
Environmental Variables | Units | Source | Property |
---|---|---|---|
Slope (SLP) | Degrees | [39] | Rise or fall of the land surface |
Elevation (EL) | Meters | [39] | Distance above sea level |
Aspect (ASP) | Degrees | [39] | Direction of terrain |
Catchment area (CA) | Square Meters | [39] | Flow accumulation |
TWI | - | [40] | Soil moisture |
Precipitation (RAIN) | Millimeter/hour | [41] | Rainfall |
LST | Kelvin | [42] | Temperature |
Experiment | Number of Variables | Data Configuration |
---|---|---|
1 | 10 | Raw bands |
2 | 17 | Raw bands and vegetation indices |
3 | 15 | Raw bands and soil indices |
4 | 17 | Raw bands and environmental variables |
5 | 29 | Raw bands, vegetation indices, soil indices, and environmental variables |
6 | 22 | Raw bands, vegetation indices, and soil indices |
7 | 24 | Raw bands, vegetation indices, and environmental variables |
8 | 22 | Raw bands, soil indices, and environmental variables |
9 | 19 | Raw bands, environmental variables, and soil indices |
Soil Nitrogen | |||||||
---|---|---|---|---|---|---|---|
(a) Descriptive Statistics | |||||||
Count | Minimum (%) | Maximum (%) | Mean (%) | Median (%) | Standard Deviation | Skewness | |
Nitrogen | 105 | 0.014 | 0.088 | 0.033 | 0.025 | 0.019 | 1.424 |
(b) Correlation | |||||||
Variable | r | Variable | r | Variable | r | Variable | r |
MSRRE | 0.579 | CI | −0.713 | B6 | −0.899 | TWI | 0.081 |
PSRI | −0.793 | BI | −0.798 | B7 | −0.894 | DEM | −0.292 |
NDVIRE3n | 0.835 | SI | −0.804 | B8 | −0.883 | ASP | −0.011 |
NDVIRE2n | 0.840 | RI | −0.748 | B8A | −0.889 | CA | −0.024 |
NDVIRE1n | 0.737 | B2 | −0.061 | B11 | −0.883 | SLP | −0.154 |
EVI | 0.838 | B3 | −0.463 | B12 | −0.870 | ||
GNDVI | −0.757 | B4 | −0.884 | RAIN | −0.268 | ||
HI | −0.591 | B5 | −0.898 | LST | 0.117 |
Model | FAC2 | MAE (%) | MBE (%) | RMSE (%) | r | R2 | CV |
---|---|---|---|---|---|---|---|
RF1 | 0.9688 | 0.0067 | 0.0012 | 0.0086 | 0.9324 | 0.8694 | 0.7563 |
RF2 | 0.9688 | 0.0061 | 0.0000 | 0.0086 | 0.9302 | 0.8653 | 0.8079 |
RF3 | 0.9688 | 0.0071 | 0.0004 | 0.0092 | 0.9204 | 0.8472 | 0.7891 |
RF4 | 1.0000 | 0.0054 | −0.0013 | 0.0076 | 0.9486 | 0.8998 | 0.6625 |
RF5 | 1.0000 | 0.0066 | −0.0007 | 0.0086 | 0.9232 | 0.8523 | 0.7720 |
RF6 | 0.9688 | 0.0063 | −0.0003 | 0.0089 | 0.9256 | 0.8568 | 0.6604 |
RF7 | 1.0000 | 0.0053 | 0.0000 | 0.0080 | 0.9433 | 0.8898 | 0.7104 |
RF8 | 1.0000 | 0.0059 | 0.0002 | 0.0083 | 0.9368 | 0.8775 | 0.6885 |
RF9 | 1.0000 | 0.0056 | 0.0000 | 0.0082 | 0.9395 | 0.8827 | 0.8645 |
GB1 | 0.9688 | 0.0070 | 0.0007 | 0.0092 | 0.9210 | 0.8482 | 0.5325 |
GB2 | 1.0000 | 0.0059 | −0.0001 | 0.0084 | 0.9348 | 0.8739 | 0.6670 |
GB3 | 1.0000 | 0.0068 | −0.0003 | 0.0092 | 0.9177 | 0.8423 | 0.6124 |
GB4 | 1.0000 | 0.0061 | 0.0001 | 0.0083 | 0.9369 | 0.8778 | 0.6354 |
GB5 | 1.0000 | 0.0061 | 0.0000 | 0.0084 | 0.9347 | 0.8737 | 0.7043 |
GB6 | 1.0000 | 0.0062 | −0.0006 | 0.0087 | 0.9298 | 0.8645 | 0.7942 |
GB7 | 1.0000 | 0.0060 | 0.0002 | 0.0084 | 0.9336 | 0.8716 | 0.7734 |
GB8 | 0.9688 | 0.0064 | −0.0009 | 0.0094 | 0.9172 | 0.8413 | 0.7556 |
GB9 | 1.0000 | 0.0058 | 0.0008 | 0.0083 | 0.9315 | 0.8676 | 0.7296 |
XG1 | 0.9688 | 0.0062 | 0.0003 | 0.0084 | 0.9311 | 0.8669 | 0.5671 |
XG2 | 0.9688 | 0.0057 | 0.0001 | 0.0085 | 0.9257 | 0.8569 | 0.8546 |
XG3 | 0.9688 | 0.0065 | 0.0005 | 0.0089 | 0.9227 | 0.8513 | 0.5970 |
XG4 | 1.0000 | 0.0062 | 0.0004 | 0.0088 | 0.9221 | 0.8502 | 0.5711 |
XG5 | 1.0000 | 0.0059 | 0.0004 | 0.0081 | 0.9352 | 0.8747 | 0.6121 |
XG6 | 0.9688 | 0.0063 | 0.0004 | 0.0090 | 0.9149 | 0.8371 | 0.6367 |
XG7 | 1.0000 | 0.0061 | 0.0007 | 0.0087 | 0.9234 | 0.8527 | 0.6453 |
XG8 | 1.0000 | 0.0054 | 0.0003 | 0.0077 | 0.9434 | 0.8900 | 0.5954 |
XG9 | 0.9688 | 0.0058 | 0.0002 | 0.0086 | 0.9300 | 0.8648 | 0.5839 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mashaba-Munghemezulu, Z.; Chirima, G.J.; Munghemezulu, C. Modeling the Spatial Distribution of Soil Nitrogen Content at Smallholder Maize Farms Using Machine Learning Regression and Sentinel-2 Data. Sustainability 2021, 13, 11591. https://doi.org/10.3390/su132111591
Mashaba-Munghemezulu Z, Chirima GJ, Munghemezulu C. Modeling the Spatial Distribution of Soil Nitrogen Content at Smallholder Maize Farms Using Machine Learning Regression and Sentinel-2 Data. Sustainability. 2021; 13(21):11591. https://doi.org/10.3390/su132111591
Chicago/Turabian StyleMashaba-Munghemezulu, Zinhle, George Johannes Chirima, and Cilence Munghemezulu. 2021. "Modeling the Spatial Distribution of Soil Nitrogen Content at Smallholder Maize Farms Using Machine Learning Regression and Sentinel-2 Data" Sustainability 13, no. 21: 11591. https://doi.org/10.3390/su132111591
APA StyleMashaba-Munghemezulu, Z., Chirima, G. J., & Munghemezulu, C. (2021). Modeling the Spatial Distribution of Soil Nitrogen Content at Smallholder Maize Farms Using Machine Learning Regression and Sentinel-2 Data. Sustainability, 13(21), 11591. https://doi.org/10.3390/su132111591