Assessment and Recommendations for a Fossil Free Future for Track Work Machinery
Abstract
:1. Introduction
2. Literature Review
2.1. Status Quo of Track Work Machinery
Track Work Machinery Compared to Other Modes of Transport
2.2. Overview of Alternative Propulsion Technologies
2.3. Road Transport
2.3.1. Passenger Vehicles
2.3.2. Heavy-Duty on-Road Vehicle
2.4. Rail Sector
2.5. Construction Sector
2.6. Aviation
2.7. Maritime
2.8. Consolidation and Comparison
2.8.1. Opportunities
2.8.2. Challenges
2.9. Summary
3. Materials and Methods—CalCAS
3.1. Limitations
3.2. Methodoloy of CalCAS
3.2.1. Input Data and Technical Data
3.2.2. Calculation/Equation
BC…required battery capacity (rated capacity) [kWh]
PFC…required fuel cell power (rated power) [kW]
- twps: working hours per eight-hour shift [h]
- fs_mult: shift multiplier [1]
- BCuse: factor to describe usable battery capacity [1]
- ηel_PT: efficiency of electric powertrain [1]
- FCav: average fuel consumption [l/h]
- ECDiesel: energy capacity of diesel [kWh/kg]
- ρDiesel: density of diesel [kg/m3]
- ηICE: efficiency of internal combustion engine [1]
- WLFC: workload fuel cell [-]
4. Results and Discussion
- Cluster low: <300 kWh
- Cluster med1: <800 kWh
- Cluster med2: <1200 kWh
- Cluster high: ≥1200 kWh
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- UNFCCC. The Paris Agreement. Available online: https://unfccc.int/process-and-meetings/the-paris-agreement/the-paris-agreement (accessed on 19 August 2021).
- European Commission. A European Green Deal. Available online: https://ec.europa.eu/info/strategy/priorities-2019-2024/european-green-deal_de (accessed on 14 October 2020).
- European Commission. Non-Road Mobile Machinery (NRMM) Emissions—Impact of the COVID-19 Crisis. Available online: https://ec.europa.eu/growth/content/non-road-mobile-machinery-nrmm-emissions-impact-covid-19-crisis_en (accessed on 5 October 2020).
- International Energy Agency IEA, International Union of Railways UIC. Railway Handbook 2017—Energy Consumption and CO2 Emissions. Available online: http://www.uic.org/ (accessed on 5 October 2021).
- Huang, L.; Krigsvoll, G.; Johansen, F.; Liu, Y.; Zhang, X. Carbon emission of global construction sector. Renew. Sustain. Energy Rev. 2018, 81, 1906–1916. [Google Scholar] [CrossRef] [Green Version]
- Ragonès, M.P.; Vafiadis, I.; Eriksen, C. Zero Emission Construction Sites Status 2019 (Bellona Foundation). Available online: https://bellona.org/publication/zero-emission-construction-sites-status-2019 (accessed on 5 October 2021).
- Committee for European Construction Equipment (CECE), European Agricultural Machinery (CEMA). CECE and CEMA Optimising Our Industry 2 Reduce Emissions. Available online: https://www.cece.eu/news/new-brochure-cece-and-cema-optimising-our-industry-2-reduce-emissions (accessed on 5 October 2021).
- ÖBB-Holding AG; ÖBB-Werbung GmbH. Zahken Daten Fakten ÖBB Kompakt 2019/20. Vienna. Available online: https://konzern.oebb.at/dam/jcr:b17c14a2-d8a3-4d3c-8a40-912cbeefa6ab/OEBB_Zahlen_2020-2_de_web.pdf (accessed on 5 October 2021).
- Umweltbundesamt. Emissionskennzahlen Datenbasis 2019. Available online: https://www.umweltbundesamt.at/fileadmin/site/themen/mobilitaet/daten/ekz_pkm_tkm_verkehrsmittel.pdf (accessed on 21 July 2021).
- International Union of Railways UIC. Railway Statistics—Synopsis. Available online: https://uic.org/IMG/pdf/uic-railway-statistics-synopsis-2021.pdf (accessed on 5 October 2021).
- DieselNet. Emission Standards: Europe: Nonroad Engines. Available online: https://www.dieselnet.com/standards/eu/nonroad.php#rail (accessed on 19 October 2020).
- Smith, K. Do hydrogen and battery trains mean the end for diesel traction? Int. Railw. J. 2020, 60, 18–21. [Google Scholar]
- Pertl, P.; Gyurica, M.; Trattner, A.; Vopava, J.; Kienberger, T.; Zauner, A.; Böhm, H.; Tichler, R.; Wancura, H.; Veit, P. HYTRAIL Hydrogen Technology for Railway Infrastructure; HyCentA Research GmbH and Consortium: Graz, Austria, 2019. [Google Scholar]
- Kadefors, A.; Lingegård, S.; Uppenberg, S.; Alkan-Olsson, J.; Balian, D. Designing and implementing procurement requirements for carbon reduction in infrastructure construction—International overview and experiences. J. Environ. Plan. Manag. 2021, 64, 611–634. [Google Scholar] [CrossRef]
- Bund, E.V. Non-Road Mobile Emission Sources. Available online: http://www.sootfreecities.eu/sootfreecities.eu/public/measure/non-road-mobile (accessed on 11 August 2020).
- Borrás, J. World′s First: Zero Emission Electric Construction Site. Available online: https://cleantechnica.com/2020/04/09/worlds-first-zero-emission-electric-construction-site/ (accessed on 6 September 2021).
- Williams, N.; Pennini, A.; Eames, M. Industry and vehicle manufacturers join forces to develop cleaner, safer vehicles. Available online: https://www.icmm.com/en-gb/news/2018/icsv_pr (accessed on 2 September 2020).
- Volvo Construction Equipment. The Construction Climate Challenge. Available online: https://constructionclimatechallenge.com/about/ (accessed on 2 September 2020).
- Prießnitz, M.; Gerstenmayer, T. The end of fossil fuels ÖBB Personenverkehr AG. In The End of Fossil Fuels; UIC Workshop Zürich: Zürich, Switzerland, 2019. [Google Scholar]
- Zasiadko, M. Two Dutch Provinces Want to Shift to Zero-Emission Trains by 2035. Available online: https://www.railtech.com/rolling-stock/2018/11/06/two-dutch-provinces-want-to-shift-to-zero-emission-trains-by-2035/ (accessed on 20 October 2020).
- Railway Pro. Hungary Launches Battery-Electric Train Procurement. Available online: https://www.railwaypro.com/wp/hungary-launches-battery-electric-train-procurement/ (accessed on 20 October 2020).
- Zasiadko, M. Hybrid Conversion of Diesel Trains in Ireland. Available online: https://www.railtech.com/rolling-stock/2020/07/27/hybrid-conversion-of-diesel-trains-in-ireland/?utm_source=newsletter&utm_medium=email&utm_campaign=Newsletterweek2020-31&gdpr=accept&gdpr=accept (accessed on 20 October 2020).
- Oommen, S. The Norwegian railway reform. In The End of Fossil Fuels; UIC Workshop Zürich: Zürich, Switzerland, 2019. [Google Scholar]
- Kramer, U. Center of Competence—Energy storage. In The End of Fossil Fuels; UIC Workshop Zürich: Zürich, Switzerland, 2019. [Google Scholar]
- Alstom/Eversholt: Wasserstoff-Zug für UK. Der Eisenbahningenieur. 2018. Available online: https://www.alstom.com/de/press-releases-news/2019/1/alstom-und-eversholt-rail-praesentieren-einen-neuen-wasserstoffzug-fuer (accessed on 5 October 2021).
- Zasiadko, M. Deutsche Bahn to Become CARBON neutral by 2050. Available online: https://www.railtech.com/policy/2020/09/07/deutsche-bahn-to-become-carbon-neutral-by-2050/?utm_source=newsletter&utm_medium=email&utm_campaign=Newsletterweek2020-37 (accessed on 12 October 2020).
- European Parliament. EU Climate Law: MEPs Want to Increase 2030 Emissions Reduction Target to 60%. Available online: https://www.europarl.europa.eu/news/en/press-room/20201002IPR88431/eu-climate-law-meps-want-to-increase-2030-emissions-reduction-target-to-60 (accessed on 14 October 2020).
- Geismar. Featured Products. Available online: https://geismar.com/?lang=en (accessed on 6 September 2021).
- Barrow, K. Harsco to supply up to 56 hybrid maintenance vehicles to DB. Int. Railw. J. 2019. Available online: https://www.railjournal.com/regions/europe/harsco-to-supply-up-to-56-battery-electric-maintenance-vehicles-to-db/ (accessed on 5 October 2021).
- Linsinger Maschinenbau GmbH. World′s First Rail Re-Profiling without Emissions. Available online: https://www.linsinger.com/portfolio/rail-milling-train-mg11-hydrogen/ (accessed on 6 September 2021).
- Uhlenhut, A. Elektrische effizienz. Regionalverkehr 2018, 1, 55–57. [Google Scholar]
- Wenty, R. Ökologische Innovation für die Gleisinstandhaltung. Deine Bahn 2016, 4, 14–17. [Google Scholar]
- Kreisel. Kreiselelectric. Available online: https://energytalk.info/MediaCache/0/354849/KREISELELECTRICSYSTEMSsmall-Präsentation.pdf (accessed on 23 July 2021).
- Barriault, A.; Battley, T. Advanced Safety System for Advanced Battery Technology. MDEC. 2019. Available online: https://mdec.ca/2019/S5P2_Epiroc_Batteries.pdf (accessed on 5 October 2021).
- Railcare. Battery Vacuum Excavator. Available online: https://www.railcare.se/wp-content/uploads/2020/11/MPV_screen_v3.pdf (accessed on 6 September 2021).
- Windhoff. WINDHOFF to Deliver 3–Section Works Train to VGF Frankfurt. Available online: https://www.windhoff.de/index.php/windhoff-to-deliver-3-section-works-train-to-vgf-frankfurt/?lang=en (accessed on 6 September 2021).
- Hölzlwimmer, T. Battery technology—The drive power of the future in track construction. EI Eisenb. Available online: https://railway-news.com/wp-content/uploads/2020/04/ROBEL-Battery-Technology.pdf (accessed on 5 October 2021).
- Klee, B. Rail Replacement as a Maintenance Benchmark. Available online: https://www.semanticscholar.org/paper/Rail-replacement-as-a-maintenance-benchmark-Klee/a9fc31ba83f4fc9a8eb0fac910b6557832fa5c5f (accessed on 5 October 2021).
- Lajunen, A.; Suomela, J.; Pippuri, J.; Tammi, K.; Lehmuspelto, T.; Sainio, P. Electric and hybrid electric non-road mobile machinery—Present situation and future trends. In Proceedings of the EVS 2016—29th International Electric Vehicle Symposium, Montreal, QC, Canada, 19–22 June 2016; Volume 8, pp. 172–183. [Google Scholar]
- Plasser & Theurer; Vienna, Austria. Personal Communication, 2020.
- GESAMP (IMO/FAO/UNESCO-IOC/UNIDO/WMO/IAEA/UN/UNEP Joint Group of Experts on the Scientific Aspects of Marine Environmental Protection). Estimates of Oil Entering the Marine Environment from Sea-Based Activities. Rep. Stud. GESAMP No. 75. p. 96. Available online: https://www.researchgate.net/publication/308631658_estimates_of_oil_entering_the_marine_environment_from_sea-based_activities (accessed on 5 October 2021).
- Focus Online. China: Siemens Baut Stärkste Lok der Welt. Available online: https://www.focus.de/finanzen/boerse/aktien/siemens/china_aid_69754.html (accessed on 20 July 2021).
- Siemens Mobility. Technical Specifications. Available online: https://www.mobility.siemens.com/global/en/portfolio/rail/rolling-stock/components-and-systems/traction-motors.html (accessed on 20 July 2021).
- Aerotask. Airbus A319 A320 A321 Technische Daten. Available online: https://aerotask.de/airbus-a319-a320-a321-technische-daten-beschreibung/ (accessed on 20 July 2021).
- REMOS Aircraft GmbH. Flughandbuch Remos G-3/600. Eschelbach. Available online: https://www.flugplatz-edlc.de/downloads/FHB_REMOS_G3_600_Rev01.pdf (accessed on 5 October 2021).
- MAN. MAN Engines for Railway Applications. Available online: https://www.engines.man.eu/global/en/off-road/rail/overview/Overview.html (accessed on 20 July 2021).
- Cummins Inc. Engines for Passenger Vessels. Available online: https://www.cummins.com/engines/marine-passenger (accessed on 20 July 2021).
- Schindler, C.; Brandhorst, M.; Dellmann, T. Handbuch Schienenfahrzeuge—Entwicklung, Produktion, Instandhaltung, 1st ed.; Eurailpress: Hamburg, Germany, 2014. [Google Scholar]
- Lajunen, A.; Sainio, P.; Laurila, L.; Pippuri-Mäkeläinen, J.; Tammi, K. Overview of powertrain electrification and future scenarios for non-road mobile machinery. Energies 2018, 11, 1184. [Google Scholar] [CrossRef] [Green Version]
- Ding, Y.; Cano, Z.P.; Yu, A.; Lu, J.; Chen, Z. Automotive Li-Ion batteries: Current status and future perspectives. Electrochem. Energy Rev. 2019, 2, 1–28. [Google Scholar] [CrossRef]
- International Energy Agency IEA. Global EV Outlook 2020: Entering the Decade of ELECTRIC Drive? Available online: https://webstore.iea.org/global-ev-outlook-2020 (accessed on 5 October 2021).
- E4tech. The Fuel Cell Industry Review. 2019. Available online: www.FuelCellIndustryReview.com. (accessed on 5 October 2021).
- Cano, Z.P.; Banham, D.; Ye, S.; Hintennach, A.; Lu, J.; Fowler, M.; Chen, Z. Batteries and fuel cells for emerging electric vehicle markets. Nat. Energy 2018, 3, 279–289. [Google Scholar] [CrossRef]
- Joint Research Center, Directorate-General Mobility and Transport. State of the Art on Alternative Fuels Transport Systems in the European Union; Europian Parlament: Luxembourg, 2020. [Google Scholar] [CrossRef]
- Sterling PBES Energy Solutions. Aurora & Tycho Brahe Electric Ferries. Available online: https://spbes.com/portfolio/electric-ferry-aurora/ (accessed on 7 September 2020).
- Berjoza, D.; Jurgena, I. Influence of batteries weight on electric automobile performance. Eng. Rural Dev. 2017, 16, 1388–1394. [Google Scholar]
- FuelsEurope. Vision 2050 a Pathway for the Evolution of the Refining Industry and Liquid Fuels; FuelsEurope: Brussels, Belgium. Available online: https://www.fuelseurope.eu/publication/vision-2050-pathway-evolution-refining-industry-liquid-fuels/ (accessed on 5 October 2021).
- Scheier, B.; Meirich, C.; Dittus, H.; Böhm, M. Stand der Technik von Antriebskonzepten für Rangier- und Streckenlokomotiven. Eisenb. Rundsc. 2018, 67, 51–56. [Google Scholar]
- Oszfolk, B.; Radke, M.; Ibele, Y. Hybridantrieb stellt Marktreife unter Beweis. ETR Eisenb. Rundsc. 2015, 9, 45–48. [Google Scholar]
- CENELEC. EN 62864: Railway Applications—Rolling Stock: Power SUPPLY with Onboard Energy Storage System; CENELEC: Brussels, Belgium, 2016. [Google Scholar]
- International Electrotechnical Commission. IEC 62928: 2017 Railway Applications—Rolling Stock—Onboard Lithium-Ion Traction Batteries; International Electrotechnical Commission: Geneva, Switzerland, 2017. [Google Scholar]
- Battery University. BU-205: Types of Lithium-Ion. Available online: https://batteryuniversity.com/article/bu-205-types-of-lithium-ion (accessed on 2 November 2020).
- Allen, T. Hybrid & Electric: Fork in the Path? Available online: https://www.khl.com/1133585.article (accessed on 19 July 2021).
- Stranger, J. EST-Floattech Delivers ESS to 8 Caterpillar, 25 Tonne, Zero-Emission Excavators. EST Floattech. Available online: https://www.est-floattech.com/est-floattech-delivers-ess-to-8-caterpillar-25-tonne-zero-emission-excavator/ (accessed on 19 July 2021).
- Epiroc. Elektrisch Betriebene Untertage-Lader. Available online: https://www.epiroc.com/de-at/products/loaders-and-trucks/electric-loaders (accessed on 19 July 2021).
- Moore, K. MacLean Engineering—Interest in Electric Mining Vehicles Turning into Purchase Orders. Available online: https://resourceworld.com/maclean-engineering-interest-in-electric-mining-vehicles-turning-into-purchase-orders/ (accessed on 19 July 2021).
- Suncar. Elektrobagger-Modelle. Available online: https://www.suncar-hk.com/files/brochure-TB1140E.pdf (accessed on 19 July 2021).
- Akasol. Akasystem 15 AKM 46 POC. Available online: https://www.akasol.com/library/Downloads/Datenblätter/19-05-2021/AK_Datenblatt_AKASystem_15-AKM-46-POC_2021_EN.pdf (accessed on 19 July 2021).
- Mecalac. MECALAC e12: A 100%-Electric Excavator for Urban Building Sites. Available online: https://www.mecalac.com/es/noticias-y-eventos/mecalac-e12-electric-wheel-excavator.html (accessed on 19 July 2021).
- Turkka, K. The Clean Team. Available online: https://solidground.sandvik/the-clean-team/ (accessed on 19 July 2021).
- Aragonès, M.P.; Serafimova, T. Zero Emission Construction Sites: The Possibilities and Barriers of Electric Construction Machinery. Available online: https://bellona.org/publication/zero-emission-construction-sites-the-possibilities-and-barriers-of-electric-construction-machinery (accessed on 5 October 2021).
- Equipment Today. (VIDEO) Hyundai and Cummins Inc. Collaborate on Electric Prototype R35E Compact Excavator. Available online: https://www.forconstructionpros.com/equipment/earthmoving-compact/mini-excavators/video/21090225/video-hyundai-and-cummins-inc-collaborate-on-electric-prototype-r35e-compact-excavator (accessed on 19 July 2021).
- Bellona. Database: Emission-Free Construction Equipment (by Product Type). Available online: https://bellona.org/database-emission-free-construction-equipment-by-product-type (accessed on 11 September 2020).
- Mecalac. Technical Specs—12 MTX Mecalac. Available online: https://www.lectura-specs.com/en/model/construction-machinery/wheel-excavators-mecalac/12-mtx-1050346 (accessed on 19 July 2021).
- Synák, F.; Čulík, K.; Rievaj, V.; Gaňa, J. Liquefied petroleum gas as an alternative fuel. Transp. Res. Proc. 2019, 40, 527–534. [Google Scholar] [CrossRef]
- Cheshier, G.; Roy, B. Compressed Natural Gas Short Line Locomotive Study; NYSERDA: Albany, NJ, USA, 2016. Available online: https://www.nyserda.ny.gov/-/media/Files/Publications/Research/Transportation/16-36-Compressed-Natural-Gas-Short-Line-Accessible.pdf (accessed on 5 October 2021).
- DG MOVE—Expert Group on Future Transport Fuels. State of the Art on Alternative Fuels Transport Systems in the European Union. Available online: http://ec.europa.eu/transport/sites/transport/files/themes/urban/studies/doc/2015-07-alter-fuels-transport-syst-in-eu.pdf (accessed on 5 October 2021).
- Ambaye, T.G.; Vaccari, M.; Bonilla-Petriciolet, A.; Prasad, S.; van Hullebusch, E.D.; Rtimi, S. Emerging technologies for biofuel production: A critical review on recent progress, challenges and perspectives. J. Environ. Manag. 2021, 290, 112627. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, V.N.; Blum, L. Syngas and synfuels from H2O and CO2: Current status. Chem. Ing. Tech. 2015, 87, 354–375. [Google Scholar] [CrossRef]
- Schulz, S.C. Synthetische Kraftstoffe: Vor- und Nachteile der Diesel-Alternative. Available online: https://utopia.de/ratgeber/synthetische-kraftstoffe-vor-und-nachteile-der-diesel-alternative/ (accessed on 13 September 2020).
- International Energy Agency IEA. The Future of Hydrogen Seizing Today′s Opportunities; Report prepared by the IEA for the G20, Japan. Available online: https://webstore.iea.org/download/direct/2803) (accessed on 5 October 2021).
- Ortega Hortelano, A.; van Balen, M.; Gkoumas, K.; Haq, G.; Tsakalidis, A.; Grosso, M.; Pekár, F. Research and Innovation in Low Emission Alternative ENERGY for Transport; EUR 29936 EN; Publications Office of the European Union: Luxembourg, 2019. [CrossRef]
- Samsun, R.C.; Antoni, L.; Rex, M. Report on Mobile Fuel Cell Application: Tracking Market Trends. Available online: https://www.ieafuelcell.com/index.php?id=5#c280 (accessed on 5 October 2021).
- European Commission. European Alternative Fuels Observatory (EAFO). Available online: https://www.eafo.eu (accessed on 4 September 2020).
- European Automobile Manufacturers Association. Report-Vehicles-in-Use. Available online: https://www.acea.be/statistics/article/Report-Vehicles-in-use (accessed on 10 September 2020).
- European Alternative Fuels Observatory EAFO. EAFO Analysis. March 2020. Available online: www.eafo.eu (accessed on 5 October 2021).
- International Union of Railway UIC. Railway Statistics Synopsis 2020 Edition. Available online: https://uic.org/support-activities/statistics/ (accessed on 5 October 2021).
- Study Task Force of the Hydrogen Council. Hydrogen Scaling Up: A Sustainable Pathway for the Global Energy Transition. Available online: http://hydrogencouncil.com/wp-content/uploads/2017/11/Hydrogen-scaling-up-Hydrogen-Council.pdf (accessed on 5 October 2021).
- Adolf, J.; Balzer, C.H.; Louis, J.; Schabla, U.; Fischedick, M.; Arnold, K.; Pastowski, A.; Schüwer, D. Energie der Zukunft? Nachhaltige Mobilität durch Brennstoffzelle und H2. Shell Wasserstoff-Studie; Bundesanstalt für Straßenwesen (BASt): Bergisch Gladbach, Germany, 2017. [Google Scholar] [CrossRef]
- SCI Verkehr GmbH. Railway Electrification—Global Market Trends. Available online: https://www.sci.de/fileadmin/user_upload/MC_Studien_Flyer/180425_Flyer_MC_Electrification_en.pdf (accessed on 5 October 2021).
- SCI Verkehr GmbH. Diesel Locomotives—Global Market Trends. Available online: https://www.sci.de/fileadmin/user_upload/MC_Studien_Flyer/Flyer_Diesel_Locomotives_dt.pdf (accessed on 5 October 2021).
- Blumenfeld, M.; Wemakor, W.; Azzouz, L.; Roberts, C. Developing a new technical strategy for rail infrastructure in low-income countries in Sub-Saharan Africa and South Asia. Sustainability 2019, 11, 4319. [Google Scholar] [CrossRef] [Green Version]
- International Energy Agency IEA, International Union of Railways UIC. The Future of Rail. Available online: https://www.iea.org/futureofrail/ (accessed on 5 October 2021).
- Lawrenz, D. Bombardier: Traxx AC3 Last Mile-Lok: Typzulassung in Bulgarien und Kroatien. Available online: https://eisenbahn-kurier.de/index.php/4296-bombardier-traxx-ac3-last-mile-lok-erhaelt-offizielle-typzulassung-in-bulgarien-und-kroatien (accessed on 19 October 2020).
- Railway Pro. Occitanie Region Receives the 300th Coradia Polyvalent Train. Railway Pro. Available online: https://www.railwaypro.com/wp/occitanie-region-receives-the-300th-coradia-polyvalent-train/ (accessed on 19 October 2020).
- Ersahin, I.; Leyendecker, W. Die erste Hybrid-Rangierlokomotive der türkischen Lokomotivfabrik Tülomsas. Der Eisenbahningenieur 2019, 44–45. [Google Scholar]
- Fröhlich, M. Energy Storage on Board of Rail Vehicles. In Local Renewables; Bombardier: Freiburg, Germany, 2010; Available online: https://web.archive.org/web/20140226172716/http://www.local-renewables-conference.org/fileadmin/lr-conference/files/LR2010/Documents/A1_Bombardier_Freiburg_Oct_2010.pdf (accessed on 5 October 2021).
- Railway Gazette International. Rhein-Neckar Verkehr Orders More Supercapacitor Trams. Available online: https://www.railwaygazette.com/rhein-neckar-verkehr-orders-more-supercapacitor-trams/35818.article (accessed on 6 September 2021).
- Railway Gazette International. Supercapacitors to be Tested on Paris STEEM Tram. Available online: https://www.railwaygazette.com/supercapacitors-to-be-tested-on-paris-steem-tram/34187.article (accessed on 6 September 2021).
- Flerlage, H.; Mazzone, A.; von Mach, S. Neue fahrzeugfunktionen durch den batteriebetrieb von schienenfahrzeugen mit speichern hoher leistung und optimiertem energiemanagement. ZEV Rail Tag. SFT Graz 2017, 2017, 120–127. [Google Scholar]
- Mallikat, J. Alternative antriebstechnologien für schienenfahrzeuge. Eisenbahningenieur 2019, 38–43. [Google Scholar]
- SCI Verkehr GmbH. Diesel and Alternative Drive Locomotives—Global Market Trends 2020. Available online: https://www.sci.de/shop/search/product/?productid=1dfc2224-045e-440d-9c3c-8c8fc6613dc6&L=1 (accessed on 13 September 2020).
- Wang, J.; Yang, Z.; Liu, S.; Zhang, Q.; Han, Y. A comprehensive overview of hybrid construction machinery. Adv. Mech. Eng. 2016, 8, 1687814016636809. [Google Scholar] [CrossRef] [Green Version]
- He, X.; Jiang, Y. Review of hybrid electric systems for construction machinery. Autom. Constr. 2018, 92, 286–296. [Google Scholar] [CrossRef]
- Poirier, S.; Lacroix, R.; Ouellette, S. The “Scoop” on the world′s first hybrid mining loader. S. Afr. Inst. Min. Metall. Narrow Vein Reef 2008, 2008, 1–9. [Google Scholar]
- >DNV GL. Perspectives on Zero Emission Construction. Available online: http://www.sustainable-procurement.org/fileadmin/user_upload/layout/homepage/NGO_Network/2.4_-_BestPractice_-_Omsorgsbygg_Oslo.pdf (accessed on 5 October 2021).
- SINTEF. NASTA og SINTEF Skal Utvikle Utslippsfrie Gravemaskiner. Available online: https://www.sintef.no/siste-nytt/nasta-og-sintef-skal-utvikle-utslippsfrie-gravemaskiner/ (accessed on 10 September 2020).
- Sander Poulsen, T. Market Analysis for Non-Road Mobile Machinery Sector. Available online: https://www.gate21.dk/wp-content/uploads/2017/06/Market-Analysis-for-Non-Road-Mobile-Machinery-Sector_FINAL.pdf (accessed on 5 October 2021).
- Volvo Construction Equipment. Electric Site Research Project. Available online: https://www.volvoce.com/global/en/this-is-volvo-ce/what-we-believe-in/innovation/electric-site/ (accessed on 19 July 2021).
- DHL Global. DHL Express Shapes Future for Sustainable Aviation with the Order of First-Ever All-Electric Cargo Planes from Eviation. Available online: https://www.dhl.com/global-en/home/press/press-archive/2021/dhl-express-shapes-future-for-sustainable-aviation-with-the-order-of-first-ever-all-electric-cargo-planes-from-eviation.html (accessed on 19 August 2021).
- Wang, W.-C.; Tao, L.; Markham, J.; Zhang, Y.; Tan, E.; Batan, L.; Warner, E.; Biddy, M. Review of Biojet Fuel Conversion Technologies; National Renewable Energy Laboratory: Denver, CO, USA, 2016. Available online: https://www.nrel.gov/docs/fy16osti/66291.pdf (accessed on 5 October 2020).
- International Energy Agency IEA. Energy Technology Perspectives 2020; IEA: Paris, France, 2020. [Google Scholar] [CrossRef]
- DNV GL. Assessment of Selected Alternative Fuels and Technologies; DNV GL: Bærum, Norway, 2019. [Google Scholar]
- Water-Go-Round. Water-Go-Round Project. Available online: https://watergoround.com/ (accessed on 10 September 2020).
- Reuter, M.; Waschek, S. AIDA Cares 2019; AIDA: Rostock, Germany, 2019; Available online: https://www.aida.de/en/aida-cruises/responsibility/aida-cares-2017.34504.html (accessed on 5 October 2021).
- European Commission. Alternative Fuels for Sustainable Mobility in Europe. Available online: https://ec.europa.eu/transport/themes/urban/cpt_en (accessed on 19 October 2020).
- Mueller, A. Wissenschaftliche Bewertung von Alternativen, Emissionsarmen Antriebskonzepten für den Bayerischen SPNV. Available online: https://beg.bahnland-bayern.de/de/aktuelles/gutachten-alternative-antriebe-im-bahnland-bayern (accessed on 5 October 2021).
- Hoffmann, M.; Dittus, H.; Falabretti, M.; Pagenkopf, J.; Böhm, M. Alternative antriebskonzepte für rangierfahrzeuge und baufahrzeuge der schweizerischen bundesbahnen SBB. ZEVRail 2017, 125–133. [Google Scholar]
- International Energy Agency IEA. Hybrid and Electric Vehicles: The Electric Drive Hauls. Available online: http://www.ieahev.org/assets/1/7/Report2019_WEB_New_(8).pdf (accessed on 5 October 2021).
- Green, J.M.; Hartman, B.; Glowacki, P.F. A system-based view of the standards and certification landscape for electric vehicles. In Proceedings of the EVS 2016—29th International Electric Vehicle Symposium, Montreal, QC, Canada, 19–22 June 2016; pp. 564–575. [Google Scholar]
- Pelzl, C. Neues System für Flächendeckende Verfügbarkeit von Grünem Wasserstoff. Available online: https://www.tugraz.at/tu-graz/services/news-stories/medienservice/einzelansicht/article/neues-system-fuer-flaechendeckende-verfuegbarkeit-von-gruenem-wasserstoff/ (accessed on 5 September 2020).
- Ruf, Y.; Zorn, T.; De Neve, P.A.; Andrae, P.; Erofeeva, S.; Garrison, F.; Schwilling, A. Study on the Use of Fuel Cells and Hydrogen in the Railway Environment. Available online: https://shift2rail.org/publications/study-on-the-use-of-fuel-cells-and-hydrogen-in-the-railway-environment/ (accessed on 5 October 2021).
- Rajasegar, R.; Mitsingas, C.M.; Mayhew, E.K.; Liu, Q.; Lee, T.; Yoo, J. Development and characterization of additive-manufactured mesoscale combustor array. J. Energy Eng. 2018, 144, 04018013. [Google Scholar] [CrossRef]
- European Federation for Transport and Environment AISBL. Do Gas Trucks Reduce Emissions? Available online: https://www.transportenvironment.org/sites/te/files/publications/2019_09_do_gas_trucks_reduce_emissions_paper_EN.pdf (accessed on 5 October 2021).
- Baumann, K. LNG-Activities in Dutch-German Cooperation (MariTIM, LNG-Initiative Nordwest, WattenStart). In Proceedings of the 4th Annual Global LNG Forum, London, UK, 3–4 February 2014; Available online: https://docplayer.net/39940871-Lng-activities-in-dutch-german-cooperation-maritim-lng-initiative-nordwest-wattenstart-katja-baumann-mariko-gmbh-germany.html (accessed on 5 October 2021).
- Lenz, M. Natural Gas Goes on Trial. Int. Railway J. 2014. Available online: https://www.railjournal.com/in_depth/natural-gas-goes-on-trial (accessed on 19 July 2021).
- Zasiadko, M. Russia Tests New LNG-Powered Locomotive. Available online: https://www.railtech.com/rolling-stock/2020/02/17/russia-tests-new-lng-powered-locomotive/?utm_source=newsletter&utm_medium=email&utm_campaign=Newsletterweek2020-08&gdpr=accept (accessed on 13 October 2020).
- Ivanov, B. About experience history biofuels in Russian railways and the time of the diesel locomotives. In The End of Fossil Fuels; UIC Workshop Zürich: Zürich, Switzerland, 2019. [Google Scholar]
- Howarth, R.W. A bridge to nowhere: Methane emissions and the greenhouse gas footprint of natural gas. Energy Sci. Eng. 2014, 2, 47–60. [Google Scholar] [CrossRef]
- Stephan, A.; Wittemann, N.T.; Müller, A. Alternative antriebskonzepte: Welcher hybrid für welche strecke? Eisenbahningenieur 2018, 9, 60–66. [Google Scholar]
- Capcomp GmbH. Supercap vs. Batterie. Available online: https://www.capcomp.de/kondensatoren/vergleich-ultracap-akku.html (accessed on 22 July 2021).
- Bégun, F.; Frackowiak, E. Supercapacitors; Wiley-VCH: Weinheim, Germany, 2013. [Google Scholar]
Manufacturer | Models | Power Source | Status-Quo | Source | |
---|---|---|---|---|---|
Machines | Geismar | VMB-E (similar to MTW of P&T) | battery or catenary | offered in website portfolio | [28] |
Geismar | V2R-CGR maintenance vehicle | diesel-battery | offered in website portfolio | [28] | |
Harsco | Utility Track Vehicle (UTV) | catenary-battery | framework contract to supply vehicles for DB | [29] | |
Linsinger | Rail milling train | fuel cell | [30] | ||
Plasser & Theurer | BDS 2000 E3 | diesel-catenary | First-ever hybrid track work machinery, in operation at work sites in Switzerland and Austria | [31,32] | |
Plasser & Theurer | 09-4 × E3 Dynamic Tamping Express | diesel-catenary | |||
Plasser & Theurer | HTW 100 E3 | diesel-battery | first-ever battery powered vehicle in the industry (2017) | [31,32,33] | |
Plasser & Theurer | Unimat 09-32/4S Dynamic E3 | diesel-catenary | in operation at work sites in Austria | [31] | |
Plasser & Theurer | Unimat 09-4 × 4/4S E3 | diesel-catenary | |||
Railcare | Multi-Purpose Vehicle | battery | recently unveiled for operation in Sweden | [34,35] | |
Windhoff | Rail transport wagon | not yet defined (battery or fuel cell) | contract to deliver three dual power vehicles | [36] | |
Tools | Geismar | Battery-Powered Portable Tamper | battery | [28] | |
Geismar | Battery-Powered Abrasive Rail Saw | battery | [28] | ||
Robel | Rail Drilling Machine | battery | first prototypes showcase In-House Exhibition in 09/2019 | [37] | |
Robel | Rail Band Saw | battery | |||
Robel | Impact Wrench | battery | |||
Robel | Vertical Tamper | battery | |||
Robel | Rail Cutter | battery | |||
Robel | Rail loading system | supercapacitor | prototype presentation at IAF 2017 | [38] |
Parameter | Description |
---|---|
Charging time [h] | In the case of battery operation or hybrid usage, this value defines the desired charging time of the battery. |
Shift multiplier | Multiplies working hours to multiple shifts based on standard shift length of eight hours (which represents a standard scenario). |
FC workload | Fuel cells are usually designed to work at highest efficiency which is achieved at a specific load. This parameter defines the desired continuous workload of the FC. |
Time share of battery-only mode | The calculation model can consider hybrid mode operation (so far: battery-catenary, hydrogen-catenary hybrids not yet included). This value sets the working time which should be reached with battery-only mode, it defines the battery capacity. |
Battery factor [1/h] | This value defines the proportion of the FC power to battery capacity in case of FC only mode. By definition. the unit is 1/h. |
Battery type | In CalCAS the user can choose from different types of batteries. Their properties are listed in a separate datasheet and include volumetric energy density [m3/100 kWh] and gravimetric energy density [Wh/kg]. |
FC type | The above stated is also true for the FC type. The separate datasheet contains FC specific values such as volumetric energy density [m3/100 kWh], gravimetric energy (or power) density [kW/kg] and FC efficiency. CalCAS uses the cell type PEMFC (proton exchange membrane fuel cells) as this is the dominating fuel cell technology for transport applications currently [52]. |
Cluster 1 | Machine Type | Preferred Main Power Source |
---|---|---|
Low (<300 kWh) | Catenary Inspection | Battery |
Material Logistics | Battery | |
Med1 (<800 kWh) | Measuring Vehicle (≤60 km/h working speed) | Battery 2 |
Ballast distributing & profiling | Battery/Fuel Cell 2 | |
Structure Conservation Vehicle (non-stationary work mode) | Battery/Fuel Cell 2 | |
Stabilisation | Battery/Fuel Cell 2 | |
Med2 (<1200 kWh) | Measuring Vehicle (60–100 km/h working speed) | Battery/Fuel Cell 3 |
Universal Tamping Machine | Battery/Fuel Cell 3 | |
High (≥1200 kWh) | Track Renewal and Laying | Fuel Cell |
Ballast Cleaning | Fuel Cell | |
Formation Rehabilitation | Fuel Cell | |
Ballast Cleaning | Fuel Cell | |
Misc. | Welding Machine | Battery |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeiner, M.; Landgraf, M.; Knabl, D.; Antony, B.; Barrena Cárdenas, V.; Koczwara, C. Assessment and Recommendations for a Fossil Free Future for Track Work Machinery. Sustainability 2021, 13, 11444. https://doi.org/10.3390/su132011444
Zeiner M, Landgraf M, Knabl D, Antony B, Barrena Cárdenas V, Koczwara C. Assessment and Recommendations for a Fossil Free Future for Track Work Machinery. Sustainability. 2021; 13(20):11444. https://doi.org/10.3390/su132011444
Chicago/Turabian StyleZeiner, Martina, Matthias Landgraf, Dieter Knabl, Bernhard Antony, Víctor Barrena Cárdenas, and Christian Koczwara. 2021. "Assessment and Recommendations for a Fossil Free Future for Track Work Machinery" Sustainability 13, no. 20: 11444. https://doi.org/10.3390/su132011444
APA StyleZeiner, M., Landgraf, M., Knabl, D., Antony, B., Barrena Cárdenas, V., & Koczwara, C. (2021). Assessment and Recommendations for a Fossil Free Future for Track Work Machinery. Sustainability, 13(20), 11444. https://doi.org/10.3390/su132011444