Impact of Noah-LSM Parameterizations on WRF Mesoscale Simulations: Case Study of Prevailing Summer Atmospheric Conditions over a Typical Semi-Arid Region in Eastern Spain
Abstract
:1. Introduction
2. Materials and Methods
2.1. WRF Model Configuration
2.1.1. Numerical Setup
2.1.2. Numerical Experiments
2.2. Observational Datasets
3. Results
3.1. Observations Versus Model Comparison
3.2. Different Additional Parameters Investigated
4. Summary and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Milovac, J.; Warrach-Sagi, K.; Behrendt, A.; Späth, F.; Ingwersen, J.; Wulfmeyer, V. Investigation of PBL Schemes Combining the WRF Model Simulations With Scanning Water Vapor Differential Absorption Lidar Measurements. J. Geophys. Res. Atmos. 2016, 121, 624–649. [Google Scholar] [CrossRef] [Green Version]
- Gómez, I.; Caselles, V.; Estrela, M.J.; Sánchez, J.M.; Rubio, E. Simulation of Surface Energy Fluxes and Meteorological Variables Using the Regional Atmospheric Modeling System (RAMS): Evaluating the Impact of Land-Atmosphere Coupling on Short-Term Forecasts. Agric. Forest. Meteorol. 2018, 249, 319–334. [Google Scholar] [CrossRef] [Green Version]
- Santanello, J.A.; Dirmeyer, P.A.; Ferguson, C.R.; Findell, K.L.; Tawfik, A.B.; Berg, A.; Ek, M.; Gentine, P.; Guillod, B.P.; van Heerwaarden, C.; et al. Land-Atmosphere Interactions: The LoCo Perspective. Bull. Am. Meteor. Soc. 2018, 99, 1253–1272. [Google Scholar] [CrossRef]
- Gómez, I.; Niclòs, R.; Estrela, M.J.; Caselles, V.; Barberà, M.J. Simulation of Extreme Heat Events over the Valencia Coastal Region: Sensitivity to Initial Conditions and Boundary Layer Parameterizations. Atmos. Res. 2018, 218, 315–334. [Google Scholar] [CrossRef]
- Santanello, J.A., Jr.; Lawston, P.; Kumar, S.; Dennis, E. Understanding the Impacts of Soil Moisture Initial Conditions on NWP in the Context of Land-Atmosphere Coupling. J. Hydrometeor. 2019, 20, 793–819. [Google Scholar] [CrossRef]
- Gómez, I.; Caselles, V.; Estrela, M.J. Improving RAMS and WRF Mesoscale Forecasts over Two Distinct Vegetation Covers Using an Appropriate Thermal Roughness Length Parameterization. Agric. Forest. Meteorol. 2020, 280, 107791. [Google Scholar] [CrossRef]
- Xia, G.; Draxl, C.; Berg, L.K.; Cook, D. Quantifying the Impacts of Land Surface Modeling on Hub-Height Wind Speed under Different Soil Conditions. Mon. Weather Rev. 2021, 149, 3101–3118. [Google Scholar]
- Pilotto, I.L.; Rodríguez, D.A.; Tomasella, J.; Sampaio, G.; Chou, S.C. Comparisons of the Noah-MP Land Surface Model Simulations with Measurements of Forest and Crop Sites in Amazonia. Meteorol. Atmos. Phys. 2015, 127, 711–723. [Google Scholar] [CrossRef]
- Ek, M.B.; Mitchell, K.E.; Lin, Y.; Rogers, E.; Grunmann, P.; Koren, V.; Gayno, G.; Tarpley, J.D. Implementation of Noah Land Surface Model Advances in the National Centers for Environmental Prediction Operational Mesoscale Eta Model. J. Geophys. Res. 2003, 108, 8851. [Google Scholar] [CrossRef]
- Niu, G.-Y.; Zeng, X. Earth System Model, Modeling the Land Component of. In Climate Change Modeling Methodology: Selected Entries from the Encyclopedia of Sustainability Science and Technology; Rasch, P.J., Ed.; Springer: New York, NY, USA, 2012; pp. 139–168. [Google Scholar]
- Rodell, M.; Houser, P.R.; Jambor, U.; Gottschalck, J.; Mitchell, K.; Meng, C.J.; Arsenault, K.; Cosgrove, B.; Radakovich, J.; Bosilovich, M.; et al. The Global Land Data Assimilation System. Bull. Am. Meteorol. Soc. 2004, 85, 381–394. [Google Scholar] [CrossRef] [Green Version]
- Niu, G.-Y.; Yang, Z.-L.; Mitchell, K.E.; Chen, F.; Ek, M.B.; Barlage, M.; Kumar, A.; Manning, K.; Niyogi, D.; Rosero, E.; et al. The Community Noah Land Surface Model with Multiparameterization Options (Noah-MP): 1. Model Description and Evaluation with Local-Scale Measurements. J. Geophys. Res. 2011, 116, D12109. [Google Scholar] [CrossRef] [Green Version]
- Yang, Z.-L.; Niu, G.-Y.; Mitchell, K.E.; Chen, F.; Ek, M.B.; Barlage, M.; Longuevergne, L.; Manning, K.; Niyogi, D.; Tewari, M.; et al. The Community Noah Land Surface Model with Multiparameterization Options (Noah-MP): 2. Evaluation over Global River Basins. J. Geophys. Res. 2011, 116, D12110. [Google Scholar] [CrossRef]
- Arsenault, K.R.; Nearing, G.S.; Wang, S.; Yatheendradas, S.; Peters-Lidard, C.D. Parameter Sensitivity of The Noah-Mp Land Surface Model with Dynamic Vegetation. J. Hydrometeorol. 2018, 19, 815–830. [Google Scholar] [CrossRef]
- Ma, N.; Niu, G.-Y.; Xia, Y.; Cai, X.; Zhang, Y.; Ma, Y.; Fang, Y. A Systematic Evaluation of Noah-MP in Simulating Land-Atmosphere Energy, Water, and Carbon Exchanges over the Continental United States. J. Geophys. Res. Atmos. 2017, 122, 12245–12268. [Google Scholar] [CrossRef]
- Salamanca, F.; Zhang, Y.; Barlage, M.; Chen, F.; Mahalov, A.; Miao, S. Evaluation of the WRF-Urban Modeling System Coupled to Noah and Noah-MP Land Surface Models over a Semiarid Urban Environment. J. Geophys. Res. Atmos. 2018, 123, 2387–2408. [Google Scholar] [CrossRef]
- Yang, F.; Dan, L.; Peng, J.; Yang, X.; Li, Y.; Gao, D. Subdaily to Seasonal Change of Surface Energy and Water Flux of the Haihe River Basin in China: Noah and Noah-MP Assessment. Adv. Atmos. Sci. 2019, 36, 79–92. [Google Scholar] [CrossRef]
- Chang, M.; Liao, W.; Wang, X.; Zhang, Q.; Chen, W.; Wu, Z.; Hu, Z. An Optimal Ensemble of the Noah-MP Land Surface Model for Simulating Surface Heat Fluxes over a Typical Subtropical Forest in South China. Agric. Forest. Meteorol. 2020, 281, 107815. [Google Scholar] [CrossRef]
- Tomasi, E.; Giovannini, L.; Zardi, D.; De Franceschi, M. Optimization of Noah and Noah_MP WRF Land Surface Schemes in Snow-Melting Conditions over Complex Terrain. Mon. Wea. Rev. 2017, 145, 4727–4745. [Google Scholar] [CrossRef]
- Skamarock, W.C.; Klemp, J.B.; Dudhia, J.; Gill, D.O.; Barker, D.; Duda, M.G.; Huang, X.-Y.; Wang, W.; Powers, J.G. A Description of the Advanced Research WRF Version 3; NCAR/TN-475+STR; University Corporation for Atmospheric Research: Boulder, CO, USA, 2008. [Google Scholar]
- Powers, J.G.; Klemp, J.B.; Skamarock, W.C.; Davis, C.A.; Dudhia, J.; Gill, D.O.; Coen, J.L.; Gochis, D.J.; Ahmadov, R.; Peckham, S.E.; et al. The Weather Research and Forecasting Model: Overview, System Efforts, and Future Directions. Bull. Am. Meteorol. Soc. 2017, 98, 1717–1737. [Google Scholar] [CrossRef]
- Chen, F.; Mitchell, K.E.; Schaake, J.; Xue, Y.; Pan, H.L.; Koren, V.; Duan, Q.Y.; Ek, M.; Betts, A. Modeling of Land-Surface Evaporation by Four Schemes and Comparison with FIFE Observations. J. Geophys. Res. 1996, 101, 7251–7268. [Google Scholar] [CrossRef] [Green Version]
- Chen, F.; Dudhia, J. Coupling an Advanced Land Surface-Hydrology Model with the Penn State-NCAR MM5 Modeling System. Part I: Model Implementation and Sensitivity. Mon. Weather Rev. 2001, 129, 569–585. [Google Scholar] [CrossRef] [Green Version]
- Campbell, P.C.; Bash, J.O.; Spero, T.L. Updates to the Noah Land Surface Model in WRF CMAQ to Improve Simulated Meteorology, Air Quality, and Deposition. J. Adv. Model. Earth Syst. 2019, 11, 231–256. [Google Scholar] [CrossRef]
- Suzuki, K.; Zupanski, M. Uncertainty in Solid Precipitation and Snow Depth Prediction for Siberia Using the Noah and Noah-MP Land Surface Models. Front. Earth Sci. 2018, 12, 672–682. [Google Scholar] [CrossRef]
- Tian, Y.; Miao, J.A. Numerical Study of Mountain-Plain Breeze Circulation in Eastern Chengdu, China. Sustainability 2019, 11, 2821. [Google Scholar] [CrossRef] [Green Version]
- Barlage, M.; Tewari, M.; Chen, F.; Miguez-Macho, G.; Yang, Z.-L.; Niu, G.Y. The Effect of Groundwater Interaction in North American Regional Climate Simulations with WRF/Noah-MP. Clim. Chang. 2015, 129, 485–498. [Google Scholar] [CrossRef]
- Gómez, I.; Caselles, V.; Estrela, M.J.; Miró, J.J. Comparative Assessment of RAMS and WRF Short-Term Forecasts over Eastern Iberian Peninsula Using Various In-Situ Observations, Remote Sensing Products and Uncoupled Land Surface Model Datasets. Atmos. Res. 2018, 213, 476–491. [Google Scholar] [CrossRef] [Green Version]
- Glotfelty, T.; Ramírez-Mejía, D.; Bowden, J.; Ghilardi, A.; West, J.J. Limitations of WRF Land Surface Models for Simulating Land Use and Land Cover Change in Sub-Saharan Africa and Development of an Improved Model (CLM-AF v. 1.0). Geosci. Model Dev. 2021, 14, 3215–3249. [Google Scholar] [CrossRef]
- Brunsell, N.A.; de Oliveira, G.; Barlage, M.; Shimabukuro, Y.; Moraes, E.; Aragão, L. Examination of Seasonal Water and Carbon Dynamics in Eastern Amazonia: A Comparison of Noah-MP and MODIS. Theor. Appl. Climatol. 2021, 143, 571–586. [Google Scholar] [CrossRef]
- Cai, X.; Yang, Z.-L.; David, C.H.; Niu, G.-Y.; Rodell, M. Hydrological Evaluation of the Noah-MP Land Surface Model for the Mississippi River Basin. J. Geophys. Res. Atmos. 2014, 119, 23–38. [Google Scholar] [CrossRef]
- Gao, Y.; Li, K.; Chen, F.; Jiang, Y.; Lu, C. Assessing and Improving Noah-MP Land Model Simulations for the Central Tibetan Plateau. J. Geophys. Res. Atmos. 2015, 120, 9258–9278. [Google Scholar] [CrossRef]
- Srivastava, P.K.; Han, D.; Yaduvanshi, A.; Petropoulos, G.P.; Singh, S.K.; Mall, R.K.; Prasad, R. Reference Evapotranspiration Retrievals from a Mesoscale Model Based Weather Variables for Soil Moisture Deficit Estimation. Sustainability 2017, 9, 1971. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Zheng, X.; Zhang, C.; Chen, Y. Impact of Land-Use and Land-Cover Change on Meteorology in the Beijing–Tianjin–Hebei Region from 1990 to 2010. Sustainability 2018, 10, 176. [Google Scholar] [CrossRef] [Green Version]
- Dudhia, J. Numerical Study of Convection Observed during the Winter Monsoon Experiment Using a Mesoscale Two-Dimensional Model. J. Atmos. Sci. 1989, 46, 3077–3107. [Google Scholar] [CrossRef]
- Mlawer, E.J.; Taubman, S.J.; Brown, P.D.; Iacono, M.J.; Clough, S.A. Radiative Transfer for Inhomogeneous Atmospheres: RRTM, a Validated Correlated-K Model for the Long Wave. J. Geophys. Res. 1997, 102, 16663–16682. [Google Scholar] [CrossRef] [Green Version]
- Hong, S.Y.; Noh, Y.; Dudhia, J. A New Vertical Diffusion Package with an Explicit Treatment of Entrainment Processes. Mon. Wea. Rev. 2006, 134, 2318–2341. [Google Scholar] [CrossRef] [Green Version]
- Lenderink, G.; van Meijgaard, E.; Selten, F. Intense Coastal Rainfall in The Netherlands in Response to High Sea Surface Temperatures: Analysis of the Event of August 2006 from the Perspective of a Changing Climate. Clim. Dyn. 2009, 32, 19–33. [Google Scholar] [CrossRef]
- Hu, X.-M.; Nielsen-Gammon, J.W.; Zhang, F. Evaluation of Three Planetary Boundary Layer Schemes in the WRF Model. J. Appl. Meteorol. Climatol. 2010, 49, 1831–1844. [Google Scholar] [CrossRef] [Green Version]
- Zhang, G.; Chen, F.; Gan, Y. Assessing Uncertainties in the Noah-MP Ensemble Simulations of a Cropland Site During the Tibet Joint International Cooperation Program Field Campaign. J. Geophys. Res. Atmos. 2016, 121, 9576–9596. [Google Scholar] [CrossRef]
- Zheng, H.; Yang, Z.-L.; Lin, P.; Wei, J.; Wu, W.-Y.; Li, L.; Zhao, L.; Wang, S. On the Sensitivity of the Precipitation Partitioning Into Evapotranspiration and Runoff in Land Surface Parameterizations. Water Resour. Res. 2019, 55, 95–111. [Google Scholar] [CrossRef]
- Gan, Y.; Liang, X.Z.; Duan, Q.; Chen, F.; Li, J.; Zhang, Y. Assessment and Reduction of the Physical Parameterization Uncertainty for Noah Mp Land Surface Model. Water Resour. Res. 2019, 55, 5518–5538. [Google Scholar] [CrossRef] [Green Version]
- Zhuo, L.; Dai, Q.; Han, D.; Chen, N.; Zhao, B. Assessment of Simulated Soil Moisture from WRF Noah, Noah-MP, and CLM Land Surface Schemes for Landslide Hazard Application. Hydrol. Earth Syst. Sci. 2019, 23, 4199–4218. [Google Scholar] [CrossRef] [Green Version]
- Brutsaert, W.A. Evaporation into the Atmosphere; D. Reidel: Dordrecht, The Netherlands, 1982; p. 299. [Google Scholar]
- Chen, F.; Janjić, Z.; Mitchell, K. Impact of Atmospheric Surface-layer Parameterizations in the New Land-surface Scheme of the NCEP Mesoscale Eta Model. Boundary-Layer Meteorol. 1997, 85, 391–421. [Google Scholar] [CrossRef]
- Oleson, K.; Dai, Y.; Bonan, G.; Bosilovichm, M.; Dickinson, R.; Dirmeyer, P.; Hoffman, F.; Houser, P.; Levis, S.; Niu, G.-Y.; et al. Technical Description of the Community Land Model (CLM); NCAR/TN-461+STR; NCAR Tech.: Boulder, CO, USA, 2004; p. 174. [Google Scholar] [CrossRef]
- Xue, Y.; Sun, S.; Kahan, D.S.; Jiao, Y. Impact of Parameterizations in Snow Physics and Interface Processes On the Simulation of Snow Cover and Runoff at Several Cold Region Sites. J. Geophys. Res. Space Phys. 2003, 108, 8859. [Google Scholar] [CrossRef]
- Jarvis, P.G. The Interpretation of the Variations in Leaf Water Potential and Stomatal Conductance Found in Canopies in the Field. Philos. Trans. R. Soc. B 1976, 273, 593–610. [Google Scholar] [CrossRef]
- Ball, J.T.; Woodrow, I.E.; Berry, J.A. A Model Predicting Stomatal Conductance and Its Contribution to the Control of Photosynthesis under Different Environmental Conditions. In Process in Photosynthesis Research; Biggins, J., Ed.; Martinus Nijhoff: Dordrecht, The Netherlands, 1987; Volume 1, pp. 221–224. [Google Scholar]
- Caselles, V.; Valor, E.; Coll, C.; Rubio, E. Thermal Band Selection for the PRISM Instrument: 1. Analysis of Emissivity-Temperature Separation Algorithms. J. Geophys. Res. Space Phys. 1997, 102, 11145–11164. [Google Scholar] [CrossRef]
- Trigo, I.F.; Monteiro, I.T.; Olesen, F.; Kabsch, E. An Assessment of Remotely Sensed Land Surface Temperature. J. Geophys. Res. Space Phys. 2008, 113, D17108. [Google Scholar] [CrossRef]
- Gómez, I.; Caselles, V.; Estrela, M.J. Seasonal Characterization of Solar Radiation Estimates Obtained from a MSG-SEVIRI-Derived Dataset and a RAMS-Based Operational Forecasting System over the Western Mediterranean Coast. Remote. Sens. 2016, 8, 46. [Google Scholar] [CrossRef] [Green Version]
- Gómez, I.; Caselles, V.; Estrela, M.J.; Niclòs, R. Impact of Initial Soil Temperature Derived from Remote Sensing and Numerical Weather Prediction Datasets on the Simulation of Extreme Heat Events. Remote Sens. 2016, 8, 589. [Google Scholar] [CrossRef] [Green Version]
- Gulden, L.E.; Rosero, E.; Yang, Z.-L.; Wagener, T.; Niu, G.-Y. Model performance, Model Robustness, and Model Fitness Scores: A New Method for Identifying Good Land-Surface Models. Geophys. Res. Lett. 2008, 35, L11404. [Google Scholar] [CrossRef] [Green Version]
Physical Processes | Numerical Experiments | |||||
---|---|---|---|---|---|---|
WRF_MP1 | WRF_MP2 | WRF_MP3 | WRF_MP4 | WRF_MP5 | WRF_MP6 | |
OPT_BTR | Noah | CLM | SSiB | Noah | CLM | CLM |
OPT_CRS | Jarvis | Jarvis | Jarvis | Ball-Berry | Ball-Berry | Ball-Berry |
OPT_SFC | M-O | M-O | M-O | M-O | M-O | Chen97 |
WRF | WRF_MP1 | WRF_MP2 | WRF_MP3 | WRF_MP4 | WRF_MP5 | WRF_MP6 | |
---|---|---|---|---|---|---|---|
MBE (W m−2)/RMSE (W m−2) | |||||||
H | 14/40 | 10/50 | 50/90 | 50/90 | 19/60 | 40/80 | −12/33 |
LE | −5/18 | 20/30 | −20/30 | −20/30 | 10/20 | −11/20 | −3/18 |
R/IoA | |||||||
H | 0.981/0.983 | 0.976/0.979 | 0.981/0.947 | 0.981/0.947 | 0.976/0.971 | 0.980/0.956 | 0.981/0.988 |
LE | 0.782/0.821 | 0.813/0.797 | 0.622/0.457 | 0.621/0.457 | 0.753/0.834 | 0.700/0.603 | 0.766/0.837 |
WRF | WRF_MP1 | WRF_MP2 | WRF_MP3 | WRF_MP4 | WRF_MP5 | WRF_MP6 | |
---|---|---|---|---|---|---|---|
MBE (W m−2)/RMSE (W m−2) | |||||||
Rs | 5/40 | 4/40 | 5/40 | 5/40 | 4/40 | 5/40 | 5/40 |
RL | −10/13 | −11/13 | −10/13 | −10/13 | −11/13 | −11/13 | −11/14 |
Rn | −8/50 | 11/50 | 4/50 | 5/50 | 9/50 | 6/50 | −50/70 |
G | −30/60 | −60/80 | −50/80 | −50/80 | −50/80 | −50/80 | −40/60 |
R/IoA | |||||||
Rs | 0.995/0.998 | 0.995/0.998 | 0.995/0.997 | 0.995/0.997 | 0.995/0.997 | 0.995/0.997 | 0.995/0.998 |
RL | 0.929/0.911 | 0.961/0.926 | 0.952/0.925 | 0.958/0.925 | 0.961/0.924 | 0.959/0.924 | 0.938/0.911 |
Rn | 0.976/0.988 | 0.977/0.985 | 0.977/0.986 | 0.977/0.986 | 0.976/0.985 | 0.977/0.986 | 0.984/0.973 |
G | 0.849/0.767 | 0.801/0.677 | 0.808/0.690 | 0.805/0.689 | 0.799/0.682 | 0.806/0.687 | 0.796/0.796 |
WRF | WRF_MP1 | WRF_MP2 | WRF_MP3 | WRF_MP4 | WRF_MP5 | WRF_MP6 | |
---|---|---|---|---|---|---|---|
MBE (W m−2)/RMSE (W m−2) | |||||||
Rs | 20/40 | 13/40 | 19/50 | 18/50 | 16/50 | 18/50 | 20/40 |
RL | −30/30 | −20/30 | −30/30 | −30/30 | −30/30 | −30/30 | −30/30 |
Rn | −20/60 | −7 /50 | −13/50 | −14/50 | −10/50 | −13/50 | −60/100 |
R/IoA | |||||||
Rs | 0.995/0.997 | 0.994/0.997 | 0.995/0.997 | 0.994/0.996 | 0.994/0.997 | 0.994/0.997 | 0.996/0.997 |
RL | 0.756/0.718 | 0.720/0.756 | 0.754/0.733 | 0.745/0.735 | 0.778/0.755 | 0.775/0.746 | 0.769/0.730 |
Rn | 0.985/0.983 | 0.983/0.991 | 0.983/0.989 | 0.983/0.989 | 0.983/0.991 | 0.983/0.990 | 0.978/0.956 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gómez, I.; Molina, S.; Galiana-Merino, J.J.; Estrela, M.J.; Caselles, V. Impact of Noah-LSM Parameterizations on WRF Mesoscale Simulations: Case Study of Prevailing Summer Atmospheric Conditions over a Typical Semi-Arid Region in Eastern Spain. Sustainability 2021, 13, 11399. https://doi.org/10.3390/su132011399
Gómez I, Molina S, Galiana-Merino JJ, Estrela MJ, Caselles V. Impact of Noah-LSM Parameterizations on WRF Mesoscale Simulations: Case Study of Prevailing Summer Atmospheric Conditions over a Typical Semi-Arid Region in Eastern Spain. Sustainability. 2021; 13(20):11399. https://doi.org/10.3390/su132011399
Chicago/Turabian StyleGómez, Igor, Sergio Molina, Juan José Galiana-Merino, María José Estrela, and Vicente Caselles. 2021. "Impact of Noah-LSM Parameterizations on WRF Mesoscale Simulations: Case Study of Prevailing Summer Atmospheric Conditions over a Typical Semi-Arid Region in Eastern Spain" Sustainability 13, no. 20: 11399. https://doi.org/10.3390/su132011399
APA StyleGómez, I., Molina, S., Galiana-Merino, J. J., Estrela, M. J., & Caselles, V. (2021). Impact of Noah-LSM Parameterizations on WRF Mesoscale Simulations: Case Study of Prevailing Summer Atmospheric Conditions over a Typical Semi-Arid Region in Eastern Spain. Sustainability, 13(20), 11399. https://doi.org/10.3390/su132011399