Comparing Multi-Criteria Decision Making Models for Evaluating Environmental Education Programs
Abstract
:1. Introduction
2. Bibliographic Review
3. AHP for the First Steps
- uc1-Adaptivity: This criterion reveals how flexible the program is and how adaptable it is to each age group of participants.
- uc2-Completeness: This criterion shows if the available description of the program covers the topic and to what extent.
- uc3-Pedagogy: This criterion shows whether the EE program is based on a pedagogical theory or if it uses a particular pedagogical method.
- uc4-Clarity: This criterion represents whether or not the objectives of this program are explicitly expressed or stated.
- uc5-Effectiveness: This criterion shows the overall impact, depending on the programming and available support material.
- uc6-Knowledge: This criterion refers to the quantity and quality of a cognitive object offered to students
- uc7-Skills: This criterion reveals if skills are cultivated through activities involving active student participation
- uc8-Behaviors: This criterion reveals the change in the student’s intentions and behavior through the program.
- uc9-Enjoyment: This criterion shows the enjoyment of the trainees throughout the EE project
- uc10-Multimodality: This criterion represents whether the EE project provides many different kinds of activities, interventions, and methods.
4. MCDM Models
4.1. SAW
4.2. WPM
4.3. TOPSIS
4.4. PROMETHEE II
5. Application of MCDM Models
6. Comparison of the Models
- Implementing pairwise comparisons of the values of the models by calculating the Pearson correlation coefficient.
- Implementing pairwise comparison of the rankings by calculating the Spearman’s rho correlation
- Estimating the Cohen’s kappa for testing the inter-rater comparability, using MCDM models as raters.
- Performing a sensitivity analysis to evaluate the robustness of those models.
7. Sensitivity Analysis
- Checking how many identical rankings were among the rankings of each model using the different schemes.
- Estimating the Spearman’s rho correlation for each model using the two schemes of weights.
8. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Carleton-Hug, A.; Hug, J.W. Challenges and opportunities for evaluating environmental education programs. Eval. Program Plan. 2010, 33, 159–164. [Google Scholar] [CrossRef]
- Ardoin, N.; Biedenweg, K.; O’Connor, K. Evaluation in Residential Environmental Education: An Applied Literature Review of Intermediary Outcomes. Appl. Environ. Educ. Commun. 2015, 14, 43–56. [Google Scholar] [CrossRef]
- Ardoin, N.M.; Bowers, A.W.; Gaillard, E. Environmental education outcomes for conservation: A systematic review. Biol. Conserv. 2019, 241, 108224. [Google Scholar] [CrossRef]
- Ardoin, N.M.; Bowers, A.W.; Roth, N.W.; Holthuis, N. Environmental education and K-12 student outcomes: A review and analysis of research. J. Environ. Educ. 2017, 49, 1–17. [Google Scholar] [CrossRef]
- Romero-Gutierrez, M.; Jimenez-Liso, M.R.; Martinez-Chico, M. SWOT analysis to evaluate the programme of a joint online/onsite master’s degree in environmental education through the students’ perceptions. Eval. Program Plan. 2016, 54, 41–49. [Google Scholar] [CrossRef]
- Thomas, R.E.W.; Teel, T.; Bruyere, B.; Laurence, S. Metrics and outcomes of conservation education: A quarter century of lessons learned. Environ. Educ. Res. 2018, 25, 172–192. [Google Scholar] [CrossRef]
- Marcinkowski, T.; Reid, A. Reviews of research on the attitude–behavior relationship and their implications for future envi-ronmental education research. Environ. Educ. Res. 2019, 25, 459–471. [Google Scholar] [CrossRef]
- McNamara, C. Basic Guide to Program Evaluation. 2008–2014; Free Management Library. Available online: https://managementhelp.org/ (accessed on 1 August 2021).
- Norris, K.; Jacobson, S.K. A content analysis of tropical conservation education programs: Elements of Success. J. Environ. Educ. 1998, 30, 38–44. [Google Scholar] [CrossRef]
- Fien, J.; Scott, W.; Tilbury, D. Education and conservation: Lessons from an evaluation. Environ. Educ. Res. 2001, 7, 379–395. [Google Scholar] [CrossRef]
- Zint, M.T.; Dowd, P.F.; Covitt, B.A. Enhancing environmental educators’ evaluation competencies: Insights from an examination of the effectiveness of theMy Environmental Education Evaluation Resource Assistant (MEERA) website. Environ. Educ. Res. 2011, 17, 471–497. [Google Scholar] [CrossRef]
- Zint, M. An introduction to My Environmental Education Evaluation Resource Assistant (MEERA), a web-based resource for self-directed learning about environmental education program evaluation. Eval. Program Plan. 2010, 33, 178–179. [Google Scholar] [CrossRef]
- Bourke, N.; Buskist, C.; Herron, J. Residential Environmental Education Center Program Evaluation: An Ongoing Challenge. Appl. Environ. Educ. Commun. 2014, 13, 83–90. [Google Scholar] [CrossRef]
- Linder, D.; Cardamone, C.; Cash, S.B.; Castellot, J.; Kochevar, D.; Dhadwal, S.; Patterson, E. Development, implementation, and evaluation of a novel multidisciplinary one health course for university undergraduates. One Health 2020, 9, 100121. [Google Scholar] [CrossRef]
- Kabassi, K.; Martinis, A.; Charizanos, P. Designing a tool for evaluating programs for environmental education. Appl. Environ. Educ. Commun. 2020, 1–18. [Google Scholar] [CrossRef]
- Saaty, T.L. The Analytic Hierarchy Process; McGraw-Hill: New York, NY, USA, 1980. [Google Scholar]
- Hwang, C.L.; Yoon, K. Multiple Attribute Decision Making: Methods and Applications A State-of-the-Art Survey. Notes in Economics and Mathematical Systems; Springer: Berlin/Heidelberg, Germany, 1981. [Google Scholar]
- Mulliner, E.; Malys, N.; Maliene, V. Comparative analysis of MCDM methods for the assessment of sustainable housing affordability. Omega 2016, 59, 146–156. [Google Scholar] [CrossRef]
- Guitouni, A.; Martel, J.M. Tentative guidelines to help choosing an appropriate MCDM method. Eur. J. Oper. Res. 1998, 109, 501–521. [Google Scholar] [CrossRef]
- Roy, B.; Slowinski, R. Questions guiding the choice of a multicriteria decision aiding method. EURO J. Decis. Proc. 2013, 1, 69–97. [Google Scholar] [CrossRef] [Green Version]
- Triantafyllou, F. Multi Criteria Decision Making Methods: A Comparative Study; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2000. [Google Scholar]
- Zanakis, S.H.; Solomon, A.; Wishart, N.; Dublish, S. Multi-attribute decision making: A simulation comparison of select methods. Eur. J. Oper. Res. 1998, 107, 507–529. [Google Scholar] [CrossRef]
- Banaitiene, N.; Banaitis, A.; Kaklauskas, A.; Zavadskas, E. Evaluating the life cycle of a building: A multivariant and multiple criteria approach. Omega 2008, 36, 429–441. [Google Scholar] [CrossRef]
- Mahmoud, M.R.; Garcia, L.A. Comparison of different multicriteria evaluation methods for the Red Bluff diversion dam. Environ. Model Soft 2000, 15, 471–478. [Google Scholar] [CrossRef]
- Chitsaz, N.; Banihabib, M.E. Comparison of Different Multi Criteria Decision-Making Models in Prioritizing Flood Management Alternatives. Water Resour. Manag. 2015, 29, 2503–2525. [Google Scholar] [CrossRef]
- Kolios, A.; Mytilinou, V.; Lozano-Minguez, E.; Salonitis, K. A Comparative Study of Multiple-Criteria Decision-Making Methods under Stochastic Inputs. Energies 2016, 9, 566. [Google Scholar] [CrossRef] [Green Version]
- Fishburn, P.C. Additive Utilities with Incomplete Product Set: Applications to Priorities and Assignments. Oper. Res. 1967, 15, 537–542. [Google Scholar] [CrossRef]
- Triantaphyllou, F.; Mann, S.H. An examination of the effectiveness of multi-dimentional decision-making methods: A decision making paradox. Dec. Sup. Sys 1989, 5, 303–312. [Google Scholar] [CrossRef]
- Brans, J.P. L’elaboration d’instruments d’aide a la decision. In L’Aide a la Decision: Nature, Instruments et Perspectives d’Avenir; Nadeau, R., Landry, M., Eds.; Le Presses de l’ Universite Laval: Quebec, QC, Canada, 1986; pp. 183–214. [Google Scholar]
- Brans, J.P.; Vincke, P. A Preference Ranking Organisation Method (The Promethee Method for Multiple Criteria Deci-sion-Making). Manag. Sci. 1985, 31, 647–656. [Google Scholar] [CrossRef] [Green Version]
- Kabassi, K.; Virvou, M. Comparing Two Multi-Criteria Decision Making Theories for the Design of Web-based Individualised Assistance. In Proceedings of the 10th International Conference on Human Computer Interaction (HCI International 2005), Las Vegas, NV, USA, 22–27 July 2005; Lawrence Erlbaum Associates Publishers: Mahwah, NJ, USA, 2005. [Google Scholar]
- Hodgett, R.E. Comparison of multi-criteria decision-making methods for equipment selection. Int. J. Adv. Manuf. Technol. 2015, 85, 1145–1157. [Google Scholar] [CrossRef]
- Annette, J.R.; Banu, A.; Chandran, P.S. Comparison of Multi Criteria Decision Making Algorithms for Ranking Cloud Renderfarm Services. Indian J. Sci. Technol. 2016, 9. [Google Scholar] [CrossRef] [Green Version]
- Erdoğan, N.K.; Altınırmak, S.; Karamaşa, Ç. Comparison of multi criteria decision making (MCDM) methods with respect to performance of food firms listed in BIST. Copernic. J. Financ. Account. 2016, 5, 67–90. [Google Scholar] [CrossRef] [Green Version]
- Scholten, L.; Maurer, M.; Lienert, J. Comparing multi-criteria decision analysis and integrated assessment to support long-term water supply planning. PLoS ONE 2017, 12, e0176663. [Google Scholar] [CrossRef]
- Widianta, M.M.D.; Rizaldi, T.; Setyohadi, D.P.S.; Riskiawan, H.Y. Comparison of Multi-Criteria Decision Support Methods (AHP, TOPSIS, SAW & PROMENTHEE) for Employee Placement. J. Phys. Conf. Ser. 2018, 953, 12116. [Google Scholar] [CrossRef]
- Németh, B.; Molnár, A.; Bozóki, S.; Wijaya, K.; Inotai, A.; Campbell, J.D.; Kaló, Z. Comparison of weighting methods used in multicriteria decision analysis frameworks in healthcare with focus on low- and middle-income countries. J. Comp. Eff. Res. 2019, 8, 195–204. [Google Scholar] [CrossRef] [Green Version]
- Abounaima, M.C.; Lamrini, L.; El Makhfi, N.; Ouzarf, M. Comparison by Correlation Metric the TOPSIS and ELECTRE II Multi-Criteria Decision Aid Methods: Application to the Environmental Preservation in the European Union Countries. Adv. Sci. Technol. Eng. Syst. J. 2020, 5, 1064–1074. [Google Scholar] [CrossRef]
- Sean, H.; Luisa, N.; David, C. A Statistical Comparison between Different Multicriteria Scaling and Weighting Combinations. Int. J. Ind. Oper. Res. 2020, 3. [Google Scholar] [CrossRef]
- Vassoney, E.; Mochet, A.M.; Desiderio, E.; Negro, G.; Pilloni, M.G.; Comoglio, C. Comparing Multi-Criteria Decision-Making Methods for the Assessment of Flow Release Scenarios From Small Hydropower Plants in the Alpine Area. Front. Environ. Sci. 2021, 9. [Google Scholar] [CrossRef]
- Sałabun, W.; Wątróbski, J.; Shekhovtsov, A. Are MCDA Methods Benchmarkable? A Comparative Study of TOPSIS, VIKOR, COPRAS, and PROMETHEE II Methods. Symmetry 2020, 12, 1549. [Google Scholar] [CrossRef]
- Steele, K.; Carmel, Y.; Cross, J.; Wilcox, C. Uses and Misuses of Multicriteria Decision Analysis (MCDA) in Environmental Decision Making. Risk Anal. 2008, 29, 26–33. [Google Scholar] [CrossRef]
- Simanaviciene, R.; Ustinovichius, L. Sensitivity Analysis for Multiple Criteria Decision Making Methods: TOPSIS and SAW. Procedia—Soc. Behav. Sci. 2010, 2, 7743–7744. [Google Scholar] [CrossRef] [Green Version]
- Pamučar, D.S.; Božanić, D.; Ranđelović, A. Multi-Criteria Decision Making: An example of sensitivity analysis. Serb. J. Manag. 2017, 12, 1–27. [Google Scholar] [CrossRef] [Green Version]
- Yazdani, M.; Zavadskas, E.K.; Ignatius, J.; Abad, M.D. Sensitivity Analysis in MADM Methods: Application of Material Selection. Inzinerine Ekon.-Engine. Econ. 2016, 27, 382–391. [Google Scholar] [CrossRef] [Green Version]
- O’Neil, E. Conservation Audits: Auditing the Conservation Process—Lessons Learned, 2003–2007. In Conservation Measures Partnership; Conservation Standards: Bethesda, MD, USA, 2007. [Google Scholar]
- Silva, R.L.F.; Ghilard-Lopes, N.P.; Raimundo, S.G.; Ursi, S. Evaluation of Environmental Education Activities. In Coastal and Marine Environmental Education. Brazilian Marine Biodiversity; Ghilardi-Lopes, N., Berchez, F., Eds.; Springer: Cham, Switzerland; Available online: https://link.springer.com/chapter/10.1007%2F978-3-030-05138-9_5 (accessed on 1 August 2021).
- Stern, M.J.; Powell, R.B.; Hill, D. Environmental education program evaluation in the new millennium: What do we measure and what have we learned? Environ. Educ. Res. 2013, 20, 581–611. [Google Scholar] [CrossRef]
- Chao, Y.-L. A Performance Evaluation of Environmental Education Regional Centers: Positioning of Roles and Reflections on Expertise Development. Sustainability 2020, 12, 2501. [Google Scholar] [CrossRef] [Green Version]
- Monroe, M.C. Challenges for environmental education evaluation. Eval. Program Plan. 2010, 33, 194–196. [Google Scholar] [CrossRef]
- Kittur, J.; Vijaykumar, S.; Bellubbi, V.P.; Vishal, P.; Shankara, M.G. Comparison of different MCDM techniques used to evaluate optimal generation. In Proceedings of the 2015 International Conference on Applied and Theoretical Computing and Communication Technology, Davangere India, 29–31 October 2015; pp. 172–177. [Google Scholar] [CrossRef]
- Vakilipour, S.; Sadeghi-Niaraki, A.; Ghodousi, M.; Choi, S.-M. Comparison between Multi-Criteria Decision-Making Methods and Evaluating the Quality of Life at Different Spatial Levels. Sustainability 2021, 13, 4067. [Google Scholar] [CrossRef]
- Thor, J.; Ding, S.H.; Kamaruddin, S. Comparison of Multi Criteria Decision Making Methods from the Maintenance Alternative Selection Perspective. Int. J. Eng. Sci. 2013, 2, 27–34. [Google Scholar]
- Yildirim, B.F.; Önder, E. Evaluating Potential Freight Villages in Istanbul using Multi Criteria Decision Making Techniques. J. Logist. Manag. 2014, 3, 1–10. [Google Scholar] [CrossRef]
- Velasquez, M.; Hester, P.T. An Analysis of Multi-Criteria Decision Making Methods. Int. J. Oper. Res. 2013, 10, 56–66. [Google Scholar]
- Sarraf, R.; McGuire, M.P. Integration and comparison of multi-criteria decision making methods in safe route planner. Expert Syst. Appl. 2020, 154, 113399. [Google Scholar] [CrossRef]
- Zlaugotne, B.; Zihare, L.; Balode, L.; Kalnbalkite, A.; Khabdullin, A.; Blumberga, D. Multi-Criteria Decision Analysis Methods Comparison. Environ. Clim. Technol. 2020, 24, 454–471. [Google Scholar] [CrossRef]
- Ahmad, N.; Kasim, M.M.; Kalimuthu Rajoo, S. Comparative Analysis of Crisp and Fuzzy Multi- Criteria Decision Making Methods for Supplier Selection in an Automotive Manufacturing Industry. Int. J. Supply Chain Manag. 2019, 8, 951–957. [Google Scholar]
- Kabassi, K. Evaluating Museum Using a Combination of Decision-Making Theories. J. Herit. Tour. 2019, 14, 544–560. [Google Scholar] [CrossRef]
- Kabassi, K.; Mpalomenou, S.; Martinis, A. AHP & PROMETHEE II for Evaluation of Websites of Mediterranean Protected Areas’ Managing Boards. J. Manag. Inf. Decis. Sci. 2021, 24, 1–17. [Google Scholar]
- Kokaraki, N.; Hopfe, C.J.; Robinson, E.; Nikolaidou, E. Testing the reliability of deterministic multi-criteria decision-making methods using building performance simulation. Renew. Sustain. Energy Rev. 2019, 112, 991–1007. [Google Scholar] [CrossRef]
SAW | WPM | TOPSIS | PROMETHEE II | |
---|---|---|---|---|
SAW | - | [40] [51] | [40] [51] [43] [36] [52] [53] | [36] [55] |
WPM | - | [40] [51] | ||
TOPSIS | - | [32] [36] [54] [55] [56] [57] | ||
PROMETHEE II | - |
EE Program | SAW | WPM | TOPSIS | PROMETHEE II |
---|---|---|---|---|
EEp1 | 5.380 | 5.057 | 0.625 | −0.201 |
EEp2 | 5.015 | 4.866 | 0.568 | −0.383 |
EEp3 | 4.601 | 4.311 | 0.434 | −0.481 |
EEp4 | 2.633 | 2.260 | 0.120 | −0.789 |
EEp5 | 2.633 | 2.260 | 0.120 | −0.789 |
EEp6 | 4.073 | 3.889 | 0.327 | −0.609 |
EEp7 | 4.073 | 3.889 | 0.327 | −0.609 |
EEp8 | 3.203 | 2.918 | 0.187 | −0.743 |
EEp9 | 4.627 | 4.537 | 0.414 | −0.488 |
EEp10 | 2.819 | 2.341 | 0.126 | −0.732 |
EEp11 | 7.257 | 7.430 | 0.923 | 0.459 |
EEp12 | 7.202 | 7.299 | 0.897 | 0.448 |
EEp13 | 6.984 | 7.057 | 0.886 | 0.373 |
EEp14 | 6.882 | 6.835 | 0.881 | 0.343 |
EEp15 | 6.882 | 6.835 | 0.881 | 0.343 |
EEp16 | 6.882 | 6.835 | 0.881 | 0.343 |
EEp17 | 6.882 | 6.835 | 0.881 | 0.343 |
EEp18 | 6.882 | 6.835 | 0.881 | 0.343 |
EEp19 | 6.882 | 6.835 | 0.881 | 0.343 |
EEp20 | 8.066 | 8.166 | 0.971 | 0.798 |
EEp21 | 7.657 | 7.493 | 0.972 | 0.692 |
EEp22 | 7.863 | 7.723 | 0.979 | 0.714 |
EEp23 | 6.018 | 5.849 | 0.763 | 0.031 |
EEp24 | 6.018 | 5.849 | 0.763 | 0.031 |
EEp25 | 6.018 | 5.849 | 0.763 | 0.031 |
EEp26 | 7.771 | 7.715 | 0.970 | 0.666 |
EEp27 | 7.106 | 6.990 | 0.935 | 0.420 |
EEp28 | 7.106 | 6.990 | 0.935 | 0.420 |
EEp29 | 6.836 | 6.717 | 0.904 | 0.324 |
EEp30 | 5.719 | 5.379 | 0.655 | −0.046 |
EEp31 | 4.941 | 4.020 | 0.455 | −0.282 |
EEp32 | 1.000 | 1.000 | 0.000 | −0.974 |
EEp33 | 3.363 | 2.695 | 0.218 | −0.588 |
EEp34 | 6.242 | 5.973 | 0.786 | 0.064 |
EEp35 | 5.927 | 5.653 | 0.753 | −0.041 |
EEp36 | 6.677 | 6.358 | 0.870 | 0.209 |
EEp37 | 4.103 | 3.929 | 0.317 | −0.618 |
EEp38 | 4.103 | 3.929 | 0.317 | −0.546 |
EEp39 | 7.234 | 7.365 | 0.909 | 0.456 |
EEp40 | 6.041 | 6.028 | 0.758 | −0.022 |
EEp41 | 5.554 | 5.464 | 0.646 | −0.157 |
EEp42 | 6.313 | 6.250 | 0.836 | 0.112 |
EEp43 | 5.421 | 5.307 | 0.676 | −0.153 |
EEp44 | 6.832 | 6.852 | 0.886 | 0.286 |
EEp45 | 5.750 | 5.504 | 0.679 | −0.114 |
EEp46 | 7.245 | 7.119 | 0.900 | 0.468 |
EEp47 | 7.245 | 7.119 | 0.900 | 0.468 |
EEp48 | 4.645 | 4.510 | 0.448 | −0.484 |
EEp49 | 4.957 | 4.991 | 0.509 | −0.399 |
EEp50 | 6.059 | 5.570 | 0.720 | −0.035 |
EEp51 | 6.994 | 6.911 | 0.889 | 0.363 |
EEp52 | 7.066 | 6.975 | 0.897 | 0.394 |
EE Program | SAW | WPM | TOPSIS | PROMETHEE II |
---|---|---|---|---|
EEp1 | 36 | 36 | 36 | 36 |
EEp2 | 37 | 38 | 37 | 38 |
EEp3 | 42 | 41 | 41 | 40 |
EEp4 | 50 | 50 | 50 | 50 |
EEp5 | 50 | 50 | 50 | 50 |
EEp6 | 45 | 45 | 43 | 45 |
EEp7 | 45 | 45 | 43 | 45 |
EEp8 | 48 | 47 | 48 | 49 |
EEp9 | 41 | 39 | 42 | 42 |
EEp10 | 49 | 49 | 49 | 48 |
EEp11 | 5 | 5 | 7 | 7 |
EEp12 | 9 | 7 | 12 | 9 |
EEp13 | 14 | 10 | 15 | 13 |
EEp14 | 15 | 16 | 17 | 15 |
EEp15 | 15 | 16 | 17 | 15 |
EEp16 | 15 | 16 | 17 | 15 |
EEp17 | 15 | 16 | 17 | 15 |
EEp18 | 15 | 16 | 17 | 15 |
EEp19 | 15 | 16 | 17 | 15 |
EEp20 | 1 | 1 | 3 | 1 |
EEp21 | 4 | 4 | 2 | 3 |
EEp22 | 2 | 2 | 1 | 2 |
EEp23 | 28 | 27 | 26 | 26 |
EEp24 | 28 | 27 | 26 | 26 |
EEp25 | 28 | 27 | 26 | 26 |
EEp26 | 3 | 3 | 4 | 4 |
EEp27 | 10 | 11 | 5 | 10 |
EEp28 | 10 | 11 | 5 | 10 |
EEp29 | 21 | 22 | 9 | 21 |
EEp30 | 33 | 34 | 34 | 32 |
EEp31 | 39 | 42 | 39 | 37 |
EEp32 | 52 | 52 | 52 | 52 |
EEp33 | 47 | 48 | 47 | 44 |
EEp34 | 25 | 26 | 25 | 25 |
EEp35 | 31 | 30 | 30 | 31 |
EEp36 | 23 | 23 | 23 | 23 |
EEp37 | 43 | 43 | 45 | 47 |
EEp38 | 43 | 43 | 45 | 43 |
EEp39 | 8 | 6 | 8 | 8 |
EEp40 | 27 | 25 | 29 | 29 |
EEp41 | 34 | 33 | 35 | 35 |
EEp42 | 24 | 24 | 24 | 24 |
EEp43 | 35 | 35 | 32 | 34 |
EEp44 | 22 | 15 | 15 | 22 |
EEp45 | 32 | 32 | 32 | 33 |
EEp46 | 6 | 8 | 10 | 5 |
EEp47 | 6 | 8 | 10 | 5 |
EEp48 | 40 | 40 | 40 | 41 |
EEp49 | 38 | 37 | 38 | 39 |
EEp50 | 26 | 31 | 31 | 30 |
EEp51 | 13 | 14 | 14 | 14 |
EEp52 | 12 | 13 | 12 | 12 |
SAW | WPM | TOPSIS | PROMETHEE II | |
---|---|---|---|---|
SAW | 1 | 0.995 | 0.987 | 0.975 |
WPM | - | 1 | 0.986 | 0.973 |
TOPSIS | - | - | 1 | 0.969 |
PROMETHEE II | - | - | - | 1 |
SAW | WPM | TOPSIS | PROMETHEE II | |
---|---|---|---|---|
SAW | 1 | 0.994 | 0.983 | 0.997 |
WPM | - | 1 | 0.983 | 0.991 |
TOPSIS | - | - | 1 | 0.984 |
PROMETHEE II | - | - | - | 1 |
Action | SAW | WPM | TOPSIS | PROMETHEE II |
---|---|---|---|---|
EEp1 | 4 | 4 | 4 | 4 |
EEp2 | 4 | 4 | 4 | 4 |
EEp3 | 5 | 5 | 5 | 5 |
EEp4 | 5 | 5 | 5 | 5 |
EEp5 | 5 | 5 | 5 | 5 |
EEp6 | 5 | 5 | 5 | 5 |
EEp7 | 5 | 5 | 5 | 5 |
EEp8 | 5 | 5 | 5 | 5 |
EEp9 | 5 | 4 | 5 | 5 |
EEp10 | 5 | 5 | 5 | 5 |
EEp11 | 1 | 1 | 1 | 1 |
EEp12 | 1 | 1 | 2 | 1 |
EEp13 | 2 | 2 | 2 | 2 |
EEp14 | 2 | 2 | 2 | 2 |
EEp15 | 2 | 2 | 2 | 2 |
EEp16 | 2 | 2 | 2 | 2 |
EEp17 | 2 | 2 | 2 | 2 |
EEp18 | 2 | 2 | 2 | 2 |
EEp19 | 2 | 2 | 2 | 2 |
EEp20 | 1 | 1 | 1 | 1 |
EEp21 | 1 | 1 | 1 | 1 |
EEp22 | 1 | 1 | 1 | 1 |
EEp23 | 3 | 3 | 3 | 3 |
EEp24 | 3 | 3 | 3 | 3 |
EEp25 | 3 | 3 | 3 | 3 |
EEp26 | 1 | 1 | 1 | 1 |
EEp27 | 2 | 2 | 1 | 2 |
EEp28 | 2 | 2 | 1 | 2 |
EEp29 | 3 | 3 | 1 | 3 |
EEp30 | 4 | 4 | 4 | 4 |
EEp31 | 4 | 5 | 4 | 4 |
EEp32 | 5 | 5 | 5 | 5 |
EEp33 | 5 | 5 | 5 | 5 |
EEp34 | 3 | 3 | 3 | 3 |
EEp35 | 4 | 4 | 4 | 4 |
EEp36 | 3 | 3 | 3 | 3 |
EEp37 | 5 | 5 | 5 | 5 |
EEp38 | 5 | 5 | 5 | 5 |
EEp39 | 1 | 1 | 1 | 1 |
EEp40 | 3 | 3 | 3 | 3 |
EEp41 | 4 | 4 | 4 | 4 |
EEp42 | 3 | 3 | 3 | 3 |
EEp43 | 4 | 4 | 4 | 4 |
EEp44 | 3 | 2 | 2 | 3 |
EEp45 | 4 | 4 | 4 | 4 |
EEp46 | 1 | 1 | 2 | 1 |
EEp47 | 1 | 1 | 2 | 1 |
EEp48 | 5 | 5 | 5 | 5 |
EEp49 | 4 | 4 | 4 | 4 |
EEp50 | 3 | 4 | 4 | 4 |
EEp51 | 2 | 2 | 2 | 2 |
EEp52 | 2 | 2 | 2 | 2 |
SAW | WPM | TOPSIS | PROMETHEE II | |
---|---|---|---|---|
SAW | 1 | 0.903 | 0.807 | 0.976 |
WPM | - | 1 | 0.806 | 0.927 |
TOPSIS | - | - | 1 | 0.831 |
PROMETHEE II | - | - | - | 1 |
Action | SAW-Scheme 1 | SAW-Scheme 2 | WPM-Scheme 1 | WPM-Scheme 2 | TOPSIS-Scheme 1 | TOPSIS-Scheme 2 | PROMETHEE II-Scheme 1 | PROMETHEE II-Scheme 2 |
---|---|---|---|---|---|---|---|---|
EEp1 | 5.38 | 5.100 | 5.057 | 4.599 | 0.625 | 0.535 | −0.201 | −0.236 |
EEp2 | 5.015 | 4.700 | 4.866 | 4.547 | 0.568 | 0.452 | −0.383 | −0.439 |
EEp3 | 4.601 | 4.400 | 4.311 | 4.205 | 0.434 | 0.378 | −0.481 | −0.486 |
EEp4 | 2.633 | 2.500 | 2.26 | 2.140 | 0.12 | 0.104 | −0.789 | −0.802 |
EEp5 | 2.633 | 2.500 | 2.26 | 2.140 | 0.12 | 0.104 | −0.789 | −0.802 |
EEp6 | 4.073 | 3.900 | 3.889 | 3.797 | 0.327 | 0.272 | −0.609 | −0.626 |
EEp7 | 4.073 | 3.900 | 3.889 | 3.797 | 0.327 | 0.272 | −0.609 | −0.626 |
EEp8 | 3.203 | 3.000 | 2.918 | 2.713 | 0.187 | 0.137 | −0.743 | −0.769 |
EEp9 | 4.627 | 4.600 | 4.537 | 4.447 | 0.414 | 0.426 | −0.488 | −0.465 |
EEp10 | 2.819 | 2.900 | 2.341 | 2.421 | 0.126 | 0.148 | −0.732 | −0.702 |
EEp11 | 7.257 | 7.300 | 7.43 | 7.218 | 0.923 | 0.921 | 0.459 | 0.468 |
EEp12 | 7.202 | 7.300 | 7.299 | 7.218 | 0.897 | 0.921 | 0.448 | 0.498 |
EEp13 | 6.984 | 7.100 | 7.057 | 7.050 | 0.886 | 0.911 | 0.373 | 0.432 |
EEp14 | 6.882 | 6.900 | 6.835 | 6.850 | 0.881 | 0.888 | 0.343 | 0.373 |
EEp15 | 6.882 | 6.900 | 6.835 | 6.850 | 0.881 | 0.888 | 0.343 | 0.373 |
EEp16 | 6.882 | 6.900 | 6.835 | 6.850 | 0.881 | 0.888 | 0.343 | 0.373 |
EEp17 | 6.882 | 6.900 | 6.835 | 6.850 | 0.881 | 0.888 | 0.343 | 0.373 |
EEp18 | 6.882 | 6.900 | 6.835 | 6.850 | 0.881 | 0.888 | 0.343 | 0.373 |
EEp19 | 6.882 | 6.900 | 6.835 | 6.850 | 0.881 | 0.888 | 0.343 | 0.373 |
EEp20 | 8.066 | 8.200 | 8.166 | 8.152 | 0.971 | 0.981 | 0.798 | 0.821 |
EEp21 | 7.657 | 7.500 | 7.493 | 7.468 | 0.972 | 0.949 | 0.692 | 0.651 |
EEp22 | 7.863 | 7.600 | 7.723 | 7.544 | 0.979 | 0.953 | 0.714 | 0.653 |
EEp23 | 6.018 | 5.800 | 5.849 | 5.678 | 0.763 | 0.697 | 0.031 | −0.014 |
EEp24 | 6.018 | 5.800 | 5.849 | 5.678 | 0.763 | 0.697 | 0.031 | −0.014 |
EEp25 | 6.018 | 5.800 | 5.849 | 5.678 | 0.763 | 0.697 | 0.031 | −0.014 |
EEp26 | 7.771 | 7.800 | 7.715 | 7.749 | 0.97 | 0.971 | 0.666 | 0.688 |
EEp27 | 7.106 | 6.900 | 6.99 | 6.850 | 0.935 | 0.896 | 0.42 | 0.362 |
EEp28 | 7.106 | 6.900 | 6.99 | 6.850 | 0.935 | 0.896 | 0.42 | 0.362 |
EEp29 | 6.836 | 6.700 | 6.717 | 6.670 | 0.904 | 0.875 | 0.324 | 0.284 |
EEp30 | 5.719 | 5.600 | 5.379 | 5.383 | 0.655 | 0.645 | −0.046 | −0.061 |
EEp31 | 4.941 | 5.100 | 4.02 | 4.494 | 0.455 | 0.533 | −0.282 | −0.292 |
EEp32 | 1 | 1.000 | 1 | 1.000 | 0 | 0.000 | −0.974 | −0.967 |
EEp33 | 3.363 | 3.200 | 2.695 | 2.731 | 0.218 | 0.195 | −0.588 | −0.527 |
EEp34 | 6.242 | 6.200 | 5.973 | 5.988 | 0.786 | 0.771 | 0.064 | 0.054 |
EEp35 | 5.927 | 5.800 | 5.653 | 5.662 | 0.753 | 0.707 | −0.041 | −0.075 |
EEp36 | 6.677 | 6.500 | 6.358 | 6.413 | 0.87 | 0.829 | 0.209 | 0.13 |
EEp37 | 4.103 | 4.000 | 3.929 | 3.949 | 0.317 | 0.285 | −0.618 | −0.61 |
EEp38 | 4.103 | 4.000 | 3.929 | 3.949 | 0.317 | 0.285 | −0.546 | −0.468 |
EEp39 | 7.234 | 7.400 | 7.365 | 7.342 | 0.909 | 0.937 | 0.456 | 0.476 |
EEp40 | 6.041 | 6.000 | 6.028 | 5.880 | 0.758 | 0.750 | −0.022 | −0.01 |
EEp41 | 5.554 | 5.600 | 5.464 | 5.502 | 0.646 | 0.657 | −0.157 | −0.111 |
EEp42 | 6.313 | 6.100 | 6.25 | 6.017 | 0.836 | 0.764 | 0.112 | 0.041 |
EEp43 | 5.421 | 5.100 | 5.307 | 4.981 | 0.676 | 0.545 | −0.153 | −0.253 |
EEp44 | 6.832 | 6.700 | 6.852 | 6.624 | 0.886 | 0.855 | 0.286 | 0.238 |
EEp45 | 5.75 | 5.800 | 5.504 | 5.741 | 0.679 | 0.704 | −0.114 | −0.070 |
EEp46 | 7.245 | 7.400 | 7.119 | 7.331 | 0.9 | 0.933 | 0.468 | 0.53 |
EEp47 | 7.245 | 7.400 | 7.119 | 7.331 | 0.9 | 0.933 | 0.468 | 0.53 |
EEp48 | 4.645 | 4.600 | 4.51 | 4.573 | 0.448 | 0.423 | −0.484 | −0.467 |
EEp49 | 4.957 | 5.000 | 4.991 | 4.959 | 0.509 | 0.526 | −0.399 | −0.355 |
EEp50 | 6.059 | 6.100 | 5.57 | 5.940 | 0.72 | 0.745 | −0.035 | 0.004 |
EEp51 | 6.994 | 7.000 | 6.911 | 6.926 | 0.889 | 0.894 | 0.363 | 0.379 |
EEp52 | 7.066 | 7.100 | 6.975 | 7.054 | 0.897 | 0.911 | 0.394 | 0.422 |
Action | SAW-Scheme 1 | SAW-Scheme 2 | WPM-Scheme 1 | WPM-Scheme 2 | TOPSIS-Scheme 1 | TOPSIS-Scheme 2 | PROMETHEE II-Scheme 1 | PROMETHEE II-Scheme 2 |
---|---|---|---|---|---|---|---|---|
EEp1 | 36 | 35 | 36 | 37 | 36 | 36 | 36 | 35 |
EEp2 | 37 | 39 | 38 | 39 | 37 | 39 | 38 | 39 |
EEp3 | 42 | 42 | 41 | 42 | 41 | 42 | 40 | 43 |
EEp4 | 50 | 50 | 50 | 50 | 50 | 50 | 50 | 50 |
EEp5 | 50 | 50 | 50 | 50 | 50 | 50 | 50 | 50 |
EEp6 | 45 | 45 | 45 | 45 | 43 | 45 | 45 | 46 |
EEp7 | 45 | 45 | 45 | 45 | 43 | 45 | 45 | 46 |
EEp8 | 48 | 48 | 47 | 48 | 48 | 49 | 49 | 49 |
EEp9 | 41 | 40 | 39 | 41 | 42 | 40 | 42 | 40 |
EEp10 | 49 | 49 | 49 | 49 | 49 | 48 | 48 | 48 |
EEp11 | 5 | 8 | 5 | 8 | 7 | 8 | 7 | 9 |
EEp12 | 9 | 8 | 7 | 8 | 12 | 8 | 9 | 7 |
EEp13 | 14 | 10 | 10 | 11 | 15 | 10 | 13 | 10 |
EEp14 | 15 | 13 | 16 | 13 | 17 | 15 | 15 | 13 |
EEp15 | 15 | 13 | 16 | 13 | 17 | 15 | 15 | 13 |
EEp16 | 15 | 13 | 16 | 13 | 17 | 15 | 15 | 13 |
EEp17 | 15 | 13 | 16 | 13 | 17 | 15 | 15 | 13 |
EEp18 | 15 | 13 | 16 | 13 | 17 | 15 | 15 | 13 |
EEp19 | 15 | 13 | 16 | 13 | 17 | 15 | 15 | 13 |
EEp20 | 1 | 1 | 1 | 1 | 3 | 1 | 1 | 1 |
EEp21 | 4 | 4 | 4 | 4 | 2 | 4 | 3 | 4 |
EEp22 | 2 | 3 | 2 | 3 | 1 | 3 | 2 | 3 |
EEp23 | 28 | 28 | 27 | 29 | 26 | 30 | 26 | 28 |
EEp24 | 28 | 28 | 27 | 30 | 26 | 30 | 26 | 28 |
EEp25 | 28 | 28 | 27 | 31 | 26 | 30 | 26 | 28 |
EEp26 | 3 | 2 | 3 | 2 | 4 | 2 | 4 | 2 |
EEp27 | 10 | 13 | 11 | 13 | 5 | 12 | 10 | 19 |
EEp28 | 10 | 13 | 11 | 13 | 5 | 12 | 10 | 19 |
EEp29 | 21 | 21 | 22 | 21 | 9 | 21 | 21 | 21 |
EEp30 | 33 | 33 | 34 | 34 | 34 | 34 | 32 | 31 |
EEp31 | 39 | 35 | 42 | 40 | 39 | 37 | 37 | 37 |
EEp32 | 52 | 52 | 52 | 52 | 52 | 52 | 52 | 52 |
EEp33 | 47 | 47 | 48 | 47 | 47 | 47 | 44 | 44 |
EEp34 | 25 | 24 | 26 | 25 | 25 | 24 | 25 | 24 |
EEp35 | 31 | 28 | 30 | 32 | 30 | 28 | 31 | 33 |
EEp36 | 23 | 23 | 23 | 23 | 23 | 23 | 23 | 23 |
EEp37 | 43 | 43 | 43 | 43 | 45 | 43 | 47 | 45 |
EEp38 | 43 | 43 | 43 | 43 | 45 | 43 | 43 | 42 |
EEp39 | 8 | 5 | 6 | 5 | 8 | 5 | 8 | 8 |
EEp40 | 27 | 27 | 25 | 27 | 29 | 26 | 29 | 27 |
EEp41 | 34 | 33 | 33 | 33 | 35 | 33 | 35 | 34 |
EEp42 | 24 | 25 | 24 | 24 | 24 | 25 | 24 | 25 |
EEp43 | 35 | 35 | 35 | 35 | 32 | 35 | 34 | 36 |
EEp44 | 22 | 21 | 15 | 22 | 15 | 22 | 22 | 22 |
EEp45 | 32 | 28 | 32 | 28 | 32 | 29 | 33 | 32 |
EEp46 | 6 | 5 | 8 | 6 | 10 | 6 | 5 | 5 |
EEp47 | 6 | 5 | 8 | 6 | 10 | 6 | 5 | 5 |
EEp48 | 40 | 40 | 40 | 38 | 40 | 41 | 41 | 41 |
EEp49 | 38 | 35 | 37 | 36 | 38 | 38 | 39 | 38 |
EEp50 | 26 | 25 | 31 | 26 | 31 | 27 | 30 | 26 |
EEp51 | 13 | 10 | 14 | 12 | 14 | 14 | 14 | 12 |
EEp52 | 12 | 10 | 13 | 10 | 12 | 10 | 12 | 11 |
Pearson Correlation Coefficient | Percentage of Identical Rankings | Spearman’s Rho Correlation | |
---|---|---|---|
SAW | 0.997 | 42% | 0.994 |
WPM | 0.995 | 27% | 0.989 |
TOPSIS | 0.990 | 13% | 0.977 |
PROMETHEE II | 0.996 | 29% | 0.988 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kabassi, K. Comparing Multi-Criteria Decision Making Models for Evaluating Environmental Education Programs. Sustainability 2021, 13, 11220. https://doi.org/10.3390/su132011220
Kabassi K. Comparing Multi-Criteria Decision Making Models for Evaluating Environmental Education Programs. Sustainability. 2021; 13(20):11220. https://doi.org/10.3390/su132011220
Chicago/Turabian StyleKabassi, Katerina. 2021. "Comparing Multi-Criteria Decision Making Models for Evaluating Environmental Education Programs" Sustainability 13, no. 20: 11220. https://doi.org/10.3390/su132011220
APA StyleKabassi, K. (2021). Comparing Multi-Criteria Decision Making Models for Evaluating Environmental Education Programs. Sustainability, 13(20), 11220. https://doi.org/10.3390/su132011220