Potential Application of Biochar Composite Derived from Rice Straw and Animal Bones to Improve Plant Growth
Abstract
:1. Introduction
2. Materials and Methods
2.1. Collection of Biomass
2.2. Preparation of Feedstock
2.3. Preparation of Biochar
2.4. Proximate and Ultimate Analysis
2.5. Physico-Chemical Analysis
2.6. SEM, EDX and FTIR Analysis
2.7. Soil Sampling
2.8. Experimental Set Up
- Control soil (no biochar amendment, no fertilizer).
- Rice straw-derived biochar (RS-BC) at three levels of amendment: soil amended with 5% biochar (5% RS-BC, w/w), soil amended with 10% biochar (10% RS-BC, w/w), soil amended with 15% biochar (15% RS-BC, w/w).
- Bone char at three levels of amendment: soil amended with 5% bone char (5% WB-BC, w/w), soil amended with 10% biochar (10% WB-BC, w/w), soil amended with 15% biochar (15% WB-BC, w/w).
- Biochar composite prepared by combination of rice straw-derived biochar and bone char with 1:1 ratio at three levels: soil amended with 5% biochar (5% RS-BC+WB-BC, w/w), soil amended with 10% biochar (10% RS-BC+WB-BC, w/w), soil mixed with 15% biochar (15% RS-BC+WB-BC, w/w).
- Commercial fertilizer (NPK, recommended dose for ridge gourd).
2.9. Soil Analysis
2.10. Determination of Growth and Yield
2.11. Statistical Analysis
3. Results and Discussion
3.1. Characterization of Feedstocks and Derived Biochars
3.2. SEM, EDX and FTIR Analysis
3.3. Improvement of Soil Supplemented with RS-BC and WB-BC
3.4. Improvement in Post Harvested Soil
3.5. Improvement in Growth and Yield of Plants Grown in Biochar Amended Soil
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Farooq, M.K.; Kumar, S. An Assessment of Renewable Energy Potential for Electricity Generation in Pakistan. Renew. Sustain. Energy Rev. 2013, 20, 240–254. [Google Scholar] [CrossRef]
- Sakhiya, A.K.; Anand, A.; Aier, I.; Baghel, P.; Vijay, V.; Kaushal, P. Sustainable Utilization of Rice Straw to Mitigate Climate Change: A Bioenergy Approach. Mater. Today Proc. 2021, 46, 5366–5371. [Google Scholar] [CrossRef]
- Ibikunle, R.A.; Titiladunayo, I.F.; Akinnuli, B.O.; Lukman, A.F.; Ikubanni, P.P.; Agboola, O.O. Modelling the Energy Content of Municipal Solid Waste and Determination of Its Physicochemical Correlation, Using Multiple Regression Analysis. Int. J. Mech. Eng. Technol. 2018, 9, 220–232. Available online: http://www.iaeme.com/IJMET/issues.Asp?JType=IJMET&VType=9&IType=11 (accessed on 3 October 2021).
- Sakhiya, A.K.; Anand, A.; Kaushal, P. Production, Activation, and Applications of Biochar in Recent Times. Biochar 2020, 2, 253–285. [Google Scholar] [CrossRef]
- Xu, G.; Zhang, Y.; Sun, J.; Shao, H. Negative Interactive Effects Between Biochar and Phosphorus Fertilization on Phosphorus Availability and Plant Yield in Saline Sodic Soil. Sci. Total Environ. 2016, 568, 910–915. [Google Scholar] [CrossRef]
- Saadat, S.; Raei, E.; Talebbeydokhti, N. Enhanced Removal of Phosphate from Aqueous Solutions Using a Modified Sludge Derived Biochar: Comparative Study of Various Modifying Cations and RSM Based Optimization of Pyrolysis Parameters. J. Environ. Manag. 2018, 225, 75–83. [Google Scholar] [CrossRef]
- Dong, D.; Wang, C.; Van Zwieten, L.; Wang, H.; Jiang, P.; Zhou, M.; Wu, W. An Effective Biochar-Based Slow-Release Fertilizer for Reducing Nitrogen Loss in Paddy Fields. J. Soils Sediments 2020, 20, 3027–3040. [Google Scholar] [CrossRef]
- Hossain, Z.; Bahar, M.; Sarkar, B.; Donne, S.W.; Ok, Y.S.; Palansooriya, K.N.; Kirkham, M.B.; Chowdhury, S.; Bolan, N. Biochar and Its Importance on Nutrient Dynamics in Soil and Plant. Biochar 2020, 2, 379–420. [Google Scholar] [CrossRef]
- Laghari, M.; Naidu, R.; Xiao, B.; Hu, Z.; Mirjat, M.S.; Hu, M.; Kandhro, M.N.; Chen, Z.; Guo, D.; Jogi, Q.; et al. Recent Developments in Biochar as an Effective Tool for Agricultural Soil Management: A Review. J. Sci. Food Agric. 2016, 96, 4840–4849. [Google Scholar] [CrossRef]
- Li, H.; Dong, X.; da Silva, E.B.; de Oliveira, L.M.; Chen, Y.; Ma, L.Q. Mechanisms of Metal Sorption by Biochars: Biochar Characteristics and Modifications. Chemosphere 2017, 178, 466–478. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhu, Y.; Zhang, S.; Wang, Y. What Could Promote Farmers to Replace Chemical Fertilizers With Organic Fertilizers? J. Clean. Prod. 2018, 199, 882–890. [Google Scholar] [CrossRef]
- Singh, B. Are Nitrogen Fertilizers Deleterious to Soil Health? Agron. 2018, 8, 48. [Google Scholar] [CrossRef] [Green Version]
- Singh, S.V.; Chaturvedi, S.; Dhyani, V.; Kasivelu, G. Pyrolysis Temperature Influences the Characteristics of Rice Straw and Husk Biochar and sorption/Desorption Behaviour of Their Biourea Composite. Bioresour. Technol. 2020, 314, 123674. [Google Scholar] [CrossRef]
- Tao, W.; Duan, W.; Liu, C.; Zhu, D.; Si, X.; Zhu, R.; Oleszczuk, P.; Pan, B. Formation of Persistent Free Radicals in Biochar Derived from Rice Straw Based on a Detailed Analysis of Pyrolysis Kinetics. Sci. Total Environ. 2020, 715, 136575. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Yang, X.; Wang, H.; Sarkar, B.; Shaheen, S.M.; Gielen, G.; Bolan, N.; Guo, J.; Che, L.; Sun, H.; et al. Animal Carcass- and Wood-Derived Biochars Improved Nutrient Bioavailability, Enzyme Activity, and Plant Growth in Metal-Phthalic Acid Ester Co-Contaminated Soils: A Trial for Reclamation and Improvement of Degraded Soils. J. Environ. Manag. 2020, 261, 110246. [Google Scholar] [CrossRef]
- Singh, N.; Chakraborty, R.; Gupta, R.K. Mutton Bone Derived Hydroxyapatite Supported TiO2 Nanoparticles for Sustainable Photocatalytic Applications. J. Environ. Chem. Eng. 2018, 6, 459–467. [Google Scholar] [CrossRef]
- Xiao, J.; Hu, R.; Chen, G. Micro-Nano-Engineered Nitrogenous Bone Biochar Developed With a Ball-Milling Technique for High-Efficiency Removal of Aquatic Cd(II), Cu(II) and Pb(II). J. Hazard. Mater. 2020, 387, 121980. [Google Scholar] [CrossRef]
- ASTM International. Standard Practice for Proximate Analysis of Coal and Coke; ASTM International: West Conshohocken, PA, USA, 2013. [Google Scholar]
- Bordoloi, N.; Narzari, R.; Chutia, R.S.; Bhaskar, T.; Kataki, R. Pyrolysis of Mesua Ferrea and Pongamia Glabra Seed Cover: Characterization of Bio-Oil and Its Sub-Fractions. Bioresour. Technol. 2015, 178, 83–89. [Google Scholar] [CrossRef]
- Brewer, C.E.; Levine, J. Weight or Volume for Handling Biochar and Biomss? In the Biochar Journal 2015, Arbaz, Switzerland. Available online: www.biochar-journal.org/en/Ct/71 (accessed on 15 September 2021).
- Chapman, H. Cation-Exchange Capacity. Agron. Monogr. 2016, 891–901. [Google Scholar] [CrossRef]
- Baird, R.B.; Eaton, A.D.; Rice, E.W. Standard Methods for the Examination of Water and Wastewater; American Public Health Association: Washington, DC, USA, 2017; Volume 23, pp. 5–41. [Google Scholar]
- Walkley, A. A Critical Examination of a Rapid Method for Determining Organic Carbon in Soils—Effect of Variations In Digestion Conditions And Of Inorganic Soil Constituents. Soil Sci. 1947, 63, 251–264. [Google Scholar] [CrossRef]
- Gessert, G. Measuring a medium’s Airspace and Water Holding Capacity. Ornamentals Northwest Arch. 1976, 1, 11–12. [Google Scholar]
- Krzesińska, M.; Majewska, J. Physical Properties of Continuous Matrix of Porous Natural Hydroxyapatite Related to the Pyrolysis Temperature of Animal Bones Precursors. J. Anal. Appl. Pyrolysis 2015, 116, 202–214. [Google Scholar] [CrossRef]
- Biswas, B.; Pandey, N.; Bisht, Y.; Singh, R.; Kumar, J.; Bhaskar, T. Pyrolysis of Agricultural Biomass Residues: Comparative Study of Corn Cob, Wheat Straw, Rice Straw and Rice Husk. Bioresour. Technol. 2017, 237, 57–63. [Google Scholar] [CrossRef]
- Li, J.; Shen, F.; Yang, G.; Zhang, Y.; Deng, S.; Zhang, J.; Zeng, Y.; Luo, T.; Mei, Z. Valorizing Rice Straw and Its Anaerobically Digested Residues for Biochar to Remove Pb(II) from Aqueous Solution. Int. J. Polym. Sci. 2018, 2018, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Cao, X.; Harris, W. Properties of Dairy-Manure-Derived Biochar Pertinent to Its Potential Use in Remediation. Bioresour. Technol. 2010, 101, 5222–5228. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Voroney, R.; Price, G. Effects of Temperature and Processing Conditions on Biochar Chemical Properties and Their Influence on Soil C and N Transformations. Soil Biol. Biochem. 2015, 83, 19–28. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, P.; Yuan, X.; Li, Y.; Han, L. Effect of Pyrolysis Temperature and Correlation Analysis on the Yield and Physicochemical Properties of Crop Residue Biochar. Bioresour. Technol. 2020, 296, 122318. [Google Scholar] [CrossRef] [PubMed]
- Alkurdi, S.S.A.; Herath, I.; Bundschuh, J.; Al-Juboori, R.A.; Vithanage, M.; Mohan, D. Biochar Versus Bone Char for a Sustainable Inorganic Arsenic Mitigation in Water: What Needs to Be Done in Future Research? Environ. Int. 2019, 127, 52–69. [Google Scholar] [CrossRef] [PubMed]
- Rafiq, M.K.; Bachmann, R.; Shang, Z.; Joseph, S.; Long, R. Influence of Pyrolysis Temperature on Physico-Chemical Properties of Corn Stover (Zea Mays L.) Biochar and Feasibility for Carbon Capture and Energy Balance. PLoS ONE 2016, 11, e0156894. [Google Scholar] [CrossRef] [Green Version]
- Bornemann, L.C.; Kookana, R.; Welp, G. Differential Sorption Behaviour of Aromatic Hydrocarbons on Charcoals Prepared at Different Temperatures from Grass and Wood. Chemosphere 2007, 67, 1033–1042. [Google Scholar] [CrossRef]
- Akindoyo, J.O.; Ghazali, S.; Beg, M.D.H.; Jeyaratnam, N. Characterization and Elemental Quantification of Natural Hydroxyapatite Produced from Cow Bone. Chem. Eng. Technol. 2019, 42, 1805–1815. [Google Scholar] [CrossRef]
- Shahid, M.K.; Kim, J.Y.; Shin, G.; Choi, Y. Effect of Pyrolysis Conditions on Characteristics and Fluoride Adsorptive Performance of Bone Char Derived from Bone Residue. J. Water Process. Eng. 2020, 37, 101499. [Google Scholar] [CrossRef]
- Piccirillo, C.; Moreira, I.; Novais, R.; Fernandes, A.; Pullar, R.; Castro, P. Biphasic Apatite-Carbon Materials Derived from Pyrolysed Fish Bones for Effective Adsorption of Persistent Pollutants and Heavy Metals. J. Environ. Chem. Eng. 2017, 5, 4884–4894. [Google Scholar] [CrossRef]
- Wu, W.; Yang, M.; Feng, Q.; McGrouther, K.; Wang, H.; Lu, H.; Chen, Y. Chemical Characterization of Rice Straw-Derived Biochar for Soil Amendment. Biomass-Bioenergy 2012, 47, 268–276. [Google Scholar] [CrossRef]
- Peng, X.; Ye, L.; Wang, C.; Zhou, H.; Sun, B. Temperature- and Duration-Dependent Rice Straw-Derived Biochar: Characteristics and Its Effects on Soil Properties of an Ultisol in Southern China. Soil Tillage Res. 2011, 112, 159–166. [Google Scholar] [CrossRef]
- Siebers, N.; Leinweber, P. Bone Char: A Clean and Renewable Phosphorus Fertilizer with Cadmium Immobilization Capability. J. Environ. Qual. 2013, 42, 405–411. [Google Scholar] [CrossRef] [Green Version]
- Dai, Z.; Zhang, X.; Tang, C.; Muhammad, N.; Wu, J.; Brookes, P.C.; Xu, J. Potential Role of Biochars in Decreasing Soil Acidification—A Critical Review. Sci. Total Environ. 2017, 581-582, 601–611. [Google Scholar] [CrossRef]
- Dai, Z.; Xiong, X.; Zhu, H.; Xu, H.; Leng, P.; Li, J.; Tang, C.; Xu, J. Association of Biochar Properties with Changes in Soil Bacterial, Fungal and Fauna Communities and Nutrient Cycling Processes. Biochar 2021, 3, 239–254. [Google Scholar] [CrossRef]
- Tammeorg, P.; Simojoki, A.; Mäkelä, P.; Stoddard, F.L.; Alakukku, L.; Helenius, J. Biochar Application to a Fertile Sandy Clay Loam in Boreal Conditions: Effects on Soil Properties and Yield Formation of Wheat, Turnip Rape and Faba Bean. Plant Soil 2014, 374, 89–107. [Google Scholar] [CrossRef]
- Qin, X.; Li, Y.; Wang, H.; Liu, C.; Li, J.; Wan, Y.; Gao, Q.; Fan, F.; Liao, Y. Long-Term Effect of Biochar Application on Yield-Scaled Greenhouse Gas Emissions in a Rice Paddy Cropping System: A Four-Year Case Study in South China. Sci. Total Environ. 2016, 569, 1390–1401. [Google Scholar] [CrossRef]
- Laird, D.A.; Fleming, P.; Davis, D.D.; Horton, R.; Wang, B.; Karlen, D.L. Impact of Biochar Amendments on the Quality of a Typical Midwestern Agricultural Soil. Geoderma 2010, 158, 443–449. [Google Scholar] [CrossRef] [Green Version]
- Koron, D.; Lavrič, L.; Someus, E. Comparison of Animal Bone Biochar and Plant Based Biochar in Strawberry Production. Acta Hortic. 2018, 1217, 313–316. [Google Scholar] [CrossRef]
- Butnan, S.; Deenik, J.L.; Toomsan, B.; Antal, M.J.; Vityakon, P. Biochar Characteristics and Application Rates Affecting Corn Growth and Properties of Soils Contrasting in Texture and Mineralogy. Geoderma 2015, 237–238, 105–116. [Google Scholar] [CrossRef]
- Rawat, J.; Sanwal, P.; Saxena, J. Towards the Mechanisms of Nutrient Solubilization and Fixation in Soil System. In Role of Rhizospheric Microbes in Soil; Gabler: Wiesbaden, Germany, 2018; pp. 229–257. [Google Scholar] [CrossRef]
- Massa, D.; Bonetti, A.; Cacini, S.; Faraloni, C.; Prisa, D.; Tuccio, L.; Petruccelli, R. Soilless Tomato Grown under Nutritional Stress Increases Green Biomass But Not Yield or Quality in Presence of Biochar As Growing Medium. Hortic. Environ. Biotechnol. 2019, 60, 871–881. [Google Scholar] [CrossRef]
- Graber, E.R.; Harel, Y.M.; Kolton, M.; Cytryn, E.; Silber, A.; David, D.R.; Tsechansky, L.; Borenshtein, M.; Elad, Y. Biochar Impact on Development and Productivity of Pepper and Tomato Grown in Fertigated Soilless Media. Plant Soil 2010, 337, 481–496. [Google Scholar] [CrossRef]
- Libutti, A.; Trotta, V.; Rivelli, A.R. Biochar, Vermicompost, and Compost As Soil Organic Amendments: Influence on Growth Parameters, Nitrate and Chlorophyll Content of Swiss Chard (Beta vulgaris L. Var. cycla). Agron. 2020, 10, 346. [Google Scholar] [CrossRef] [Green Version]
- Azeem, M.; Ali, A.; Jeyasundar, P.G.S.A.; Li, Y.; Abdelrahman, H.; Latif, A.; Li, R.; Basta, N.; Li, G.; Shaheen, S.M.; et al. Bone-Derived Biochar Improved Soil Quality and Reduced Cd and Zn Phytoavailability in a Multi-Metal Contaminated Mining Soil. Environ. Pollut. 2021, 277, 116800. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Jiang, B.; Shen, J.; Zhu, X.; Yi, W.; Li, Y.; Wu, J. Contrasting Effects of Straw and Straw-Derived Biochar Applications on Soil Carbon Accumulation and Nitrogen Use Efficiency in Double-Rice Cropping Systems. Agric. Ecosyst. Environ. 2021, 311, 107286. [Google Scholar] [CrossRef]
- El-Naggar, A.; Lee, S.S.; Rinklebe, J.; Farooq, M.; Song, H.; Sarmah, A.K.; Zimmerman, A.R.; Ahmad, M.; Shaheen, S.M.; Ok, Y.S. Biochar Application to Low Fertility Soils: A Review of Current Status, and Future Prospects. Geoderma 2019, 337, 536–554. [Google Scholar] [CrossRef]
- Ghosh, D.; Masto, R.E.; Maiti, S.K. Ameliorative Effect OfLantana Camarabiochar on Coal Mine Spoil and Growth of Maize (Zea Mays). Soil Use Manag. 2020, 36, 726–739. [Google Scholar] [CrossRef]
RS | WB | RS-BC | WB-BC | ||
---|---|---|---|---|---|
Biochar yield (%) | - | - | 32.0B ± 2.28 | 39.8A ± 3.01 | |
Proximate analysis (wt.%) | MC VC AC FC | 21B ± 2.23 26A ± 3.44 20C ± 2.08 32D ± 2.88 | 24A ± 3.56 22B ± 1.88 17D ± 2.06 36C ± 2.09 | 6D ± 0.66 2C ± 0.03 42A ± 4.02 49B ± 4.02 | 8C ± 0.89 1CD ± 0.02 30B ± 3.03 59A ± 5.06 |
Ultimate analysis (wt.%) | C H N O C/H C/N | 44B ± 3.55 5BC ± 1.88 2CD ± 0.02 28B ± 3.22 8B ± 1.18 21A ± 2.88 | 12D ± 1.50 7A ± 2.02 10A ± 0.02 53A ± 6.02 1D ± 0.06 1D ± 0.05 | 52A ± 5.01 2D ± 0.04 3C ± 0.08 11C ± 0.02 24A ± 2.68 15B ± 1.69 | 28C ± 2.44 5B ± 0.67 8B ± 1.86 27B ± 2.84 5BC ± 1.02 3C ± 0.22 |
Ratio |
Physico-Chemical Properties | Nutrients (g kg−1) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Samples | pH | ECe (µS cm−1) | CEC (cmol kg−1) | BD (g cm−3) | Na | K | Ca | Mg | N | P | Cu | Zn | Mn |
RS-BC | 9.52 ± 0.82 | 454 ± 8.64 | 6.80 ± 0.48 | 0.23 ± 0.06 | 0.013 ± 0.01 | 0.085 ± 0.02 | 0.019 ± 0.01 | 0.014 ± 0.01 | 0.095 ± 0.05 | 0.038 ± 0.02 | 0.053 ± 0.03 | 0.058 ± 0.04 | 0.035 ± 0.02 |
WB-BC | 9.40 ± 0.78 | 1370 ± 9.92 | 7.08 ± 0.39 | 0.44 ± 0.02 | 0.048 ± 0.03 | 0.042 ± 0.02 | 0.095 ± 0.04 | 0.043 ± 0.01 | 0.038 ± 0.02 | 0.075 ± 0.02 | 0.025 ± 0.01 | 0.032 ± 0.02 | 0.028 ± 0.01 |
Samples | C | K | Si | O | |||||
---|---|---|---|---|---|---|---|---|---|
RS-BC | Weight % | Atomic % | Weight % | Atomic % | Weight % | Atomic % | Weight % | Atomic % | C/K Ratio |
53.62 ± 4.44 | 63.83 ± 5.12 | 10.31 ± 0.56 | 5.28 ± 0.23 | 34.24 ± 2.66 | 30.60 ± 2.18 | 10.2 ± 0.49 | 5.40 ± 0.38 | 11.08 ± 0.76 | |
WB-BC | Ca | P | O | ||||||
Weight % | Atomic % | Weight % | Atomic % | Weight % | Atomic % | Ca/P Ratio | |||
43.77 ± 3.02 | 26.64 ± 1.88 | 16.75 ± 1.01 | 13.19 ± 0.88 | 39.48 ± 4.22 | 60.18 ± 6.01 | 2.02 ± 0.03 |
Treatments | Soil Parameters | ||||||||
---|---|---|---|---|---|---|---|---|---|
Application Rate | pH | ECe (µS cm−1) | OM (%) | WHC (%) | TDS (ppm) | CEC (cmolc kg−1) | BD (g cm−3) | SOC (%) | |
Control | 7.95CD ± 0.10 | 104EF ± 6.30 | 3.13F ± 0.03 | 28D ± 5.68 | 118CD ± 16.99 | 8.33E ± 0.29 | 1.40B ± 0.05 | 3.56CD ± 0.20 | |
CF | 8.19BCD ± 0.04 | 161B ± 3.90 | 3.48E ± 0.04 | 27D ± 4.04 | 139BC ± 6.55 | 9.2E ± 0.38 | 1.58A ± 0.11 | 4.35BC ± 0.41 | |
RS-BC | 5% | 7.60cE ± 0.22 | 108cE ± 6.10 | 3.41cE ± 0.11 | 32cC ± 6.24 | 135aBC ± 6.62 | 9.6bE ± 0.35 | 1.28aCD ± 0.02 | 4.73cB ± 0.17 |
10% | 7.93bCD ± 0.1 | 114bD ± 5.86 | 3.59bD ± 0.15 | 55aB ± 8.02 | 108bD ± 3.15 | 11abD ± 0.57 | 1.14bDE ± 0.03 | 5.30bB ± 0.17 | |
15% | 8.25aBC ± 0.1 | 131aC ± 3.23 | 3.94aCD ± 0.08 | 67aA ± 2.64 | 145bD ± 10.25 | 12.5aC ± 0.37 | 1.02cE ± 0.02 | 6.26aA ± 0.37 | |
WB-BC | 5% | 7.9bDE ± 0.32 | 109cE ± 12.09 | 3.64bD ± 0.20 | 30bCD ± 6.02 | 81cE ± 7.91 | 11.1cD ± 0.18 | 1.35aC ± 0.04 | 3.16bD ± 0.11 |
10% | 8.1bBCD ± 0.17 | 117bD ± 20.12 | 3.98bBC ± 0.12 | 50aBC ± 7.7 | 109bD ± 18.36 | 12.9bBC ± 0.52 | 1.24bCD ± 0.03 | 4.58aBC ± 1.69 | |
15% | 8.4aB ± 0.18 | 183aA ± 23.23 | 4.40aA ± 0.47 | 63aAB ± 6.8 | 169aA ± 12.09 | 14.6aA ± 0.44 | 1.12cDE ± 0.02 | 4.73aB ± 0.18 | |
RS-BC+WB-BC | 5% | 8.12cBCD ± 0.1 | 124cCD ± 8.67 | 3.93bCD ± 0.20 | 34bC ± 3.05 | 146aB ± 17.77 | 11.9bCD ± 0.54 | 1.36aC ± 0.04 | 4.99aB ± 0.18 |
10% | 8.42bB ± 0.09 | 127bC ± 9.32 | 4.22abBC ± 0.1 | 53abB ± 5.10 | 107bD ± 7.47 | 14aAB ± 0.57 | 1.28bCD ± 0.02 | 4.89aB ± 0.22 | |
15% | 8.9aA ± 0.22 | 171aA ± 9.86 | 4.33aA ± 0.20 | 66aA ± 3.21 | 136aBC ± 12.61 | 15.33aA ± 0.4 | 1.21bD ± 0.01 | 5.24aB ± 0.19 |
Treatments | Soil Parameters | ||||||||
---|---|---|---|---|---|---|---|---|---|
Application rate | pH | ECe (µS cm−1) | OM (%) | WHC (%) | TDS (ppm) | CEC (cmolc kg−1) | BD (g cm−3) | SOC (%) | |
Control | 7.55C ± 0.05 | 118H ± 2.73 | 3.74CD ± 0.11 | 28F ± 1.04 | 126H ± 3.68 | 7.9G ± 0.16 | 1.38A ± 0.01 | 3.47F ± 0.07 | |
CF | 8.1C ± 0.06 | 155E ± 4.98 | 3.75CD ± 0.05 | 30E ± 2.51 | 140G ± 4.46 | 8.8FG ± 25 | 1.32AB ± 0.02 | 4.67E ± 0.15 | |
RS-BC | 5% | 7.62cD ± 0.10 | 123cG ± 2.56 | 3.64bD ± 0.10 | 35cD ± 1.15 | 139bG ± 3.07 | 9.5bF ± 0.34 | 1.14aBC ± 0.01 | 6.43cD ± 1.28 |
10% | 7.94bC ± 0.10 | 130bF ± 3.81 | 3.77abCD ± 0.04 | 38bD ± 2.64 | 145bFG ± 4.75 | 10abE ± 0.52 | 1.12bFG ± 0.02 | 6.56bCD ± 1.25 | |
15% | 8.21aBC ± 0.07 | 145aF ± 3.2 | 3.92aC ± 0.08 | 58aC ± 3.51 | 171aE ± 6.50 | 12.3aCD ± 0.35 | 1.10cC ± 0.01 | 7.81aC ± 0.54 | |
WB-BC | 5% | 7.56bD ± 0.18 | 159cE ± 4.04 | 3.98bC ± 0.23 | 56bC ± 1.52 | 126cH ± 4.85 | 11bDE ± 0.31 | 1.21aB ± 0.03 | 6.48cD ± 1.28 |
10% | 8.20aBC ± 0.05 | 171bD ± 3.77 | 4.65aB ± 0.15 | 62aBC ± 2.61 | 153bF ± 5.93 | 12.80bC ± 0.5 | 1.18bB ± 0.01 | 8.01bB ± 0.57 | |
15% | 8.21aBC ± 0.03 | 199aC ± 5.21 | 4.71aB ± 0.18 | 63aBC ± 0.57 | 189aD ± 5.01 | 15aAB ± 0.23 | 1.16cBC ± 0.02 | 8.58aA ± 0.38 | |
RS-BC+WB-BC | 5% | 8.43aAB ± 0.07 | 241cB ± 5.38 | 4.69bB ± 0.12 | 63bBC ± 1.52 | 226cC ± 9.40 | 12bCDE ± 0.31 | 1.18aB ± 0.03 | 7.81cC ± 0.17 |
10% | 8.49aA ± 0.39 | 246bB ± 15.86 | 4.84bB ± 0.08 | 69aAB ± 0.43 | 315bA ± 10 | 14.6aB ± 0.30 | 1.08bCD ± 0.01 | 8.08bB ± 0.52 | |
15% | 8.67aA ± 0.09 | 340aA ± 5.68 | 5.26aA ± 0.25 | 74aA ± 0.57 | 291aB ± 4.04 | 16.1aA ± 0.21 | 1.03bD ± 0.02 | 8.64aA ± 0.25 |
Parameters. | Control | CF | RS-BC | WB-BC | RS-BC+WB-BC | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
5% | 10% | 15% | 5% | 10% | 15% | 5% | 10% | 15% | |||
Fruit weight (g) | 143H ± 2.33 | 328A ± 4.44 | 192F ± 2.64 | 220E ± 2.66 | 155G ± 2.34 | 280D ± 2.82 | 302C ± 4.68 | 303C ± 3.55 | 301C ± 4.88 | 305B ± 5.88 | 336A ± 6.33 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Um-e-Laila; Hussain, A.; Nazir, A.; Shafiq, M.; Firdaus-e-Bareen. Potential Application of Biochar Composite Derived from Rice Straw and Animal Bones to Improve Plant Growth. Sustainability 2021, 13, 11104. https://doi.org/10.3390/su131911104
Um-e-Laila, Hussain A, Nazir A, Shafiq M, Firdaus-e-Bareen. Potential Application of Biochar Composite Derived from Rice Straw and Animal Bones to Improve Plant Growth. Sustainability. 2021; 13(19):11104. https://doi.org/10.3390/su131911104
Chicago/Turabian StyleUm-e-Laila, Adnan Hussain, Aisha Nazir, Muhammad Shafiq, and Firdaus-e-Bareen. 2021. "Potential Application of Biochar Composite Derived from Rice Straw and Animal Bones to Improve Plant Growth" Sustainability 13, no. 19: 11104. https://doi.org/10.3390/su131911104
APA StyleUm-e-Laila, Hussain, A., Nazir, A., Shafiq, M., & Firdaus-e-Bareen. (2021). Potential Application of Biochar Composite Derived from Rice Straw and Animal Bones to Improve Plant Growth. Sustainability, 13(19), 11104. https://doi.org/10.3390/su131911104