Technology or Institutions: Which Is the Source of Green Economic Growth in Chinese Cities?
Abstract
:1. Introduction
2. Literature Review
2.1. Measurement of Green Economic Growth
2.2. Driving Factors of Green Economic Growth
2.3. Influencing Factors of Urban Green Economic Growth
3. Theoretical Model and Analysis
4. Methodology and Data
4.1. Method
4.1.1. DDF-GML Model
4.1.2. Granger Causality Test
4.1.3. Dynamic GMM Model
4.2. Data
4.2.1. Dependent Variable
4.2.2. Explanatory Variable
5. Empirical Results and Discussion
5.1. Analysis of Single Driving Factor
5.2. Analysis of Multiple Driving Factors
5.3. Discussion
6. Conclusions and Implications
6.1. Conclusions
6.2. Implications
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Yu, Y.; Yang, X.; Li, K. Effects of the terms and characteristics of cadres on environmental pollution: Evidence from 230 cities in China. J. Environ. Manag. 2018, 232, 179–187. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Zhou, G.; Wennersten, R.; Frostell, B. Analysis of sustainable urban development approaches in China. Habitat Int. 2014, 41, 24–32. [Google Scholar] [CrossRef]
- State Intellectual Property Office of China. China Green Patent Statistics Report (2014–2017). Available online: https://www.cnipa.gov.cn/ (accessed on 14 August 2021).
- Zhang, C.; Guo, B.; Wang, J. The different impacts of home countries characteristics in FDI on Chinese spillover effects: Based on one-stage SFA. Econ. Model. 2014, 38, 572–580. [Google Scholar] [CrossRef]
- Kuai, P.; Yang, S.; Tao, A.; Zhang, S.; Khan, Z.D. Environmental effects of Chinese-style fiscal decentralization and the sustainability implications. J. Clean. Prod. 2019, 239, 118089. [Google Scholar] [CrossRef]
- Zefeng, M.; Gang, Z.; Xiaorui, X.; Yongmin, S.; Junjiao, H. The extension of the Porter hypothesis: Can the role of environmental regulation on economic development be affected by other dimensional regulations? J. Clean. Prod. 2018, 203, 933–942. [Google Scholar] [CrossRef]
- Yan, D.; Kong, Y.; Ren, X.; Shi, Y.; Chiang, S. The determinants of urban sustainability in Chinese resource-based cities: A panel quantile regression approach. Sci. Total Environ. 2019, 686, 1210–1219. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.X.; Chan, R.C.; Chan, N.Y.M. Spatial polarization and dynamic pathways of Foreign Direct Investment in China 1990–2009. Geoforum 2012, 43, 836–850. [Google Scholar] [CrossRef]
- Liu, Z.; Xin, L. Has China’s Belt and Road Initiative promoted its green total factor productivity?—Evidence from primary provinces along the route. Energy Policy 2019, 129, 360–369. [Google Scholar] [CrossRef]
- Organization for Economic Cooperation and Development. Green Growth: Overcoming the Crisis and Beyond; OECD: Paris, France, 2011. [Google Scholar]
- Li, X.X.; Pan, J.H. China Green Development Index Annual Report; Beijing Normal University Press: Beijing, China, 2010; p. 53. (In Chinese) [Google Scholar]
- Ma, X.-L.; Bao, J.-G.; Ryan, C. Evaluating the Total Factor Productivity Growth of National Parks in China with Data Enveloped Analysis. Asia Pac. J. Tour. Res. 2009, 14, 385–402. [Google Scholar] [CrossRef]
- Glass, A.; Kenjegalieva, K.; Paez-Farrell, J. Productivity growth decomposition using a spatial autoregressive frontier model. Econ. Lett. 2013, 119, 291–295. [Google Scholar] [CrossRef]
- Shi, X.; Li, L. Green total factor productivity and its decomposition of Chinese manufacturing based on the MML index:2003–2015. J. Clean. Prod. 2019, 222, 998–1008. [Google Scholar] [CrossRef]
- Helvoigt, T.L.; Adams, D.M. A stochastic frontier analysis of technical progress, efficiency change and productivity growth in the Pacific Northwest sawmill industry. For. Policy Econ. 2009, 11, 280–287. [Google Scholar] [CrossRef]
- Zhang, Y.; Jin, P.; Feng, D. Does civil environmental protection force the growth of China’s industrial green productivity? Evidence from the perspective of rent-seeking. Ecol. Indic. 2015, 51, 215–227. [Google Scholar] [CrossRef]
- Li, B.; Dewan, H. Efficiency differences among China’s resource-based cities and their determinants. Resour. Policy 2017, 51, 31–38. [Google Scholar] [CrossRef]
- Chung, Y.; Färe, R.; Grosskopf, S. Productivity and Undesirable Outputs: A Directional Distance Function Approach. J. Environ. Manag. 1997, 51, 229–240. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Golley, J. ‘Green’ productivity growth in China’s industrial economy. Energy Econ. 2014, 44, 89–98. [Google Scholar] [CrossRef]
- Pang, R.-Z.; Deng, Z.-Q.; Hu, J.-L. Clean energy use and total-factor efficiencies: An international comparison. Renew. Sustain. Energy Rev. 2015, 52, 1158–1171. [Google Scholar] [CrossRef]
- Manello, A. Productivity growth, environmental regulation and win–win opportunities: The case of chemical industry in Italy and Germany. Eur. J. Oper. Res. 2017, 262, 733–743. [Google Scholar] [CrossRef]
- Du, J.; Chen, Y.; Huang, Y. A Modified Malmquist-Luenberger Productivity Index: Assessing Environmental Productivity Performance in China. Eur. J. Oper. Res. 2018, 269, 171–187. [Google Scholar] [CrossRef]
- Xian, Y.; Wang, K.; Shi, X.; Zhang, C.; Wei, Y.-M.; Huang, Z. Carbon emissions intensity reduction target for China’s power industry: An efficiency and productivity perspective. J. Clean. Prod. 2018, 197, 1022–1034. [Google Scholar] [CrossRef]
- Xia, F.; Xu, J. Green total factor productivity: A re-examination of quality of growth for provinces in China. China Econ. Rev. 2020, 62, 101454. [Google Scholar] [CrossRef]
- Wang, Y.; Sun, X.; Guo, X. Environmental regulation and green productivity growth: Empirical evidence on the Porter Hypothesis from OECD industrial sectors. Energy Policy 2019, 132, 611–619. [Google Scholar] [CrossRef]
- Gao, Y.; Zhang, M.; Zheng, J. Accounting and determinants analysis of China’s provincial total factor productivity considering carbon emissions. China Econ. Rev. 2020, 65, 101576. [Google Scholar] [CrossRef]
- Lan, S.; Tseng, M.-L.; Yang, C.; Huisingh, D. Trends in sustainable logistics in major cities in China. Sci. Total Environ. 2020, 712, 136381. [Google Scholar] [CrossRef] [PubMed]
- World Bank. Inclusive Green Growth: The Pathway to Sustainable Development; World Bank: Washington, DC, USA, 2012. [Google Scholar]
- Romer, P.M. Endogenous Technological Change. J. Political Econ. 1990, 98, S71–S102. [Google Scholar] [CrossRef] [Green Version]
- Smulders, J.A.; Withagen, A.M. Green Growth: Lessons from Growth Theory World Bank Policy Research. Working Paper No. 6230. 2012. Available online: https://ssrn.com/abstract=2162798 (accessed on 22 July 2021).
- Liu, Y.; Li, Z.; Yin, X. Environmental regulation, technological innovation and energy consumption—A cross-region analysis in China. J. Clean. Prod. 2018, 203, 885–897. [Google Scholar] [CrossRef]
- Zhang, J.; Chang, Y.; Zhang, L.; Li, D. Do technological innovations promote urban green development?—A spatial econometric analysis of 105 cities in China. J. Clean. Prod. 2018, 182, 395–403. [Google Scholar] [CrossRef]
- Wang, H.; Wang, M. Effects of technological innovation on energy efficiency in China: Evidence from dynamic panel of 284 cities. Sci. Total Environ. 2019, 709, 136172. [Google Scholar] [CrossRef]
- Liu, Y.; Zhu, J.; Li, E.Y.; Meng, Z.; Song, Y. Environmental regulation, green technological innovation, and eco-efficiency: The case of Yangtze river economic belt in China. Technol. Forecast. Soc. Chang. 2020, 155, 119993. [Google Scholar] [CrossRef]
- Wang, H.; Cui, H.; Zhao, Q. Effect of green technology innovation on green total factor productivity in China: Evidence from spatial durbin model analysis. J. Clean. Prod. 2020, 288, 125624. [Google Scholar] [CrossRef]
- Govindan, K.; Rajendran, S.; Sarkis, J.; Murugesan, P. Multi criteria decision making approaches for green supplier evaluation and selection: A literature review. J. Clean. Prod. 2013, 98, 66–83. [Google Scholar] [CrossRef]
- Davis, L.; North, D. Institutional Change and American Economic Growth: A First Step Towards a Theory of Institutional Innovation. J. Econ. Hist. 1970, 30, 131–149. [Google Scholar] [CrossRef]
- Fang, H.; Feng, Q.Y.F.; Zhou, Y.R. International flow of production factors and quality of economic growth: The moderating effect based on social resource endowment. World Econ. Res. 2020, 7, 17–32. (In Chinese) [Google Scholar]
- Wu, H.; Ren, S.; Yan, G.; Hao, Y. Does China’s outward direct investment improve green total factor productivity in the “Belt and Road” countries? Evidence from dynamic threshold panel model analysis. J. Environ. Manag. 2020, 275, 111295. [Google Scholar] [CrossRef] [PubMed]
- Albrizio, S.; Kozluk, T.; Zipperer, V. Environmental policies and productivity growth: Evidence across industries and firms. J. Environ. Econ. Manag. 2017, 81, 209–226. [Google Scholar] [CrossRef]
- Li, B.; Wu, S. Effects of local and civil environmental regulation on green total factor productivity in China: A spatial Durbin econometric analysis. J. Clean. Prod. 2016, 153, 342–353. [Google Scholar] [CrossRef]
- Song, Y.; Yang, T.; Li, Z.; Zhang, X.; Zhang, M. Research on the direct and indirect effects of environmental regulation on environmental pollution: Empirical evidence from 253 prefecture-level cities in China. J. Clean. Prod. 2020, 269, 122425. [Google Scholar] [CrossRef]
- Zhang, D.; Vigne, S.A. How does innovation efficiency contribute to green productivity? A financial constraint perspective. J. Clean. Prod. 2020, 280, 124000. [Google Scholar] [CrossRef]
- Song, X.; Zhou, Y.; Jia, W. How do Economic Openness and R&D Investment Affect Green Economic Growth?—Evidence from China. Resour. Conserv. Recycl. 2019, 146, 405–415. [Google Scholar] [CrossRef]
- Lin, B.; Zhu, J. Fiscal spending and green economic growth: Evidence from China. Energy Econ. 2019, 83, 264–271. [Google Scholar] [CrossRef]
- Sohag, K.; Taşkın, F.D.; Malik, M.N. Green economic growth, cleaner energy and militarization: Evidence from Turkey. Resour. Policy 2019, 63, 101407. [Google Scholar] [CrossRef]
- Cheng, Z.; Li, X.; Wang, M. Resource curse and green economic growth. Resour. Policy 2021, 74, 102325. [Google Scholar] [CrossRef]
- Reilly, J.M. Green growth and the efficient use of natural resources. Energy Econ. 2012, 34, S85–S93. [Google Scholar] [CrossRef] [Green Version]
- Yuan, R.S.; Feng, C. Technological Innovation, Technological Gap and Regional Green Development in China. Sci. Res. 2016, 34, 1593–1600. (In Chinese) [Google Scholar]
- Lin, Y.F. System, Technology and Agricultural Development in China; Green Publishing: Shanghai, China, 2008; p. 132. (In Chinese) [Google Scholar]
- Aghion, P.; Howitt, P. Endogenous Growth Theory; MIT Press: Boston, MA, USA, 1998; p. 206. [Google Scholar]
- Liu, G.; Wang, B.; Zhang, N. A coin has two sides: Which one is driving China’s green TFP growth? Econ. Syst. 2016, 40, 481–498. [Google Scholar] [CrossRef]
- Pastor, J.T.; Lovell, C.K. A global Malmquist productivity index. Econ. Lett. 2005, 88, 266–271. [Google Scholar] [CrossRef]
- Granger, C.; Newbold, P. Spurious regressions in econometrics. J. Econ. 1974, 2, 111–120. [Google Scholar] [CrossRef] [Green Version]
- Hartwig, J. Is health capital formation good for long-term economic growth?—Panel Granger-causality evidence for OECD countries. J. Macroecon. 2010, 32, 314–325. [Google Scholar] [CrossRef]
- Arellano, M.; Bond, S. Some Tests of Specification for Panel Data: Monte Carlo Evidence and an Application to Employment Equations. Rev. Econ. Stud. 1991, 58, 277. [Google Scholar] [CrossRef] [Green Version]
- Arellano, M.; Bover, O. Another look at the instrumental variable estimation of error-components models. J. Econ. 1995, 68, 29–51. [Google Scholar] [CrossRef] [Green Version]
- Blundell, R.; Bond, S. Initial conditions and moment restrictions in dynamic panel data models. J. Econ. 1998, 87, 115–143. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.F. Green total factor productivity of China’s industry and its influencing factors—An Empirical Study Based on ML productivity index and dynamic panel model. Stat. Res. 2016, 33, 53–62. (In Chinese) [Google Scholar]
- Zhao, Z.Y.; Zhou, J.J.; Shen, N. An empirical study on the impact of financial development and regional innovation efficiency. Sci. Stud. 2016, 34, 1408–1416. (In Chinese) [Google Scholar]
- Zhao, X.W. Environmental Regulation, Environmental Regulation Competition and Regional Industrial Economic Growth: An Empirical Study Based on Spatial Durbin Panel Model in Chinese. Int. Trade 2014, 7, 82–92. (In Chinese) [Google Scholar]
- Jia, J.; Guo, Q.; Zhang, J. Fiscal decentralization and local expenditure policy in China. China Econ. Rev. 2014, 28, 107–122. [Google Scholar] [CrossRef]
- Abdel-Basset, M.; Mohamed, R. A novel plithogenic TOPSIS- CRITIC model for sustainable supply chain risk management. J. Clean. Prod. 2019, 247, 119586. [Google Scholar] [CrossRef]
Study | Index | Research Objects |
---|---|---|
Chen & Gollery (2014) | Green total factor productivity | 38 industries in China from 1980 to 2010 |
Pang et al. (2015) | Total factor efficiency | 87 countries in the world from 2004 to 2010 |
Manello (2017) | Efficiency score and total factor productivity growth indexes considering pollution | Firms located in Italy and Germany, operating in the chemical sector |
Du et al. (2017) | Environmental productivity performance | Environmental productivity of China’s economic zones and provincial regions from 1999 to 2012; Automobile manufacturers’ environmental performance from 2005 to 2012. |
Xian et al. (2018) | Production and environmental technologies and endogenous efficiency | China’s power industry from 2006–2015 |
Xia & Xu (2020) | Green total factor productivity | Provinces in China from 1997 to 2015. |
Liu & Li (2019) | Green total factor productivity | 17 provinces and the countries from 2003 to 2016 |
Wang et al. (2019) | Green productivity growth | OECD industrial sectors |
Gao et al. (2020) | Total factor productivity considering carbon emissions | Provinces in China from 2000 to 2017 |
Lan et al. (2020) | Total factor productivity | 36 Chinese cities from 2006 to 2015 |
Variable | Y | T | S | FD | ER | RP | OS |
---|---|---|---|---|---|---|---|
Mean Value | 1.009 | 59.32 | 0.355 | 0.389 | 0.443 | 2.614 | 0.022 |
Maximum Value | 2.241 | 430 | 0.802 | 0.967 | 5.926 | 18.02 | 0.238 |
Minimum Value | 0.481 | 1 | 0.085 | 0.052 | 0.005 | 0.649 | 0.0004 |
Standard Deviation | 0.093 | 74.167 | 0.065 | 0.118 | 0.477 | 1.541 | 0.024 |
Observations | 3990 | 3990 | 3990 | 3990 | 3990 | 3990 | 3990 |
Variable | P | Z | L* | Pm | Unit Root | Result |
---|---|---|---|---|---|---|
Y | 1826.0479 *** | −27.2645 *** | −29.4584 *** | 39.6716 *** | No | Stationary |
T | 1805.4537 *** | −27.7658 *** | −29.6263 *** | 39.0397 *** | No | Stationary |
H0 | Lag Period 1 | Lag Period 2 | Lag Period 3 | |
---|---|---|---|---|
T is not the Granger cause of Y | w | 2.8215 | 5.6325 | 5.5749 |
z | 0.2468 | 29.6221 | 17.1447 | |
p | 0.1327 | 0.0000 | 0.0000 |
Variable | P | Z | L* | Pm | Unit Root | Result |
---|---|---|---|---|---|---|
Y | 1826.0479 *** | −27.2645 *** | −29.4584 *** | 39.6716 *** | No | Stationary |
S | 1753.5605 *** | −27.5102 *** | −28.7141 *** | 37.4493 *** | No | Stationary |
FD | 2055.8122 *** | −32.2670 *** | −34.2978 *** | 46.7155 *** | No | Stationary |
ER | 1537.1926 *** | −23.0821 *** | −23.9355 *** | 30.2901 *** | No | Stationary |
RP | 1499.2556 *** | −21.8043 *** | −23.0876 *** | 29.4691 *** | No | Stationary |
OS | 1832.8138 *** | −28.678 *** | −30.2864 *** | 39.8970 *** | No | Stationary |
H0 | Lag Period 1 | Lag Period 2 | Lag Period 3 | |
---|---|---|---|---|
S is not the Granger cause of Y | w | 2.0582 | 3.4272 | 12.5828 |
Z | 12.2040 | 11.6384 | 63.8057 | |
P | 0.0000 | 0.0000 | 0.0000 | |
FD is not the Granger cause of Y | w | 4.0950 | 3.4524 | 11.3493 |
Z | 0.2221 | 3.3981 | 10.3554 | |
P | 0.8243 | 0.0007 | 0.0000 | |
ER is not the Granger cause of Y | w | 4.9399 | 3.8932 | 1.6737 |
Z | −0.1078 | 5.3043 | 3.5604 | |
P | 0.9142 | 0.0000 | 0.0004 | |
RP is not the Granger cause of Y | w | 2.0198 | 4.3470 | 5.1362 |
Z | 6.2964 | 7.2671 | 14.2232 | |
P | 0.0000 | 0.0000 | 0.0000 | |
OS is not the Granger cause of Y | w | 4.2090 | 1.4582 | 9.5896 |
Z | 6.6700 | 1.8632 | 7.4855 | |
P | 0.0000 | 0.0624 | 0.0000 |
Equations (3)–(10) | Equations (3)–(11) | |
---|---|---|
Y(−1) | 0.249 *** | 0.241 *** |
(2.92) | (2.73) | |
S | 0.308 *** | |
(5.30) | ||
T | 0.221 *** | 0.196 ** |
(4.23) | (2.02) | |
FD | 0.0981 *** | |
(2.99) | ||
ER | 0.021 ** | |
(1.98) | ||
RP | 0.123 *** | |
(3.87) | ||
OS | 0.029 | |
(1.05) | ||
OS × T | 0.016 *** | |
(3.14) | ||
ER × T | 0.293 * | |
(1.69) | ||
Sargan Test | 0.355 | 0.577 |
AR(1) | −2.847 | −3.026 |
0.000 | 0.002 | |
AR(2) | 1.049 | 0.981 |
0.293 | 0.327 | |
Wald-test-P | 0.000 | 0.000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, J.; Chen, X.; Sun, Y. Technology or Institutions: Which Is the Source of Green Economic Growth in Chinese Cities? Sustainability 2021, 13, 10934. https://doi.org/10.3390/su131910934
Han J, Chen X, Sun Y. Technology or Institutions: Which Is the Source of Green Economic Growth in Chinese Cities? Sustainability. 2021; 13(19):10934. https://doi.org/10.3390/su131910934
Chicago/Turabian StyleHan, Jing, Xi Chen, and Yawen Sun. 2021. "Technology or Institutions: Which Is the Source of Green Economic Growth in Chinese Cities?" Sustainability 13, no. 19: 10934. https://doi.org/10.3390/su131910934
APA StyleHan, J., Chen, X., & Sun, Y. (2021). Technology or Institutions: Which Is the Source of Green Economic Growth in Chinese Cities? Sustainability, 13(19), 10934. https://doi.org/10.3390/su131910934