Flood Mitigation in Mediterranean Coastal Regions: Problems, Solutions, and Stakeholder Involvement
Abstract
:1. Introduction
2. Flooding in Mediterranean Coastal Areas
2.1. Main Causes
2.2. Main Consequences
3. Methods
3.1. Sample and Data
3.2. Matching Method
3.3. Model Specification
3.4. Variable and Data Description
4. Flood Mitigation Solutions: Examples from Mediterranean Coastal Cities
4.1. Coastal Barriers
4.2. Infrastructural Drainage Systems
4.3. Mechanical Wetlands
4.4. Mobile Dams
5. Stakeholder Engagement in Coastal Flood Mitigation Strategies
5.1. Approaches and Main Advantages
- Raising awareness about flood risks and impacts among stakeholders by collecting information on historical flood events, based on consultation between residents and qualified professionals (e.g., civil protection, politicians, NGOs, technical experts);
- Enhancing the sense of belonging to the coast, to promote care and maintenance of the coastline;
- Strengthening and responding to the needs of the local community by training them to face flood disasters and adapt to their impacts.
5.2. Stakeholder Engagement in the Mediterranean Case Studies
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- European Commission. Special Report of the European Court of Auditors No 25/2018: Floods Directive: Progress in Assessing Risks, While Planning and Implementation Need to Improve. 2018. Available online: http://publications.europa.eu/webpub/eca/special-reports/floods-directive-25-2018/en/ (accessed on 27 July 2021).
- Kron, W.; Eichner, J.; Kundzewicz, Z.V. Reduction of flood risk in Europe—Reflections from a reinsurance perspective. J. Hydrol. 2019, 576, 197–209. [Google Scholar] [CrossRef]
- Ferreira, C.S.; Mourato, S.; Kasanin-Grubin, M.; JDFerreira, A.; Destouni, G.; Kalantari, Z. Effectiveness of Nature-Based Solutions in Mitigating Flood Hazard in a Mediterranean Peri-Urban Catchment. Water 2020, 12, 2893. [Google Scholar] [CrossRef]
- Allan, C.; Curtis, A.; Mazur, N. Understanding the Social Impacts of Floods in Southeastern Australia, Advances in Ecological Research. Adv. Ecol. Res. 2006, 39, 159–174. [Google Scholar] [CrossRef]
- Gimenez-Maranges, M.; Breuste, J.; Hof, A. Sustainable Drainage Systems for transitioning to sustainable urban flood management in the European Union: A review. J. Clean. Prod. 2020, 255, 120191. [Google Scholar] [CrossRef]
- Tavares, A.O.; Barros, J.L.; Freire, P.; Pinto Santos, P.; Perdiz, L.; Bustorff Fortunato, A. A coastal flooding database from 1980 to 2018 for the continental Portuguese coastal zone. Appl. Geogr. 2021, 135, 102534. [Google Scholar] [CrossRef]
- Bertola, M.; Viglione, A.; Lun, D.; Hall, J.; Bloschl, G. Flood trends in Europe: Are changes in small and big floods different? Hydrol. Earth Syst. Sci. 2020, 24, 1805–1822. [Google Scholar] [CrossRef] [Green Version]
- Heynen, N.; Kaika, M.; Swyngedouw, E. The Nature of Cities—The Politics of Urban Metabolism; Routledge: London, UK, 2005. [Google Scholar]
- Mangini, W.; Viglione, A.; Hall, J.; Hundecha, Y.; Ceola, S.; Montanari, A.; Rogger, M.; Salinas, J.L.; Borzì, I.; Parajika, J. Detection of trends in magnitude and frequency of flood peaks across Europe. Hydrolog. Sci. J. 2018, 63, 493–512. [Google Scholar] [CrossRef] [Green Version]
- .Walker, G. Environmental Justice: Concepts, Evidence and Politics; Routledge: New York, USA, 2012. [Google Scholar]
- McGranahan, G.; Balk, D.; Anderson, B. The rising tide: Assessing the risks of climate change and human settlements in low elevation coastal zones. Environ. Urban. 2007, 19, 17–37. [Google Scholar] [CrossRef]
- Costello, A.; Abbas, M.; Allen, A.; Ball, S.; Bell, S.; Bellamy, R.; Friel, S.; Groce, N.; Johnson, A.; Kett, M.; et al. Managing the health effects of climate change. Lancet 2009, 373, 1693–1733. [Google Scholar] [CrossRef]
- EEA. Impacts of Europe’s Changing Climate—2008 Indicator-Based Assessment; Joint EEA-JRC-WHO Report, EEA Report No 4/2008, JRC Reference Report No JRC47756; European Environment Agency: Copenhagen, Denmark, 2008. [Google Scholar]
- Mediero, L.; Santillán, D.; Garrote, L.; Granados, A. Detection and attribution of trends in magnitude, frequency and timing of floods in Spain. J. Hydrol. 2014, 517, 1072–1088. [Google Scholar] [CrossRef]
- Amponsah, W.; Ayral, P.A.; Boudevillain, B.; Bouvier, C.; Braud, I.; Brunet, P.; Delrieu, G.; Didon-Lescot, J.F.; Gaume, E.; Lebouc, L.; et al. Integrated high-resolution dataset of high-intensity European and Mediterranean flash floods. Earth Syst. Sci. Data 2018, 10, 1783–1794. [Google Scholar] [CrossRef] [Green Version]
- Grillakis, M.; Koutroulis, A.; Komma, J.; Tsanis, I.; Wagner, W.; Blöschl, G. Initial soil moisture effects on flash flood generation—A comparison between basins. J. Hydrol. 2016, 541, 206–217. [Google Scholar] [CrossRef]
- Nicholls, R.J.; Wong, P.P.; Burkett, V. Coastal Systems and Low-Lying Areas. In IPCC WGII Fourth Assessment Report—Draft for Government and Expert Review; Cambridge University Press: Cambridge, UK, 2006. [Google Scholar]
- European Commission. Regions 2020 the Climate Change Challenge for European Regions. Available online: https://ec.europa.eu/regional_policy/sources/docoffic/working/regions2020/pdf/regions2020_climat.pdf (accessed on 12 July 2021).
- Šraj, M.; Viglione, A.; Parajka, J.; Blöschl, G. The influence of non-stationarity in extreme hydrological events on flood frequency estimation. J. Hydrol. Hydromech. 2016, 64, 426–437. [Google Scholar] [CrossRef] [Green Version]
- Batista, M.L. Coastal Flood Hazard Mapping. In Encyclopedia of Coastal Science; Encyclopedia of Earth Sciences Series; Springer: Cham, Switzerland, 2018. [Google Scholar]
- Rizzo, A.; Vandelli, V.; Buhagiar, G.; Micallef, A.S.; Soldati, M. Coastal Vulnerability Assessment along the North-Eastern Sector of Gozo Island (Malta, Mediterranean Sea). Water 2020, 12, 1405. [Google Scholar] [CrossRef]
- Rogger, M.; Agnoletti, M.; Alaoui, A.; Bathurst, J.C.; Bodner, G.; Borga, M.; Chaplot, V.; Gallart, F.; Glatzel, G.; Hall, J.; et al. Land use change impacts on floods at the catchment scale: Challenges and opportunities for future research. Water Resour. Res. 2017, 53, 5209–5219. [Google Scholar] [CrossRef] [Green Version]
- European Commission. European Commission. Climate Change Impacts in Europe. Final Report of the PESTA Research Project, Huan Carlos Ciscar. 2009. Available online: https://quifinanza.it/wp-content/uploads/sites/5/2009/12/jrc55391.pdf (accessed on 12 July 2021).
- San-Miguel-Ayanz, J.; Chuvieco, E.; Handmer, J.; Moffat, A.; Montiel-Molina, C.; Sandahl, L.; Viegas, D. Climatological risk: Wildfires. In Science for Disaster Risk Management 2017: Knowing Better and Losing Less; Poljanšek, K., Marín Ferrer, M., De Groeve, T., Clark, I., Eds.; Publications Office of the European Union: Rue Mercier, Luxembourg, 2017; pp. 294–305. Available online: http://drmkc.jrc.ec.europa.eu/portals/0/Knowledge/ScienceforDRM/ch03_s03/ch03_s03_subch0310.pdf (accessed on 30 June 2021).
- De Rigo, D.; Libertà, G.; Houston Durrant, T.; Artés Vivancos, T.; San-Miguel-Ayanz, J. Forest Fire Danger Extremes in Europe under Climate Change: Variability and Uncertainty; Publications Office of the European Union: Rue Mercier, Luxembourg, 2017; ISBN 978-92-79-77046-3. [Google Scholar] [CrossRef]
- Fusco Girard, L.; Nocca, F. Moving towards the Circular Economy/City Model: Which tools for Operationalizing This Model? Sustainability 2019, 11, 53–64. [Google Scholar] [CrossRef] [Green Version]
- Egidi, G.; Zambon, I.; Tombolin, I.; Salvati, L.; Cvidino, S.; Seifollahi-Aghmiuni, S.; Kalantari, Z. Unraveling latent aspects of urban expansion: Desertification risk reveals more. Int. J. Environ. Res. Public Health 2020, 17, 4001. [Google Scholar] [CrossRef]
- Small, C.; Nicholls, R.J. A global analysis of human settlement in coastal zones. J. Coast. Res. 2003, 19, 584–599. [Google Scholar]
- OECD. Climate Change Impacts and Adaptation in Winter Tourism in the Alps. Executive Summary. 2007. Available online: http://www.oecd.org/dataoecd/25/40/37909236.pdf (accessed on 30 June 2021).
- Ranganathan, M. Thinking with Flint: Racial liberalism and the roots of an American water tragedy. Capital. Nat. Soc. 2016, 27, 17–33. [Google Scholar] [CrossRef]
- Mather, S.; Viner, D.; Graham, T. Climate and policy changes: Their implications for international tourism flows. In Tourism, Recreation and Climate Change; Hall, C.M., Higham, J., Eds.; Channel View Publications: Bristol, UK, 2005. [Google Scholar]
- Neumann, B.; Vafeidis, A.T.; Zimmermann, J.; Nicholls, R.J. Future coastal population growth and exposure to sea-level rise and coastal flooding—A global assessment. PLoS ONE 2015, 10, 18–57. [Google Scholar] [CrossRef] [Green Version]
- Alder, J.; Russell, A.; Neville, A. Marine and Coastal Ecosystems and Human Well-Being; United Nations Environmental Programme: Nairobi, Kenya, 2006. [Google Scholar]
- Turner, B.L. Vulnerability and resilience: Coalescing or paralleling approach for sustainability science? Glob. Environ. Chang. 2010, 20, 570–576. [Google Scholar] [CrossRef]
- Ferreira, C.S.S.; Walsh, R.P.D.; Steenhuis, T.S.; Ferreira, A.J.D. Effect of Peri-urban Development and Lithology on Streamflow in a Mediterranean Catchment. Land Degrad. Dev. 2018, 29, 1141–1153. [Google Scholar] [CrossRef]
- Scott, D. Climate Change and Tourism—Responding to Global Challenges; United Nations World Tourism Organization: Madrid, Spain, 2008. [Google Scholar]
- Abadie, L.M.; de Murieta, E.S.; Galarraga, I. Climate Risk Assessment under Uncertainty: An Application to Main European Coastal Cities. Front. Mar. Sci. 2016, 3, 265. [Google Scholar] [CrossRef] [Green Version]
- Kinder, K. The Politics of Urban Water. Changing Waterscapes in Amsterdam; University of Georgia Press: Athens, Greece, 2015. [Google Scholar]
- Philips, B.D. Disaster Recovery. Taylor & Francis Group: New York, NY, USA, 2009. [Google Scholar]
- Costa, H.; de Rigo, D.; Libertà, G.; Houston Durrant, T.; San-Miguel-Ayanz, J. European Wildfire Danger and Vulnerability in a Changing Climate: Towards Integrating Risk Dimensions; JRC Technical Report; Euopean Commission: Rue Mercier, Luxembourg, 2020. [Google Scholar]
- European Commission. Living with Coastal Erosion in Europe—Sediment and Space for Sustainability; Office for Official Publications of the European Communities: Rue Mercier, Luxembourg, 2004; ISBN 92-894-7496-3. [Google Scholar]
- Boruff, B.J.; Emrich, C.; Cutter, S.L. Erosion hazard vulnerability of US coastal counties. J. Coast. Res. 2005, 21, 932–942. [Google Scholar] [CrossRef] [Green Version]
- Rangel-Buitrago, N.; Neal, W.J. Coastal Erosion Management. In Encyclopedia of Coastal Science; Springer: Cham, Switzerland, 2019. [Google Scholar]
- Mentaschi, L.; Vousdoukas, M.I.; Pekel, J.F.; Voukouvalas, E.; Feyen, L. Global long-term observations of coastal erosion and accretion. Sci. Rep. 2018, 8, 12876. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Finkl, C.W.; Makowski, C. Encyclopedia of Coastal Science. Springer Nature: Heidelberg, Switzerland, 2018. [Google Scholar]
- Paprotny, D.; Sebastian, A.; Morales-Nápoles, O.; Jonkman, S.N. Trends in flood losses in Europe over the past 150 years. Nat. Commun. 2018, 9, 1985. [Google Scholar] [CrossRef] [PubMed]
- Kryžanowski, A.; Brilly, M.; Rusjan, S.; Schnabl, S. Review Article: Structural flood-protection measures referring to several European case studies. Nat. Hazards Earth Syst. Sci. 2014, 14, 135–142. [Google Scholar] [CrossRef] [Green Version]
- Environment Agency. Risk of Flooding from Rivers and Sea. 2017. Available online: https://data.gov.uk/dataset/risk-of-flooding-from-rivers-and-sea1 (accessed on 20 July 2021).
- Pietrzak, R.H.; Tracy, M.; Galea, S. Resilience in the face of disaster: Prevalence and longitudinal course of mental disorders following Hurricane Ike. PLoS ONE 2012, 7, 38–64. [Google Scholar]
- Decade Variability and Evolution of Surface Temperatures and Salinity in the Mediterranean. 2021. Available online: https://www.researchgate.net/publication/343268493_VARIABILITE_ET_EVOLUTION_DECEN-NALES_DES_TEMPERATURES_ET_SALINITES_DE_SURFACE_EN_MEDITERRANEE (accessed on 21 June 2021).
- Veldhuis, M.C.T.; Clemens, F.; Van Gelder, P.H.A.J.M. Quantitative fault tree analysis for urban water infrastructure flooding. Struct. Infrastruct. Eng. 2011, 7, 809–821. [Google Scholar] [CrossRef]
- Sairinen, R.; Kumpulainen, S. Assessing social impacts in urban waterfront regeneration. Environ. Impact Assess. Rev. 2006, 26, 120–135. [Google Scholar] [CrossRef]
- Jurgilevich, A.; Räsänen, A.; Groundstroem, F.; Juhola, S. A systematic review of dynamics in climate risk and vulnerability assessments. Environ. Res. Lett. 2017, 12, 013002. [Google Scholar] [CrossRef]
- Goodwin, P.; Brown, S.; Haigh, I.D.; Nicholls, R.J.; Matter, J.M. Adjusting mitigation pathways to stabilize climate at 1.5 °C and 2.0 °C rise in global temperatures to year 2300. Earths Future 2018, 6, 601–615. [Google Scholar] [CrossRef] [Green Version]
- Lieto, L. Pensare e agire multi-scalare. Il cambiamento climatico come convergenza catastrofica e come occasione di innovazione delle politiche territoriali. Crios 2012, 6, 81–85. [Google Scholar]
- Nicholls, R.J. Coastal flooding and wetland loss in the 21st century: Changes under the SRES climate and socioeconomic scenarios. Glob. Environ. Chang. 2004, 14, 69–86. [Google Scholar] [CrossRef]
- Hardoy, J.E.; Mitlin, D.; Satterthwaite, D. Environmental Problems in an Urbanizing World; Earthscan: London, UK, 2001. [Google Scholar]
- Cooper, A.; Jackson, D.W.T. Dune Gardening? A critical view of the contemporary coastal dune management paradigm. Area 2020, 53, 345–352. [Google Scholar] [CrossRef]
- Joint Research Centre (European Commission). Climate Change and Critical Infrastructure; Publications Office of the European Union: Rue Mercier, Luxembourg, 2017. [Google Scholar]
- Sutton-Grier, A.E.; Wowk, K.; Bamford, H. Future of our coasts: The potential for natural and hybrid infrastructure to enhance the resilience of our coastal communities, economies and ecosystems. Environ. Sci. Policy 2015, 51, 137–148. [Google Scholar] [CrossRef] [Green Version]
- Gornitz, V. Global coastal hazards from future sea level rise. Palaeogeogr. Palaeoclim. Palaeoecol. 1991, 89, 379–398. [Google Scholar] [CrossRef]
- Kantamaneni, K. Counting the cost of coastal vulnerability. Ocean Coast. Manag. 2016, 132, 155–169. [Google Scholar] [CrossRef]
- Florida, R. The New Urban Crisis; Oneworld: London, UK, 2017. [Google Scholar]
- Marijnissen, R.J.C.; Kok, M.; Kroeze, C.; van Loon-Steensma, M.J. Flood risk reduction by parallel flood defences—Case-study of a coastal multifunctional flood protection zone. Coast. Eng. 2021, 167, 103903. [Google Scholar] [CrossRef]
- Fernández-Montblanc, T.; Duo, E.; Ciavola, P. Dune reconstruction and revegetation as a potential measure to decrease coastal erosion and flooding under extreme storm conditions. Ocean Coast. Manag. 2020, 188, 105075. [Google Scholar] [CrossRef]
- Gornitz, V.; Oppenheimer, M.; Kopp, R.; Horton, R.; Orton, P.; Rosenzweig, C.; Solecki, W.; Patrick, L. Enhancing New York City’s resilience to sea level rise and increased coastal flooding. Urban Clim. 2020, 33, 100654. [Google Scholar] [CrossRef]
- Timmerman, A.; Haasnoot, M.; Middelkoop, H.; Bouma, T.; McEvoy, S. Ecological consequences of sea level rise and flood protection strategies in shallow coastal systems: A quick-scan barcoding approach. Ocean Coast. Manag. 2021, 210, 105674. [Google Scholar] [CrossRef]
- Chan, F.K.S.; Joon Chuah, C.; Ziegler, A.D.; Dąbrowski, M.; Varis, O. Towards resilient flood risk management for Asian coastal cities: Lessons learned from Hong Kong and Singapore. J. Clean. Prod. 2018, 187, 576–589. [Google Scholar] [CrossRef] [Green Version]
- Ruckelshaus, M.; Reguero, B.J.; Arkema, K.; Guerrero Compeán, R.; Weekes, K.; Bailey, A.; Silver, J. Harnessing new data technologies for nature-based solutions in assessing and managing risk in coastal zones. Int. J. Disaster Risk Reduct. 2020, 51, 101795. [Google Scholar] [CrossRef]
- Soanes, L.M.; Pike, S.; Armstrong, S.; Creque, K.; Norris-Gumbs, R.; Zaluski, S.; Medcalf, K. Reducing the vulnerability of coastal communities in the Caribbean through sustainable mangrove management. Ocean Coast. Manag. 2021, 210, 105702. [Google Scholar] [CrossRef]
- Van Coppenolle, R.; Temmerman, S. A global exploration of tidal wetland creation for nature-based flood risk mitigation in coastal cities. Estuar. Coast. Shelf Sci. 2019, 226, 106262. [Google Scholar] [CrossRef]
- Wong, P.P.; Losada, I.J.; Gattuso, J.P.; Hinkel, J.; Khattabi, A.; McInnes, K.L.; Saito, Y.; Sallenger, A. Coastal Systems and Low-Lying Areas. In Climate Change 2014: Impacts, Adaptation, and Vulnerability; Part A: Global and Sectoral Aspects. Contrivution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Field, C.B., Barros, V.R., Dokken, D.J., Mach, K.J., Mastrandrea, M.D., Bilir, T.E., Chatterjee, M., Ebi, K.L., Estrada, Y.O., Genova, R.C., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014; pp. 361–409. ISBN 9781107415379. [Google Scholar]
- Pinto, C.A. Coastal erosion and sediment management in Portugal. In Proceedings of the CEDA Iberian Conference—Dredging for Sustainable Port Development, Lisbon, Portugal, 27–28 October 2016. [Google Scholar]
- Ferreira, J.C.R. Ordenamento Ambiental de Frentes Urbanas Litorais em Áreas Baixas de Elevado Risco e Vulnerabilidade ao Galgamento Costeiro. 2016. Available online: http://hdl.handle.net/10362/19883 (accessed on 10 May 2021).
- Otvos, E.G. Coastal barriers—Nomenclature, processes, and classification issues. Geomorphology 2012, 139, 39–52. [Google Scholar] [CrossRef]
- Hunter, J. Estimating sea-level extremes under conditions of uncertain sea-level rise. Clim. Chang. 2010, 99, 331–350. [Google Scholar] [CrossRef]
- Santos, C.J.; Andriolo, U.; Ferreira, J.C. Shoreline response to a sandy nourishment in a wave-dominated coast using video monitoring. Water 2020, 12, 16–32. [Google Scholar] [CrossRef]
- French, P.W. Coastal Defences: Processes, Problems and Solutions, 1st ed.; Routledge: Abingdon, UK, 2001. [Google Scholar]
- Cardona, F.M.S. Avaliação do Risco de Erosão, Galgamento e Inundação Costeira em Áreas Artificiais de Portugal Continental: Estratégias de Adaptação Face a Diferentes Cenários de Risco (Relocalização, Acomodação e Proteção); Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa: Caparica, Portugal, 2015; p. 206. [Google Scholar]
- Birkmann, J. Risk and vulnerability indicators at different scales: Applicability, usefulness and policy implications. Environ. Hazards 2007, 7, 20–31. [Google Scholar] [CrossRef]
- Shepard, C.C.; Agostini, V.N.; Gilmer, B.; Allen, T.; Stone, J.; Brooks, W.; Beck, M.W. Assessing future risk: Quantifying the effects of sea level rise on storm surge risk for the southern shores of Long Island, New York. Nat. Hazards 2012, 60, 727–745. [Google Scholar] [CrossRef]
- Turner, R.K.; Burgess, D.; Hadley, D.; Coombes, E.; Jackson, N. A cost-benefit appraisal of coastal managed realignment policy. Glob. Environ. Chang. 2007, 17, 397–407. [Google Scholar] [CrossRef]
- Yuhi, M. Impact of Anthropogenic Modifications of a River Basin on Neighboring Coasts: Case Study. J. Waterw. Port Coast. Ocean Eng. 2008, 134, 336–344. [Google Scholar] [CrossRef]
- Loarca, A.L.; Cobos, M.; Besio, G.; Azofra, A.B. Coastal flooding due to extreme events in the Mediterranean coast of Spain. In Proceedings of the International Conference on Regional Climate ICRC-CORDEX 2019, Beijing, China, 14–18 October 2019. [Google Scholar]
- De Roo, A.; Gouweleeuw, B.; Thielen-del Pozo, J.; Bates, P.D.; Horritt, M.; Hunter, N.M.; Beven, K.; Pappenberger, F.; Kwadijk, J.; Reggiani, P.; et al. Development of a European Flood Forecasting System. Int. J. River Basin Manag. 2003, 1, 49–59. [Google Scholar] [CrossRef]
- Gómez, M.; Carretero Albiach, J.C. Wave Forecasting at the Spanish Coasts. J. Atmos. Ocean Sci. 2005, 10, 389–405. [Google Scholar] [CrossRef]
- Sardà, R.; Valls, J.F.; Pintò, J.; Ariza, E.; Lozoya, J.P.; Sansbellò, R.S.F.; Llambrich, C.M.; Rucabado, J.; Ramis, J.; Jimenez, J.A. Towards a new Integrated Beach Management System: The Ecosystem-Based Management System for Beaches. Ocean Coast. Manag. 2015, 118, 167–177. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Lozano, C.; Pintò, J.; Daunis-I-Estadella, P. Changes in coastal dune systems on the Catalan shoreline (Spain, NW Mediterranean Sea). Comparing dune landscapes between 1890 and 1960 with their current status. Estuar. Coast. Shelf Sci. 2018, 211, 23–358. [Google Scholar]
- Pintò, J.; Lkambrich, C.L.; Sansbellò, R.M.F. Assessing current conditions of coastal dune systems of Mediterranean developed shores. J. Coast. Res. 2014, 296, 832–842. [Google Scholar]
- Lozoya, J.P.; Sardà, R.; Jimenez, J.A. Users expectations and the need for differential beach management frameworks along the Costa Brava: Urban vs. natural protected beaches. Land Use Policy 2014, 38, 397–414. [Google Scholar] [CrossRef]
- Koutsoyiannis, D.; Andreadakis, A.; Mavrodimou, R.; Christofides, A.; Mamassis, N.; Efstratiadis, A.; Koukouvinos, A.; Karavokiros, G.; Kozanis, S.; Mamais, D.; et al. National Programme for Water Resources Management and Preservation, Support on the Compilation of the National Programme for Water Resources Management and Preservation; Department of Water Resources and Environmental Engineering—National Technical University of Athens: Athens, Greece, 2008; 748p. [Google Scholar]
- Koutsoyiannis, D.; Mimikou, M. Country Paper for Greece. Management and Prevention of Crisis Situations: Floods, Droughts and Institutional Aspects; 3rd EURAQUA Technical Review; EURAQUA: Rome, Italy, 1996; pp. 63–77. [Google Scholar]
- Angelakis, A.N.; Koutsoyiannis, D.; Tchobanoglous, G. Urban wastewater and stormwater technologies in ancient Greece. Water Res. 2005, 39, 210–220. [Google Scholar] [CrossRef]
- Koutsoyiannis, D.; Mamassis, N.; Tegos, A. Logical and illogical exegeses of hydrometeorological phenomena in ancient Greece. In Proceedings of the IWA 1st International Symposium on Water and Wastewater Technologies in Ancient Civilizations, Iraklio, Greece, 28–30 October 2006. [Google Scholar]
- Macklin, M.G.; Tooth, S.; Brewer, P.A.; Noble, P.L.; Duller, G.A.T. Holocene flooding and river development in a Mediterranean steepland catchment: The Anapodaris Gorge, south central Crete, Greece. Glob. Planet. Chang. 2010, 70, 35–52. [Google Scholar] [CrossRef]
- Tzedakis, P.C.; Frogley, M.R.; Lawson, I.T.; Preece, R.C.; Cacho, I.; de Abreu, L. Ecological thresholds and patterns of millennial-scale climate variability: The response of vegetation in Greece during the last glacial period. Geology 2004, 32, 109–112. [Google Scholar] [CrossRef]
- Vahaviolos, T. Determination of Flood-Vulnerable Areas according to 2007/60 Directive. Diploma Thesis, Department of Water Resources and Environmental Engineering—National Technical University of Athens, Athens, Greece, 2011. [Google Scholar]
- Lhomme, S.; Serre, D.; Diab, Y.; Laganier, R. Analyzing resilience of urban networks: A preliminary step towards more flood resilient cities. Nat. Hazards Earth Syst. Sci. 2013, 13, 221–230. [Google Scholar] [CrossRef] [Green Version]
- Hartmann, T.; Scheibel, M. Flood Label for buildings—A tool for more flood-resilient cities. In Proceedings of the FLOODrisk 2016—3rd European Conference on Flood Risk Management, Lyon, France, 17–21 October 2016; EDP Sciences: Les Ulis, France, 2016; Volume 7, pp. 1–36. [Google Scholar]
- Ciampa, F. Le Hybrid Zone Come Modello di Mitigazione Delle Vulnerabilità dei Sistemi Insediativi; Design in the Digital Age; Maggioli Editore: Santarcangelo di Romagna, Italy, 2020; pp. 417–420. ISBN 978-88-916-4327-8. [Google Scholar]
- Umgiesser, G.; Bajo, M.; Ferrarin, C.; Cucco, A.; Lionello, P.; Zanchettin, D.; Papa, A.; Tosoni, A.; Ferla, M.; Coraci, E.; et al. The prediction of floods in Venice: Methods, models and uncertainty. EGU Nat. Hazards Earth Syst. Sci. 2020, 10, 2–47. [Google Scholar] [CrossRef]
- Morucci, S.; Coraci, E.; Crosato, F.; Ferla, M. Extreme events in Venice and in the North Adriatic Sea: 28–29 October 2018. Rend. Lincei Sci. Fis. E Nat. 2020, 31, 113–122. [Google Scholar] [CrossRef]
- Kaluarachchi, Y.; Indirli, M.; Ranguelov, B.; Romagnoli, F. The ANDROID case study; Venice and its territory: Existing mitiga-tion options and challenges for the future. Procedia Econ. Financ. 2014, 18, 815–824. [Google Scholar] [CrossRef] [Green Version]
- Umgiesser, G.; Matticchio, B. Simulating the mobile barrier (MOSE) operation in the Venice Lagoon, Italy: Global sea levelrise and its implication for navigation. Ocean Dyn. 2006, 56, 320–332. [Google Scholar] [CrossRef]
- Samuels, P.G. Stakeholder involvement in flood risk management–contribution from the FLOOD site project. In Proceedings of the WGF Thematic Workshop: Stakeholder Involvement in Flood Risk Management, Bucharest, Romania, 17–18 April 2012. [Google Scholar]
- Steinführer, A.; Kuhkicke, C.; De Marchi, B.; Scolobig, A.; Tapsell, S.; Tunstall, S. Towards Flood Risk Management with the People at Risk: From Scientific Analysis to Practice Recommendations (and Back); Taylor & Francis: London, UK, 2009. [Google Scholar]
- Scolobig, A.; Prior, T.; Schroter, D.; Jorin, J.; Patt, T. Towards people-centred approaches for effective disaster risk management: Balancing rhetoric with reality. Int. J. Disaster Risk Reduct. 2015, 12, 202–212. [Google Scholar] [CrossRef]
- Makropoulos, C.; Tsoukala, V.K.; Belibassakis, K.A.; Lykou, A.; Chondros, M.K.; Gourgoura, P.; Nikolopoulos, D. Managing flood risk in coastal cities through an integrated modelling framework supporting stakeholders’ involvement: The case of Rethymno, Crete. In Proceedings of the Conference IAHR 2015, The Hague, The Netherlands, 28 June–3 July 2015. [Google Scholar]
- Cook, I.; Swyngedouw, E. Cities, Social Cohesion and the Environment: Towards a Future Research Agenda. Urban Stud. 2012, 49, 1938–1958. [Google Scholar] [CrossRef]
- Latour, B. Reassembling the Social: An Introduction to Actor-Network-Theory; Oxford University Press: Oxford, UK, 2005. [Google Scholar]
- Kaika, M. City of Flows; Routledge: London, UK, 2005. [Google Scholar]
- Ciampa, F.; De Medici, S.; Viola, S.; Pinto, M.R. Regeneration Criteria for Adaptive Reuse of the Waterfront Ecosystem: Learning from the US Case Study to Improve European Approach. Sustainability 2021, 13, 41–56. [Google Scholar] [CrossRef]
- Beauregard, R.A.; Lieto, L. Planning for a Material World. Routledge: London, UK, 2016. [Google Scholar]
- Swyngedouw, E. Social Power and the Urbanization of Water: Flows of Power; Oxford University Press: Oxford, UK, 2004. [Google Scholar]
- Bosone, M.; Ciampa, F. Human-Centred Indicators (HCI) to Regenerate Vulnerable Cultural Heritage and Landscape towards a Circular City: From the Bronx (NY) to Ercolano (IT). Sustainability 2021, 13, 5505. [Google Scholar] [CrossRef]
- Healey, P. Collaborative Planning in perspective. Plan. Theory 2003, 2, 101–123. [Google Scholar] [CrossRef] [Green Version]
Mediterranean Flood Mitigation Solution | Stakeholder Engagement Techniques | Stakeholder Goals in the Participatory Process | Stakeholder Benefit/s from the Participatory Process |
---|---|---|---|
Coastal barriers (Costa da Caparica, Portugal) | Stakeholders engaged through public dialogue during the project design phase. Advantages: the dialogue allowed the community to be informed about the planning. Advantages: lack of community public dissertation, impairing a structured awareness of the choices to be adopted. | Community: Explain their needs; Advantages:: Establish a partnership between business and public investors; Advantages:: Plan the project to protect coastal ecosystems. | Community: Participation and engagement; Advantages:: Testing new profitable strategies; Advantages:: Testing new inclusive strategies for flood defense. |
Infrastructural drainage systems (Barcelona, Spain) | Stakeholders engaged through educational workshops in the project design phase. Involvement of the community in maintenance and management of the system, by reporting potential failures or malfunctions of the system. Advantages: the community was informed about the solution, allowing development of a collective awareness of the transformations. Advantages: the community did not have the opportunity to express its needs, neither to contribute to the choice of a specific solution that could have met both the latent social needs and the mitigation of floods. | Community: Explain their preferences to aspire their needs; Advantages:: Establish a partnership between business and public investors to minimize project expenditure; Advantages:: Manage the project in compliance with administrative requirements. | Community: Improving their life quality standards; Advantages:: Funding for the construction of private facilities for public use; Advantages:: Reduction of public economic pressure through private investment. |
Mobile dams (Venice, Italy) | Stakeholders engaged in an early stage of the project through questionnaires, interviews, and meetings. Advantages: the community contributed to the design choice through the scientific and structured expression of its needs. Advantages: the community was not involved in the management and maintenance phase of the project. | Community: Protect their identity by preserving the sense of belonging to a place; Advantages:: Maximize integration with existing resources; Advantages:: Manage the project in alignment with European Union policy directives. | Community: Empowerment of community on the basis of shared values; Advantages:: Reducing adaptation costs; Advantages:: Adoption of sustainable strategies to protect local ecosystems. |
Mechanical wetlands (Thessaloniki, Greece) | Stakeholders engaged in management of the alert phase of the system. The community also has the possibility to provide alerts about device failure. Advantages: the community plays an active and pro-active role in risk management. Advantages: the community was not involved in the early stages of the project, without being able to express themselves about the mitigation solution, given the bottom-up approach used. | Community: Defend cultural heritage values; Advantages:: Enhance their business production; Advantages:: Enhance urban resilience to flooding. | Community: New job opportunities; Advantages:: Reduction of management costs; Advantages:: Reduction of maintenance costs. |
Mediterranean Flood Mitigation Solution | Main Characteristics | Advantages | Disadvantages |
---|---|---|---|
Coastal barriers (Costa da Caparica, Portugal) |
|
|
|
Infrastructural drainage systems (Barcelona, Spain) |
|
|
|
Mechanical wetlands (Thessaloniki, Greece) |
|
|
|
Mobile dams (Venice, Italy) |
|
|
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ciampa, F.; Seifollahi-Aghmiuni, S.; Kalantari, Z.; Ferreira, C.S.S. Flood Mitigation in Mediterranean Coastal Regions: Problems, Solutions, and Stakeholder Involvement. Sustainability 2021, 13, 10474. https://doi.org/10.3390/su131810474
Ciampa F, Seifollahi-Aghmiuni S, Kalantari Z, Ferreira CSS. Flood Mitigation in Mediterranean Coastal Regions: Problems, Solutions, and Stakeholder Involvement. Sustainability. 2021; 13(18):10474. https://doi.org/10.3390/su131810474
Chicago/Turabian StyleCiampa, Francesca, Samaneh Seifollahi-Aghmiuni, Zahra Kalantari, and Carla Sofia Santos Ferreira. 2021. "Flood Mitigation in Mediterranean Coastal Regions: Problems, Solutions, and Stakeholder Involvement" Sustainability 13, no. 18: 10474. https://doi.org/10.3390/su131810474